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Abstract

This research empirically evaluates data sets from the National Center for
Education Statistics (NCES) for design effects of ignoring the sampling design
in weighted two-level analyses. Currently, researchers may ignore the
sampling design beyond the levels that they model which might result in
incorrect inferences regarding hypotheses due to biased standard error
estimates; the degree of bias depends on the informativeness of any ignored
stratification and clustering in the sampling design. Some multilevel software
packages accommodate first-stage sampling design information for two-level
models but not all. For five example public release data sets from the NCES,
design effects of ignoring the sampling design in unconditional and conditional
two-level models are presented for 15 dependent variables selected based
on a review of published research using these five data sets. Empirical findings
suggest that there are minor effects of ignoring the additional sampling design
and no differences in inference would be made had the first-stage sampling
design been ignored. Strategically, researchers without access to multilevel
software that can accommodate the sampling might consider including
stratification variables as independent variables at level 2 of their model.

1 Department of Human Development and Quantitative Methodology, University of Maryland,

College Park, MD, USA
2 American Institutes for Research, Washington, DC, USA

Corresponding Author:

Laura M. Stapleton, Department of Human Development and Quantitative Methodology,

University of Maryland, 3304 Benjamin Building, College Park, MD 20742, USA.

Email: lstaplet@umd.edu

Sociological Methods & Research
1-28

ª The Author(s) 2016
Reprints and permission:

sagepub.com/journalsPermissions.nav
DOI: 10.1177/0049124116630563

smr.sagepub.com

 at UNIV OF MICHIGAN on February 15, 2016smr.sagepub.comDownloaded from 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357277476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sagepub.com/journalsPermissions.nav
http://smr.sagepub.com
http://smr.sagepub.com/


Keywords

multilevel, sampling, survey, weights, structural modeling

The use of multilevel modeling with data from national probability samples

has become more common in educational and behavioral research in recent

years (O’Connell and McCoach 2008). These models posit relations within

clusters, such as classrooms, schools, or neighborhoods, as well as posit

relations among cluster constructs (Raudenbush and Bryk 2002; Sniders and

Bosker 2012). Methods used to select samples for many national probability

studies are excellent for such analyses, given that clusters of individuals

within units are usually approached for response. However, conducting a

multilevel analysis does not necessarily address all elements of the sampling

design and thus inference may be compromised (Kish 1965; Wolter 1985). In

particular, the estimates of standard errors, or sampling variances, may be

inappropriate. If one or more stages of sampling is ignored, then standard

errors may be underestimated and, conversely, if stratification in the sam-

pling design is ignored, then standard errors may be overestimated (Kish

1965). In this article, we discuss how stratification and multistage selection

might be addressed in a multilevel analysis of national probability sample

data, specifically in an educational context where students or teachers are

nested in schools. First, a short discussion of typical sampling procedures

used by the National Center for Education Statistics (NCES) is provided, and

the multilevel modeling of such data is then described as well as concerns

regarding the impacts of ignoring the stratification and multistage selection

present in most sampling designs. Next, we summarize the sampling designs

used for five currently popular public release data sets and review the pub-

lished multilevel analyses that have used these data sets. We then present an

empirical evaluation of the effects of running weighted two-level analyses on

these data and the possible inference concerns with not fully addressing the

sampling design. Specifically, we document the design effects (or misesti-

mation of the standard errors if the stratification or clustering is ignored).

This article concludes with steps that applied researchers can take to evaluate

the informativeness of primary sampling unit (PSU) clustering and of stra-

tification in the sampling design and therefore the possible design effects

they may encounter if the full sampling design is ignored in a multilevel

analysis. The estimation of measures of informativeness can be easily cal-

culated within an analysis of variance (ANOVA) framework and thus does

not require more sophisticated software.
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Background

National education-related surveys generally are not conducted using simple

random sampling designs (e.g., Ingels et al. 2005; Tourangeau et al. 2009).

Some designs used by the NCES involve three stages of sampling: PSUs of

single counties or groups of counties, then schools within those selected

counties, and then ultimate sampling units (USUs) of students or teachers

within the selected schools. At the first two stages, stratification and prob-

ability proportional to size (PPS) sampling1 might be used and at the final

stage, stratification often is used with disproportionate sampling across

strata. The first-stage stratification can be complex, with the use of certainty

strata and noncertainty strata (Kish 1965). These strata may be defined by

various combinations of variables such as Census region, proportion of spe-

cific race/ethnicity, size of PSU, and average per capita income. Within

noncertainty strata, PPS sampling often is used to select PSUs per stratum.

Within PSUs, schools may be stratified by such variables as public/private

status, urban/rural location, or grade level and then sampled with implicit

stratification2 by school characteristics. Schools are thus treated as secondary

sampling units. Finally, students (or teachers) might be selected from the

sampled schools using stratification on individual characteristics, with a

given target sample size per school. Some NCES studies use a two-stage,

instead of three-stage, stratified sampling approach (see Tourkin and col-

leagues 2004, as an example). In these designs, the PSUs are the schools,

stratified by such variables as level, region, and percent minority, selected

with PPS sampling. Within schools, a fixed sample size of individuals may

be selected using stratified sampling across characteristics such as race/

ethnicity and gender.

Multilevel Models With NCES Data

Software packages, such as HLM (Raudenbush et al. 2011), MLwiN (Ras-

bash et al. 2012), and MIXED components of Statistical Package for the

Social Sciences (2002) and SAS (SAS Institute Inc. 2013), have long been

available for the analysis of two-level models with manifest variables. Addi-

tionally, estimation methods have been recently implemented into structural

equation modeling programs, for example, Mplus (Muthén and Muthén

2011), LISREL (du Toit and du Toit 2008), and the Gllamm package within

Stata (Rabe-Hesketh, Skrondal, and Pickles 2004), allowing researchers to

model multilevel relations among latent constructs. Unless otherwise spec-

ified, the estimation methods implemented within these software programs
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operate on the assumption that clusters are a random selection from some

finite population and persons within those sampled clusters are also a random

selection thus yielding the assumed independent residuals at each level. Most

national education-related data sets use sampling procedures that are more

complicated in design however. In three-stage sampling designs in educa-

tion, data usually have some degree of dependence among observations at the

school level. This dependence can lead to negatively biased estimates of

sampling variances (Kish 1965) of the parameters of interest at level 2.

Additionally, when sample designs include stratification, the stratification

usually is intended to provide more efficient estimates of population para-

meters (Kalton 1983; Kish 1965). When modeling with data obtained

through a stratified sample, if the stratification is ignored, the resulting

estimates of the sampling variances will tend to be positively biased, assum-

ing that the data exhibit some level of homogeneity within strata (Kalton

1983; Kish and Frankel 1974).

Researchers in the social sciences have used multilevel model-based

techniques, both manifest and latent, with national data sets thus addressing

some of the complexity of the sample design, specifically the clustering of

USUs in a higher order cluster (e.g., Hox 2002; Kaplan and Elliott 1997; Lee

et al. 2006; Palardy 2008). For example, we might suppose a simple two-

level bivariate fixed regression of some response variable, yij, for student i

nested in school j as

yij ¼ b0j þ b1jxij þ rij;
b0j ¼ g00 þ g01xj þ u0j;
b1j ¼ g10:

where xij is the student-level predictor and xj is the school mean of the

level-1 variable and where rij is assumed distributed *N(0,s2) and u0j is

assumed distributed as N(0, t00). As one example of a problem with using

this model with data collected via complex sampling designs, in this

model, the u0j is assumed independent across the level-2 units. This

assumption would likely be violated with stratified multistage sampling

designs, as those schools within the same strata would share a dependency

and, likewise, those schools within the same PSU. This lack of indepen-

dence has ramifications for the estimates of the standard errors for each of

the parameter estimates in the model (g00, g10, g01, s2, and t00). While the

entire sampling design can be accommodated using a model-based

approach (modeling a level for each of the sampling stages, e.g., level 1

being students, level 2 being schools, and level 3 being geographic areas),

typically researchers are interested only in substantive questions about the
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two lowest levels such as students within schools and therefore a com-

pletely model-based approach would be unnecessarily complex. Further-

more, a strictly model-based approach would require the inclusion of

stratification variables, both explicit and implicit (Sterba 2009), and pre-

dictor variables would need to be modeled with interactions with the

stratification indicators. This approach appears overly complicated, given

the focus of most research questions.

Appropriate Variance Estimation for Multilevel Model Estimates

A few studies have examined the effect of using two-level modeling while

ignoring the first stage of sampling with three-stage samples and while

ignoring the first-stage stratification in the sampling design (Asparouhov

and Muthén 2006; Grilli and Pratesi 2004; Kovacevic and Rai 2003; Rabe-

Hesketh and Skrondal 2006). The latter two studies examined estimation

with a single outcome variable (ordinal and dichotomous, respectively) while

the former examined estimation issues in a multilevel confirmatory factor

analysis framework. While the models examined were different, the findings

generalize across models. Of most usefulness given the breadth of its simula-

tion design, assuming continuous and normally distributed measures, Aspar-

ouhov and Muthén (2006) found that when conducting a two-level

confirmatory factor analysis with data from a stratified three-stage sampling

design, sampling variances were underestimated when excluding the third

level of the sampling design, as expected. Specifically, when first-stage

clustering was ignored, given their simulation conditions, standard error

estimates were 7 to 15 percent too small depending on the parameter estimate

of interest. When first-stage stratification was ignored, on the other hand,

standard errors were overestimated about 5 percent for cluster-level para-

meters. Additionally, and importantly in a structural equation modeling

(SEM) framework, when ignoring both components of sampling, likelihood

ratio tests had extremely high model rejection rates (90 percent compared to

the expected 5 percent given the correct model specification). Grilli and

Pratesi (2004) and Rabe-Hesketh and Skrondal (2006) each evaluated, via

simulation, the estimation of single outcome manifest variable multilevel

models given a two-stage sample with stratification at the first stage. In both,

the authors found that estimation of standard errors was positively biased

when the stratification was ignored.

Given these concerns, statisticians have proposed methods of estimating

two-level models from multistage stratified sampling designs (Asparouhov

and Muthén 2006; Grilli and Pratesi 2004; Rabe-Hesketh and Skrondal
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2006). In this type of analysis, some sampling design information is modeled,

while some is accounted for in the estimator, and thus Rabe-Hesketh and

Skrondal (2006) term this type of modeling a hybrid aggregated–disaggre-

gated approach. When a multilevel analysis does not include all facets of the

sampling design within the model, multilevel pseudo-maximum likelihood

(MPML) estimation has been developed to obtain unbiased parameter esti-

mates. Sampling variance estimation is accomplished with a sandwich esti-

mator, providing linearized estimates based on the first-stage sampling

characteristics. This MPML method was evaluated by Asparouhov and

Muthén (2006), Grilli and Pratesi (2004), and Rabe-Hesketh and Skrondal

(2006) under conditions of continuous, ordinal, and dichotomous outcome

data, respectively. Consider our simple two-level bivariate example and

suppose that data were collected using a three-stage sampling design. The

response variable, yijk, is of individual i in school j in PSU k, and we might

model with covariate xijk at the individual level and xjk at the school level. At

level 1, we hypothesize a density function of yijk to be f(yijk|xijk, yjk, yw), and at

level 2, the density function of the school intercept, gjk, to be f(yjk|xjk, yb)

where yw and yb are parameter sets (of both regression coefficients and

variance components) to be estimated at the within- and between levels,

respectively. The parameters are solved to maximize a weighted likelihood

of the two functions, where a weighted likelihood for the jth cluster (or

school) in the kth PSU can be found as

lðyw; ybÞjk ¼
Z  Ynj

i¼1

f ðyijk jxijk ; gjk ; ywÞ
wijk
!

fðgjk jxjk ; ybÞdgjk : ð1Þ

And the total weighted likelihood across clusters and PSUs is taken as the

product

lðyw; ybÞ ¼
Y

jk

lðyw;ybÞwjk

jk : ð2Þ

See Jenkins (2008) and Pfeffermann et al. (1998) for more detailed expla-

nation of the estimation. The estimations can be altered to include stratifica-

tion at the first stage of sampling by taking the product in equation (2) across

each PSU k within each stratum s.

As an aside, note that two sampling weights, one at the individual level in

equation (1), wijk, and one at the cluster (school) level in equation (2), wjk,

appear as exponents in this estimation. Researchers have suggested that

MPML-based analyses use conditional sampling weights within clusters at

level 1, wi| jk (the inverse of the selection probability of the individual given
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selection of the cluster), and the inverse of the selection probability of the

cluster as the sampling weight, wjk, at level 2 (Asparouhov and Muthén 2006;

Rabe-Hesketh and Skrondal 2006). Current versions of Mplus (Muthén and

Muthén 2011), HLM (Raudenbush et al. 2011), and Stata software’s general-

ized linear latent and mixed models (gllamm; Rabe-Hesketh and Skrondal

2006) package are able to appropriately include these disproportionate sam-

pling rates at both levels of the model, if those weights are provided with the

data set. In all analyses reported in this article, appropriate sampling weights,

as specified above, are used.

To estimate sampling variances with the MPML estimation, the asymp-

totic covariance matrix of the ŷw and ŷb parameter sets is a sandwich esti-

mator of

covðŷÞ ¼ I�1VI�1; ð3Þ

where I is the observed pseudo-Fisher information at the MPML estimates of

ŷ (the second derivative of the log of the total weighted likelihood) and V is a

covariance estimate that is calculated based on the sample design. Rabe-

Hesketh and Skrondal (2006) present an estimator V based on an assumed

with-replacement design at the first stage of sampling, while Asparouhov and

Muthén (2006) provide two additional estimates of V for without-

replacement designs,3 incorporating finite population correction factors and

unequal probability of selection of PSUs in the design. Although these latter

two new estimators are available starting in Mplus with version 6, the analyst

must provide sampling design information not present in the public release

data set, and therefore the with-replacement estimator is more typically used

and is the focus of this article. Both the Stata gllamm package and Mplus

provide the with-replacement assumed MPML estimator. In this estimation,

V represents an estimate of the variance in parameter estimates across PSUs

within strata, summed across strata. As PSUs within strata become more

similar in their estimates, elements of this V matrix decrease in size, yielding

adjustment to the sampling variance estimates.

While this robust MPML estimation with the sandwich estimator should

be the preferred approach when undertaking multilevel analyses with strati-

fied and/or three-stage sampling designs, it is of interest to determine the

effect of ignoring these sampling design elements with NCES data. First,

decades of multilevel research using data from national probability samples

has been published that have ignored these for the most part and it would be

of interest to determine the extent to which those standard error estimates

might be biased. Secondly, current multilevel researchers may be limited in
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their access to multilevel software that can accommodate the sampling

design. Prior simulation research is not completely informative on this matter

for the typical analyst using NCES data. First, two of the three simulation

studies that compared the MPML estimator with robust sampling variance

estimation to an approach of ignoring the sampling design used only two

stages of sampling (Grilli and Pratesi 2004; Rabe-Hesketh and Skrondal

2006). These studies, therefore, did not compare the ability of the sandwich

estimator to account for the missing level of sampling in the sampling var-

iance estimates to the approach of just ignoring the missing level of sam-

pling. Only Asparouhov and Muthén (2006) investigated two-level estimates

under conditions involving three stages of sampling. Second, stratification at

the first stage of sampling in these simulations involved only two or three

strata and contained many PSUs per stratum (in one study 200 PSUs were in

one of the strata). Typical education-related data sets utilize dozens of strata

within sampling designs with few PSUs within each stratum. A third problem

with these studies is that to create the informativeness of the stratified sam-

pling, the researchers split cluster observations into strata using a cut point

based on the generated residuals, resulting in extreme informativeness of the

stratification variable. For example, clusters with a negative residual

were placed in stratum 1 and those with positive residuals were placed

in stratum 2. In the Rabe-Hesketh and Skrondal (2006) study, the strata

variable was correlated to the response variable at 0.82 at the first stage

of sampling and 0.76 at the second stage of sampling. Levels of strata

informativeness could not be ascertained from the other studies (Aspar-

ouhov and Muthén 2006; Grilli and Pratesi 2004) but given the described

data generation logic, they are expected to be similar to that used by

Rabe-Hesketh and Skrondal (2006). In order to understand whether the

findings from these simulation studies can be generalized to current

applied research, an empirical evaluation of currently available national

probability sample data is needed to determine the typical level of infor-

mativeness of the stratification.

In this article, we provide a review of empirical data to determine whether

these simulation studies provide realistic and generalizable results by exam-

ining stratification and clustering informativeness for a broad range of vari-

ables from each of five NCES data sets. If research can provide support that

ignoring the first-stage sampling design in weighted multilevel analyses of

three-stage data or ignoring stratification can provide unbiased sampling

variances under the realistic conditions found in most national databases,

we can have more confidence in the two-level analysis results that have been

published from these data sets. Therefore, in this article, we review
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informativeness indices as well as the unconditional and conditional multi-

level design effects present in empirical NCES data sets.

A Review of the Empirical Data

In this section, we first briefly describe the sampling structure of the five data

sets of interest and highlight the portion of the sampling structure not accom-

modated by a simple weighted two-level analytic model. Second, we

describe the empirical research we reviewed using these data sets and present

the most often-used variables included in the published analyses. We con-

ducted a review of the data characteristics of the following five existing

public release data sets: Early Childhood Longitudinal Study-Kindergarten

of 1998-99 (ECLS-K: Tourangeau et al. 2009), Education Longitudinal

Study of 2002 (ELS; Ingels et al. 2005), National Education Longitudinal

Study: 1988 (NELS; Spencer et al. 1990), Schools and Staffing Survey of

1999-2000 with Teacher Follow-up Study of 2000-01 (SASS-TFS; Tourkin

et al. 2004), and the Trends in International Mathematics and Science Study

1999 (TIMSS; Martin, Gregory, and Stemler 2000).

Summary of documentation of sampling structures. In Table 1, we provide a

summary of the sampling structure for each of the five data sets of interest

and a more detailed description of the sampling structure for each of the five

data sets reviewed is presented in Online Appendix 1. The details provided in

the Online Appendix include information about the type of sampling used

(e.g., probability proportionate to size), whether disproportionate sampling

was utilized, target sample size at each level, and, importantly, the variables

used for both explicit and implicit stratification at each level of the sampling

plan. In the five data sets that we examined, only three involved some degree

of three-stage sampling. TIMSS had the most complicated sampling struc-

ture, with selection of PSUs within regional strata, followed by schools

within the PSUs and then selection of intact classrooms. For ECLS-K, about

one-third of the schools were selected after first selecting a geographic area.

For SASS-TFS, private schools were selected after selection of geographic

areas. For the remaining data sets and subsets of data sets, the sampling

designs suggest that the school-level data should not exhibit dependency due

to clustering, given that schools were at the first stage of selection and

therefore standard errors from a multilevel analysis would not be expected

to be underestimated as is commonly a concern. On the contrary, for many of

the analyses from these data sets, the only worry is that the stratification used

at the first stage of sampling may not be accommodated in a two-level
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weighted analysis, and therefore there would be a loss in precision, repre-

sented by overestimated standard errors. The degree of this overestimation is

of interest as we document the empirical data characteristics in the Results

section.

Literature search of published articles and description of empirical data. We con-

ducted a literature search of EBSCO, PsychINFO, ERIC, JSTOR, and Goo-

gle Scholar to examine articles appearing in peer-reviewed journals that

utilized the five public release data sets of interest: ECLS-K, ELS, NELS,

SASS-TFS, and TIMSS. Search key words included the following: ECLS-K,

NELS 88, SASS-TFS, ELS 2002, TIMSS. Articles that were not related to

applied research, such as letters to the editor or book reviews, and

Table 1. Summary of Sampling Designs Used With Five Data Sets of Interest.

Design First-stage Strata PSUs SSU USU

ECLSK Stratified
three
stage

Geo- and
demographic
grouping of
counties

Counties/
groups
of
counties

Schools Kindergarten
students

ELS Stratified
two stage

Geographic and
sector groupings
of schools

Schools — 10th-grade
students

NELS Stratified
two stage

Geo- and
demographic
groupings of
schools

Schools — 8th-grade
students

SASS-
TFS

Stratified
two stage
(public)
and three
stage
(private)

Sector and
geographic
groupings of
schools (public)
and geographic
groupings of
counties (private)

Schools
(public)
and
counties
(private)

Schools
(private)

Teachers

TIMSS Stratified
three
stage

Geographic
groupings of
districts/regions

School
districts/
regions

Schools Classroom
(intact)

Note: — indicates that the stage of sampling was not applicable. PSU ¼ primary sampling unit;
SSU ¼ secondary sampling unit; USU ¼ ultimate sampling unit; ECLSK ¼ Early Childhood
Longitudinal Study-Kindergarten; ELS ¼ Education Longitudinal Study; NELS ¼ National Edu-
cation Longitudinal Study; SASS-TFS ¼ Schools and Staffing Survey–Teacher Follow-up Study;
TIMSS ¼ Trends in International Mathematics and Science Study.
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unpublished manuscripts, such as papers given at conferences, organizational

or agency reports, and dissertations, were not included in this review. First,

the articles were sorted based on public release data set used and then it was

determined whether the procedure used in each article was a form of multi-

level modeling. Of those articles that used multilevel modeling, it was estab-

lished whether the modeling used was longitudinal (e.g., growth curve for

individual change) or school and community contextual analysis (e.g., multi-

level regression and multilevel structural equation modeling). Table 2 con-

tains the number of articles identified as using multilevel regression or

multilevel SEM for each of the five public release data sets.

We then reviewed the contextual multilevel analyses published from each

of the five data sets to identify the most often-used measures in the analyses.

Sometimes measures were constructed as composites or scales from several

items but with too little information to replicate to include in analyses and

were therefore eliminated from consideration. Table 3 lists the variables that

were most frequently used for each of the data sets (typically, used in a

majority of the analyses). Given their use in this empirical literature, we

evaluate some data sets for up to six dependent variables (ELS) and some

for only one (TIMSS and SASS-TFS). Most dependent variables were

interval-scaled exam scores or latent trait scores, however, some dependent

variables were binary indicators, such as drop-out status. The breadth of

independent variables examined for any data set was a function of their

frequency of use in the published literature. In Table 3, we have included

details on how variables were coded or transformed, if applicable. Of note, it

Table 2. Number of Articles Reviewed and Included in Review for Five Selected
Public Release Data Files.

Total Number of
Articles

Total Number of
Multilevel Longitudinal Contextuala

ECLSK (1998) 134 54 35 19
ELS (2002) 47 10 0 10
NELS (1988) 314 52 12 40
SASS-TFS

(1999–2000)
15 4 — 4

TIMSS (1999) 7 4 — 4

Note: ECLSK ¼ Early Childhood Longitudinal Study-Kindergarten; ELS ¼ Education Longitudinal
Study; NELS ¼National Education Longitudinal Study; SASS-TFS ¼ Schools and Staffing Survey–
Teacher Follow-up Study; TIMSS ¼ Trends in International Mathematics and Science Study.
aOnly the articles including contextual analyses were included in the analyses in the article.
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was not uncommon for level-2 variables to represent some of the explicit

stratification variables. Inclusion of these variables in a model would reflect

a partial model-based approach of accommodating that aspect of the sam-

pling design. It is these often-used variables for multilevel models with these

selected data sets that we examine in the analyses in this article. Specifically,

we extracted 91 variables from the databases for review (24, 23, 25, 9, and 10

variables, respectively, for ECLS-K, ELS, NELS, SAS, and TIMSS) as listed

in Table 4. Some of the variables extracted were dummy coded versions of

nominally scaled data, and some were school means of level-1 variables.

Fifteen of the 91 variables are dependent variables and are the focus of the

analysis in this article; the remaining variables are used as predictors to

evaluate design effects in conditional models.

In summary, our review of the five public release data sets suggests that,

for three of the data sets (NELS, ELS, and the public school sample for

SASS), the only concern in running a contextual two-level analysis of stu-

dents within schools is that the first-stage selection of schools was stratified.

If the strata variables are not accommodated in an analysis, the sampling

variances may be overestimated. For the remaining data sets, a researcher

may need to consider whether a two-level contextual analysis of students/

teachers within schools should address the effects of both first-stage selection

of geographic areas as well as stratification. Our review also provided several

Table 4. Structure of Data Used for Empirical Analyses.

Strata PSUs Schools Students or Teachersa

ECLSK Frequency 88 427 787 12,678
Range within unit above 1–64 1–12 1–25

ELS Frequency 361 — 751 15,244
Range within unit above — 2-3 2–50

NELS Frequency 28 — 1,011 16,489
Range within unit above — 1–149 1–49

SASS-TFS Frequency NA — 7,959 37,974
Range within unit above — NA 1–19

TIMSS Frequency 53 106 221 9,072
Range within unit above 2–2 1–8 3–78

Note: NA indicates stratum information for the SASS-TFS data is not on the public release data
file. — indicates that schools were directly sampled within strata and not sampled within PSUs.
ECLSK ¼ Early Childhood Longitudinal Study-Kindergarten; ELS ¼ Education Longitudinal
Study; NELS ¼ National Education Longitudinal Study; SASS-TFS ¼ Schools and Staffing Sur-
vey–Teacher Follow-up Study; TIMSS ¼ Trends in International Mathematics and Science Study.
aFor SASS-TFS, level-1 units are teachers; for all other data sets, level-1 units are students.
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candidate variables to include in our analyses to determine empirically the

effect of addressing stratification and first-stage selection. Based on this

review, in this article, we examine these empirical data to determine whether

the sampling design is informative for these variables and to evaluate pos-

sible effects of ignoring the sampling design in weighted two-level analyses

on estimates of sampling variance.

Method

For each of the five data sets, we conduct several analyses to determine the

effect of ignoring the stratification and first-stage components of the sam-

pling design. Subsets from the original databases were created in some cases.

For example, for ECLS-K, because most published analyses included the

categorical race/ethnicity variable and excluded students who affiliated with

‘‘Other’’ or multiracial categories that same procedure was used in our anal-

yses. Furthermore, missing data on some variables were accommodated

using listwise deletion; although this is not a wise approach for empirical

analyses, our interest was in estimating the effect on the standard errors of

modeling sampling information inappropriately, and therefore our interest is

not in the point estimates of the parameters themselves. Therefore, a single

data set using listwise deletion was created for each of the five databases and

all analyses used these final data sets and were thus based on the same

number of observations for a given survey program.4 For context, Table 4

includes the counts of the observations used at each level of the analysis for

the five data sets as well as information about the variance estimation strata

and the PSUs. The SASS-TFS analysis was limited to public schools and

therefore did not involve PSUs in the sampling structure.

The combined effect of ignoring the clustering and stratification in the

sampling design on all estimates in a multilevel model was evaluated empiri-

cally in two ways, using unconditional and conditional models. Specifically,

we calculated design effects for parameter estimates from both univariate

and multivariate analyses for each of 15 variables of interest across the five

data sets; these 15 were chosen as they were typically used as dependent

variables in the published multilevel model results reviewed. The design

effect is used as a measure of the over- or underestimation of the sampling

variance of a specific parameter estimate. It is the ratio of the actual variance

of an estimate to the variance of that estimate given a simple random sample

of the same number of elements (Kish 1965). Typically, the design effect of

the mean is reported in database user guides for a variety of variables. The

square root of the design effect, named root design effect or referred to
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simply as deft, can be used as a multiplicative standard error adjustment

therefore deft values of 1.0 suggest no standard error adjustment is needed

while values above 1.0 suggest that the standard error might be underesti-

mated and those below 1.0 suggest that the standard error might be over-

estimated (Kish 1965).

In order to estimate multilevel design effects found for typical education-

related data, we undertook empirical analyses for all 15 dependent variables,

all conducted in Mplus version 6.0 using maximum likelihood estimation.

First, we determined a univariate multilevel design effect and root design

effect of ignoring the additional sampling design in weighted two-level anal-

yses by estimating a null (unconditional) model, shown in equation (4), once

with the MPML estimator5 with explicit first-stage strata and, if applicable,

PSU (level 3) clustering identified and once with the traditional maximum

likelihood estimator, ignoring stratification and any level-3 clustering:

yij ¼ g00 þ u0j þ rij: ð4Þ

For continuous outcomes, a hierarchical linear model was used, as in

equation (4). From these results, we obtained design effects for the estimate

of the intercept, the within-school residual variance and the between-school

variance. For dichotomous and polytomous outcomes, the model was run

using maximum likelihood estimation with a logit link and design effects

were obtained for the intercept and between-school variance. All estimation

used appropriate sampling weights at each level of the analysis, except the

analyses using the NELS data for which a school-level weight is not provided

on the public release data file. For the NELS data, the level-2 analyses were

unweighted, and the overall unconditional sampling weight was used at

level 1.

The multilevel design effect of the intercept can be estimated as a ratio of

the estimate of the sampling variance of the intercept from the two estima-

tions, where the prime indicates the estimate is from the properly specified

MPML estimation:

ddeff ¼
ŝ20

g00

ŝ2
g00

: ð5Þ

We also calculated design effects for the two other parameters in the

unconditional model—within-school variance (s2) and between-school var-

iance (t00)—by taking the ratio of the two sampling variance estimates from

the MPML and the ML estimations. The root design effect, deft, was calcu-

lated as the square root of the deff estimate in equation (5).
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Next, we determined conditional design effects for all estimates from a

fixed effects regression model with the 15 selected dependent variables

regressed on all level-1 and level-2 selected predictors from Table 3 as

shown in equation (6) for the continuous dependent variable case

yij ¼ g00 þ
XP

p¼1

gp0Xijp þ
XZ

z¼1

g0zWjz þ u0j þ rij; ð6Þ

where P is the number of predictors at level 1 and Z is the number of

predictors at level 2. As with the null model, we estimated design effects

for the intercept and the two variance components; additionally, the design

effect for each regression coefficient was calculated and the average and

range of these root design effects are reported for each data set.

Results

In Table 5, we report the square root of the unconditional model multilevel

design effects (deft) for the 15 dependent variables from the five data sets,

displayed by parameter. These design effects were obtained based on running

a multilevel model assuming simple random sampling at each level of the

analysis as compared to a multilevel model that accommodates first-stage

stratification and clustering. These root design effects reflect the needed

inflation (or deflation) of the standard error estimated while ignoring the

first stage sampling design to represent the appropriate sampling variability.

Root design effects less than 1.0 indicate that the simple random sampling

(SRS)-assumed standard error is overestimated and, conversely, root design

effects greater than 1.0 indicate that the SRS-assumed standard error is

underestimated.

The two-level models assuming SRS for the ELS, NELS, and SAS data

sets ignored the informativeness in the stratification in the sampling design

but because there was not a third stage of sampling, the two-level model

appropriately accommodated the multistage sampling. Therefore, as

expected, the estimates in Table 5 show that for these three data sets preci-

sion was lost and all standard errors were overestimated. For the uncondi-

tional model, the deft values for the ELS, NELS, and SASS data sets were all

less than 1.0. The SASS-TFS dependent variable showed the greatest over-

estimation in the standard error, at about 30 percent for the intercept (the

SRS-assumed intercept standard error estimate should be multiplied by .721

to obtain a more appropriate estimate of the intercept standard error). For the

NELS data set, the overestimation occurred mainly at level 2, with the
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standard errors for the intercept and between-school variances needing to be

deflated by up to 17 percent. The within-school variance standard errors

showed little overestimation. For the ELS data set, the overestimation in

standard errors was fairly minor across all three types of parameter estimates

on average, with most overestimation occurring for the standard error of the

between-school variance estimate.

In the unconditional models run with the ECLS-K and the TIMSS

data, because we were ignoring both first-stage selection of PSUs and

stratification of PSUs, standard errors might have been over- or under-

estimated.6 As shown in Table 5, for the ECLS-K data, the deft measures

for the intercept and the estimate of within-school variance were found to

be both above and below 1.0 depending on the dependent variable exam-

ined. In general, the deft values showed minimal departure from 1.0,

except in the case for one within-school variance measure. For the depen-

dent variable Spring Kindergarten Reading Item Response Theory scale

Table 5. Multilevel Root Design Effects (Deft) of Standard Errors for Unconditional
Model Parameter Estimates.

Parameter Database
Number of Dependent

Variables Analyzed Average Minimum Maximum

g00 ECLS-K 3 1.008 .988 1.025
ELS 6 0.973 .947 0.992
NELS 4 0.906 .841 0.986
SASS-TFS 1 0.721 — —
TIMSS 1 0.860 — —

t00 ECLS-K 3 0.962 .932 0.986
ELS 6 0.949 .870 1.000
NELS 4 0.919 .833 0.997
SASS-TFS 1 0.794 — —
TIMSS 1 1.102 — —

s2 ECLS-K 3 0.970 .892 1.048
ELS 6 0.964 .961 0.966
NELS 4 0.974 .967 0.985
SASS-TFS 1 a — —
TIMSS 1 1.033 — —

Note: — Because only one dependent variable was examined for TIMSS and SASS-TFS, minimum
and maximum values are not provided. ECLSK ¼ Early Childhood Longitudinal Study-
Kindergarten; ELS ¼ Education Longitudinal Study; NELS ¼ National Education Longitudinal
Study; SASS-TFS ¼ Schools and Staffing Survey–Teacher Follow-up Study; TIMSS ¼ Trends in
International Mathematics and Science Study.
aThe dependent variable modeled with SASS-TFS data was dichotomous, and therefore no
level-1 residual variance is estimated.
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score, the deft was .892 indicating that the standard error of the within-

school residual variance was overestimated when ignoring the first-stage

sampling stratification by about 10 percent. Finally, for the one depen-

dent variable that we examined from the TIMSS data set, the intercept

standard error was overestimated and needed to be deflated by a factor of

.86 while the variance component standard errors were somewhat

underestimated.

Table 6. Multilevel Root Design Effects (Deft) of Standard Errors for Conditional
Model Parameter Estimates.

Parameter Database Average Minimum Maximum

g00 ECLS-K 1.002 0.995 1.010
ELS 1.049 1.009 1.072
NELS 1.001 0.997 1.005
SASS-TFS 0.877 — —
TIMSS 1.094 — —

Level-1 fixed slopes (g10, g20, g30, g40,
etc.)

ECLS-K 1.021 0.912 1.300
ELS 0.996 0.945 1.055
NELS 0.998 0.987 1.007
SASS-TFS 0.872 0.828 0.926
TIMSS 1.050 0.893 1.184

Level-2 intercept coefficients (g01, g02,
g03, g04, etc.)

ECLS-K 0.984 0.884 1.030
ELS 1.017 0.953 1.093
NELS 0.995 0.916 1.014
SASS-TFS 0.911 0.874 0.958
TIMSS 1.040 0.798 1.178

t00 ECLS-K 0.977 0.916 1.024
ELS 0.982 0.953 1.033
NELS 0.995 0.986 1.000
SASS-TFS 0.793 — —
TIMSS 1.032 — —

s2 ECLS-K 0.969 0.930 0.998
ELS 0.949 0.945 0.954
NELS 0.986 0.982 0.993
SASS-TFS a — —
TIMSS 1.034 — —

Note: — Because only one dependent variable was examined for TIMSS and SASS-TFS, minimum
and maximum values are not provided. ECLSK ¼ Early Childhood Longitudinal Study-
Kindergarten; ELS ¼ Education Longitudinal Study; NELS ¼ National Education Longitudinal
Study; SASS-TFS ¼ Schools and Staffing Survey–Teacher Follow-up Study; TIMSS ¼ Trends in
International Mathematics and Science Study.
aThe dependent variable modeled with SASS-TFS data was dichotomous, and therefore no
level-1 residual variance is estimated.
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Turning to the conditional models, the multilevel root design effects are

presented in Table 6 for the fixed slope coefficient estimates as well as the

intercept and two variance components. Across all data sets, with few excep-

tions, the deft values for the intercept and between-school variances were

closer to a value of 1.0 as compared to the unconditional model results.

Because level-2 predictor variables tended to include measures used to

define strata or could serve as proxies of those measures, there was basically

no loss in precision of the estimates when running an analysis without the

MPML estimator and therefore the deft estimates increased toward 1.0. This

conclusion cannot be made definitively, however, given confounds associ-

ated with also including level-1 predictor variables in our conditional mod-

els. Of interest is that the deft values for the parameter estimates based on the

SASS-TFS outcome of interest were consistently less than 1.0 and relatively

low compared to the estimates for the other data sets. The likely reason is that

the popular level-2 predictors included in the model for SASS-TFS (see

Table 3), included only one of the variables used in stratification of the

sample: enrollment level of the school. The primary stratification variables

as defined in the Online Appendix, state and district, were not included in the

model and therefore precision in the estimation of the intercept could be

expected to be lost. Deft estimates for the level-1 variance standard errors

across all data sets were very similar in the conditional and unconditional

models.

Discussion

This article presents an empirical investigation of the effects of ignoring

stratification and first-stage selection in weighted two-level analyses with

selected data from the NCES. The findings suggest that the standard errors of

parameters in unconditional models might be over- or underestimated,

depending on whether the ignored sampling components included stratifica-

tion at the first stage of sampling or an additional stage of sampling that was

not accommodated. In general, given the variables used in this study, the

misestimation of the standard errors was not as extreme as presented in prior

simulation research (e.g. Asparouhov and Muthén 2006; Rabe-Hesketh and

Skrondal 2006). Importantly, the standard error estimates were improved

with conditional models, where the conditional models in our examples

included fixed effects of stratification variables at level 2. Given these

empirical findings, we suggest that inferences from the published multilevel

applied research that has been conducted using these public release data files

are likely robust even though the more advanced newly available MPML
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estimators were not implemented. Note, however, that our findings are only

generalizable to the data sets and variables examined here.

Given our findings, we suggest possible steps that applied researchers

who do not have access to appropriate estimators might follow to evaluate

the extent to which their weighted two-level analyses might be affected by

ignored elements of the sampling design. First, it is crucial to evaluate the

sampling design used to obtain the data. By understanding the elements of

the design, it will be clear what components are not being addressed by a

weighted two-level model. A thorough reading of the database user’s guide is

essential. We strongly encourage researchers to examine descriptive statis-

tics in the data set, such as the number of strata and PSUs within strata. The

researcher can then evaluate whether various sampling components can be

ignored. As an example, the ECLS-K data collection is reported in publica-

tions as being a three-stage sampling design. By reading the user’s guide

(Tourangeau et al. 2009) in detail and examining the data, it becomes clear

that for two-thirds of the data, it is based on a two-stage sampling design so

the fact that some schools are clustered in PSUs becomes more of a minor

concern.

Second, if stratification is used at the first stage of sampling, the

researcher might calculate the informativeness of the stratification for the

level-2 cluster (e.g., school) means. Stratum informativeness represents

the proportion of variance in the outcome variable that is associated with

differences across strata. The informativeness index for stratification can be

calculated as follows,

r̂strat ¼
MSBs �MSWs

MSBs þ ðc� 1ÞMSWs

ð7Þ

where c is the average number of units (e.g., schools) per stratum and the

MSBs (mean square between) and MSWs (mean square within) values are from

a weighted ANOVA with first-stage stratum as the grouping factor.7 This

formula can also be used for data that are converted to binary indicators (e.g.,

dummy codes for nominal categories such as race/ethnicity; Snijders and

Bosker 2012:304). To provide an example, we calculated this index for the

TIMSS data set variable Math Standardized Score at the school mean level.

At the school level, the components of MSBs and MSWs were 52.4 and 18.8,

respectively, with a c value of 4.17 (there were approximately four schools

per stratum on average). These estimates result in an informative index of .30

at the school level and suggest that there is a moderate amount of homo-

geneity of school average math scores within strata. The stratum informa-

tiveness index can then be translated into the amount of standard error
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misestimation by calculating an approximate design effect of the school

intercept (g00). When the sample design is based on stratification alone with

proportional selection across strata, Kish (1995) shows that the estimated

design effect of the mean is: ddeff ¼ 1� r̂strat ð8Þ

Thus, the more homogenous the strata, the smaller the deff and the root

design effect, deft, and therefore, the smaller the adjusted standard errors.

Using this formula with our example, we can approximate that if a model was

run ignoring the stratification (and assuming there were no additional stages

of sampling), the estimated standard error for the school intercept in an

unconditional model would overestimated and should be decreased by a

factor of the square root of (1–.30), which is .84.

The sampling design for TIMSS, however, includes a stage of selection

above selection of schools as well as the stratification which brings us to our

third recommendation. To understand the possible impact of ignoring a first

stage of selection, one can calculate an informativeness index for PSU clus-

tering. PSU informativeness represents the proportion of variance in the

outcome variable that is associated with the PSU clustering. This informa-

tiveness index for normally distributed continuous school means can be

calculated as,

r̂PSU ¼
MSBp �MSWp

MSBp þ ðc� 1ÞMSWp

ð9Þ

where c indicates the average number of level-2 units per PSU and the

MSBp and MSWp values can obtained from a weighted ANOVA using

PSU as the grouping factor (Snijders and Bosker:2012:sections 3.3 and

3.4, 17-24). This formula can also be used for data that were converted to

binary indicators (e.g., dummy codes for nominal categories such as race/

ethnicity; Snijders and Bosker 2012:304). To continue the example, we

calculated this index for the TIMSS data set variable Math Standardized

Score at the school mean level making the assumption that there was no

stratification in the sampling design. At the school level, the components

of MSBp and MSWp were 36.3 and 18.1, respectively, with a c value of

2.09 (there were approximately two schools per PSU on average). These

estimates result in a PSU informative index of .326 at the school level

and suggest that there is a moderate amount of homogeneity of school

average math scores within PSUs. The PSU informativeness index can

also be translated into the amount of standard error misestimation by
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calculating an approximate design effect of the school intercept (g00).

When the sample design is based on first-stage clustering alone (and

without stratification), Kish (1995) shows that the estimated design effect

of the mean is: ddeff ¼ 1þ ðc� 1Þr̂PSU: ð10Þ

Using our example, the resultant design effect estimate is 1.16, suggesting

that standard errors should be inflated by 16 percent to appropriately capture

the imprecision introduced by the first-stage sampling. There is currently no

guideline to combine these estimates of design effects due to stratification

and due to PSU clustering.8 For the unconditional model intercept for the

TIMSS math variable, the standard error may need to be deflated to address

stratification and inflated to address clustering, but the applied analyst can

assume that the true correction should be somewhere between .84 and 1.16.

In fact, from Table 5, we see that the actual design effect of the intercept was

0.86. For those without access to multilevel software with the capacity to

include additional sampling design considerations, using this strategy to

determine the bounds of needed adjustment of the standard error may be

helpful.

Fourth, although sampling weights were not the focus of this article, we

suggest that researchers calculate the coefficient of variation of the sampling

weight for the level-2 units as the standard deviation of the weight over the

mean of the weight. While there is no convenient equation to translate this

coefficient into a design effect (Kish 1995), the greater this value increases

from 0, the more the standard errors at level 2 may be underestimated. In

their chapter on sampling weights within multilevel models (chapter 14),

Snijders and Bosker (2012) provide additional guidance in this area.

Finally, depending on the information obtained from the first three steps

of the review, consider using two-level software that can accommodate

hybrid aggregate–disaggregate analyses. If the design effects due to stratifi-

cation or PSU clustering as calculated in step 2 are far from a value of 1.0,

more confidence in the statistical inference from model estimates would be

gained, if the sampling design were more properly accounted for. As of this

writing, only Stata’s gllamm package and Mplus have the required capability.

If the design effects are relatively close to 1.0, as in the empirical analyses

included in this article, it may not be crucial to use the appropriate estimator.

Inclusion of level-2 variables that were used in the explicit stratification

process of the sampling design should be considered as they were shown

in these analyses to improve the standard error estimates. Of course,
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inclusion of additional variables should not be done if it detracts from the

conceptual framework of the model.

The steps above are derived from both theory and empirical investigation.

These suggestions should be evaluated with simulation methods. When we

determined the design effects for the unconditional and conditional models,

we made the assumption that the MPML standard error estimates were

unbiased. Although simulation research has suggested this is the case (Aspar-

ouhov and Muthén 2006; Rabe-Hesketh and Skrondal 2006), the data con-

ditions in these empirical analyses may not have matched the simulation

conditions. A larger issue in ignoring the sampling design highlighted in

Asparouhov and Muthén (2006), the overestimation of the likelihood ratio

test value, leading to improper rejection of appropriate models, was not

evaluated in this study. Future simulation research should verify the dire

repercussions suggested in that article.

In this article, we sought to document the extent to which the exclusion of

sampling design information, beyond the clustering of students or teachers in

schools, would affect the inference made from two-level analysis models

with NCES data. We found that there is little effect with the analyses and

data sets used here. In fact, no differences in inference regarding the statis-

tical significance of any individual parameter estimates would have been

made in any of the analyses we conducted here.
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Notes

1. Probability proportional to size sampling involves selecting at higher probabilities

those clusters that contain more lower-level units; such designs are often used
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when fixed numbers of elements are desired to be selected within clusters (Kish

1965).

2. Implicit stratification refers to systematic selection (every X sample frame unit)

down a list ordered by the implicit stratification variable (Kish 1965).

3. With-replacement and without-replacement designs refer to whether, once selected

into a sample, the unit is available for selection into the sample again (Kish 1965).

4. Note that we are assuming that any differences in estimates found when ignoring

or fully accommodating the complex sampling design using listwise deletion will

hold when using other types of missing data accommodation. It is not known if this

assumption is plausible.

5. For the SASS-TFS data set, the estimation of standard errors was conducted

somewhat differently given available information. See the SASS-TFS section in

the Online Appendix for more information.

6. We also examined standard error estimates when accounting for only a portion of

the sampling design for ECLS-K and for TIMSS and, as expected, the intercept

standard error estimates had deft values less than 1.0 when the stratification was

accounted for but the clustering was not, and values over 1.0 when the clustering

was accounted for but the stratification was not.

7. This formula assumes a balanced design. An alternate calculation for c should be

used if unbalanced: c ¼
N2�

PJ
j¼1

nj
2

NðJ�1Þ where J references the number of clusters and N

reflects the total sample size.

8. Recent work by Lohr (2014) derived the design effect for regression coefficients

under conditions of PSU clustering only. Importantly, she considered the context

of random slopes, an issue not addressed here.
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The online appendices are available at http://smr.sagepub.com/supplemental.
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