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Abstract: In the present paper, we construct the travelling wave solutions involving parameters
of the (1+1) dimensional dispersive long wave equations, the (1+1)- dimensional Broer- Kaup
system of equations and the variant Boussinesq equations by using a new approach, namely the
( Ǵ
G )− expansion method, where G = G(ξ) satisfies a second order linear ordinary differential

equation .When the parameters are taken special values, the solitary waves are derived from
the travelling waves. The travelling waves solutions are expressed by hyperbolic, trigonometric
and the rational functions.
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1 Introduction

In recent years, the exact solutions of nonlinear PDEs have been investigated by many outhers( see for
example [1-43] ) who are interested in nonlinear physical phenomena. Many powerful methods have been
presented by those authors such as the homogeneous balance method [24,35], the hyperbolic tangent ex-
pansion method [30,37], the trial function method [17], the tanh-method [2,7,31,36], the nonlinear trans-
form method [16], the inverse scattering transform [1], the Backlund transform [21,23], the Hirota’s bi-
linear method [11,12], the generalized Riccati equation [29,32], the Weierstrass elliptic function method
[22], the theta function method [ 6- 8], the Sine-Cosine method [34], the Jacobi elliptic function expansion
[5,18,20,33,35,38,40], the complex hyperbolic function method [3,39], the truncated Painleve expansion [4],
the F-expansion method [25-27], the rank analysis method [10], the ansatz method [14-16], the exp-function
expansion method [13], the sub- ODE. method [19,28] and so on.

In the present paper, we shall use a new method which is called the ( Ǵ
G )−expansion method [29,41,42].

This method is firstly proposed by which the traveling wave solutions of nonlinear equations are obtained.
The main idea of this method is that the traveling wave solutions of nonlinear equations can be expressed
by apolynomial in ( Ǵ

G ),where G = G(ξ) satisfies the second order linear ordinary differential equation
G
′′
(ξ) + λG′(ξ) + µG(ξ) = 0, where ξ = x − V t, where λ, µ and V are constants. The degree of

this polynomial can be determined by considering the homogeneous balance between the highest order
derivatives and the nonlinear terms appearing in the given nonlinear equations .The coefficients of this
polynomial can be obtained by solving a set of algebraic equations resulted from the process of using the
proposed method . In this paper, the ( Ǵ

G )−expansion method will play an important role in expressing the
traveling wave solutions of the (1+1)- dimensional dispersive long wave equations, the (1+1)- dimensional
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Broer- Kaup equations and the (1+1)- dimensional variant Boussinesq equations in terms of hyperbolic,
trigonometric and rational functions.

2 Description of the (G´

G )-expansion method

Suppose that we have a nonlinear PDE in the following form:

P (u, ut, ux, utt, uxt, uxx, .....) = 0, (1)

where u = u(x, t) is an unknown function, P is a polynomial in u = u(x, t) and its partial derivatives, in
which the highest order derivatives and nonlinear terms are involved. Let us now give the main steps [29]
for solving Eq. (1) using the ( Ǵ

G )-expansion method:
Step 1 . The traveling wave variable

u(x, t) = u(ξ) , ξ = x− V t (2)

where V is a constant, permits us reducing Eq. (1) to an ODE for u = u(ξ) in the form

P (u,−V up, up, V 2upp,−V upp, upp, ......) = 0. (3)

Step 2. Suppose that the solution of (3) can be expressed by a polynomial in ( Ǵ
G ) as follows:

u(ξ) =
m∑

i=0

αi

(
Ǵ

G

)i

(4)

where G = G(ξ) satisfies the second order linear differential equation in the form:

G
′′

+ λG
′
+ µG = 0, (5)

where αi(i = 0, 1, ..., m), λ and µ are constants to be determined later, αm 6= 0. The positive integer m can
be determined by considering the homogeneous balance between the highest order derivatives and nonlinear
terms appearing in (3).

Step 3. Substituting (4) into (3) and using (5), collecting all terms with the same order of ( Ǵ
G ) together,

and then equating each coefficient of the resulted polynomial to zero, yields a set of algebraic equations for
αm, αm−1, ...., α0, V, λ and µ .

Step 4. Since the general solutions of (5) have been well known for us, then substituting αm, αm−1, ....,
α0, V and the general solutions of (5) into (4) we have more traveling wave solutions of the nonlinear
differential equation (1).

3 Some applications

In this section, we apply the ( Ǵ
G ) - expansion method to construct the traveling wave solutions for some

nonlinear partial differential equations vie the (1+1)- dimensional dispersive long wave equations, the (1+1)-
dimensional Broer- Kaup system of equations and the (1+1)- dimensional variant Boussinesq equations
which are very important in the mathematical physics and have been paid attention by many researchers .

3.1 Example 1. The (1+1)- dimensional dispersive long wave equations

We start with the following (1+1)- dimensional dispersive long wave equations [2,5] in the forms

ut + uux + vx = 0, (6)

and
vt + (uv)x +

1
3
uxxx = 0, (7)
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where v is the elevation of the water wave and u is the surface velocity of water along x- direction. The
traveling wave variables below

u(x, t) = u(ξ), v(x, t) = v(ξ), ξ = x− V t, (8)

permit us converting equation (6) and (7) into ODEs for u(x, t) = u(ξ) and v(x, t) = v(ξ) as follows:

−V up + uup + vp = 0, (9)

and

−V vp + (uv)p +
1
3
uppp = 0, (10)

where V is a constant. On integrating (9) and (10) with respect to ξ once, we get

C1 − V u +
1
2
u2 + v = 0, (11)

and

C2 − V v + uv +
1
3
upp = 0, (12)

where C1 and C2 are integration constants.
Suppose that the solutions of the ODEs (11) and (12) can be expressed by polynomials in terms of ( Ǵ

G )
as follows:

u(ξ) =
m∑

i=0

αi

(
Ǵ

G

)i

(13)

and

v(ξ) =
n∑

j=0

βj

(
Ǵ

G

)j

(14)

where αi (i = 0, 1, 2, ..., m) and βj (j = 0, 1, 2, ..., n) are arbitrary constants, while G(ξ) satisfies the
following second order linear ODE in the form:

Gpp + λGp + µG = 0, (15)

where λ and µ are constants. Considering the homogeneous balance between the highest order derivatives
and the nonlinear terms in (11) and (12), we get :

u(ξ) = α1

(
Ǵ

G

)
+ α0, α1 6= 0, (16)

and

v(ξ) = β2

(
Ǵ

G

)2

+ β1

(
Ǵ

G

)
+ β0, β2 6= 0, (17)

where α0, α1, β0, β1 and β2 are arbitrary constants. Consequently, we have

u2(ξ) = α2
1

(
Ǵ

G

)2

+ 2α0α1

(
Ǵ

G

)
+ α2

0, (18)

and

upp(ξ) = 2α1

(
Ǵ

G

)3

+ 3λα1

(
Ǵ

G

)2

+ α1(2µ + λ2)
(

Ǵ

G

)
+ α1µλ. (19)
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On substituting (16) -(19) into (11) and (12), collecting all terms with the same powers of
(

Ǵ
G

)
and setting

them to zero. Consequently, we have the following system of algebraic equations

−V α1 + α1α0 + β1 = 0,
1
2
α2

1 + β2 = 0,

C1 − V α0 +
1
2
α2

0 + β0 = 0,

−V β1 + α1β0 + α0β1 +
1
3
α1(2µ + λ2) = 0,

−V β2 + α0β2 + α1β1 + α1λ = 0,

α1β2 +
2
3
α1 = 0,

C2 − V β0 + α0β0 +
1
3
α1λµ = 0. (20)

On solving the above algebraic equations (20) by using the Maple or Mathematica, we have

α1 = ± 2√
3
, β2 = −2

3
,

V = α0 ∓ 1√
3
λ, β1 = −2

3
λ,

β0 = −2
3
µ,

C1 =
1
2
α2

0 ∓
1√
3
λα0 +

2
3
µ,

C2 = 0. (21)

Substituting (21) into (16) and (17) yields

u(ξ) = ± 2√
3

(
Ǵ

G

)
+ α0, (22)

and

v(ξ) = −2
3

(
Ǵ

G

)2

− 2
3
λ

(
Ǵ

G

)
− 2

3
µ, (23)

where
ξ = x− (α0 ∓ 1√

3
λ)t (24)

On solving Eq.(15), we deduce for λ2 − 4µ > 0 that

Ǵ

G
=

1
2

√
λ2 − 4µ

(
A cosh(1

2

√
(λ2 − 4µ) ξ) + B sinh(1

2

√
(λ2 − 4µ) ξ)

A sinh(1
2

√
(λ2 − 4µ) ξ) + B cosh(1

2

√
(λ2 − 4µ) ξ)

)
− λ

2
, (25)

where A and B are arbitrary constants.
From (25), (22) and (23),we deduce the following three types of traveling wave solutions:

Case 1 . If λ2 − 4µ > 0, then we have

u(ξ) = ±
√

(λ2 − 4µ)
3β

(
A cosh(1

2

√
(λ2 − 4µ)ξ) + B sinh(1

2

√
(λ2 − 4µ)ξ)

A sinh(1
2

√
(λ2 − 4µ)ξ) + B cosh(1

2

√
(λ2 − 4µ)ξ)

)
+ α0 ∓ λ√

3
, (26)

and

v(ξ) = −(λ2 − 4µ)
6

(
A cosh(1

2

√
(λ2 − 4µ)ξ) + B sinh(1

2

√
(λ2 − 4µ)ξ)

A sinh(1
2

√
(λ2 − 4µ)ξ) + B cosh(1

2

√
(λ2 − 4µ)ξ)

)2

+
λ2

6
− 2µ

3
. (27)
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Case 2 . If λ2 − 4µ < 0, then we have

u(ξ) = ±
√

(4µ− λ2)
3

(
−A sin(1

2

√
4µ− λ2ξ) + B cos(1

2

√
4µ− λ2ξ)

A cos(1
2

√
4µ− λ2ξ) + B sin(1

2

√
4µ− λ2ξ)

)
+ α0 ∓ λ√

3
, (28)

and

v(ξ) = −(4µ− λ2)
6

(
−A sin(1

2

√
4µ− λ2ξ) + B cos(1

2

√
4µ− λ2ξ)

A cos(1
2

√
4µ− λ2ξ) + B sin(1

2

√
4µ− λ2ξ)

)2

+
λ2

6
− 2µ

3
. (29)

Case 3 . If λ2 − 4µ = 0, then we have

u(ξ) = ± 2√
3

(
B

A + B ξ

)
+ α0 ∓ λ√

3
, (30)

and

v(ξ) = −2
3

(
B

A + B ξ

)2

+
λ2

6
− 2µ

3
. (31)

In particular, if A = 0, B 6= 0 , λ > 0, µ = 0, then we get from (26) and (27) that:

u(ξ) = ± 1√
3
λ tanh(

λ

2
ξ) + α0 ∓ λ√

3
, (32)

and

v(ξ) =
λ2

6
sech2(

λ

2
ξ), (33)

where
ξ = x− (α0 ∓ 1√

3
λ)t, (34)

which represent the solitary wave solutions of the (1+1)- dimensional dispersive long wave equations (6)
and (7) .

3.2 Example 2. The (1+1) - dimensional Broer- Kaup equations

In this subsection, we study the following (1+1) - dimensional Broer- Kaup equations [43] in the form:

ut = uux + vx − 1
2
uxx, (35)

and
vt = (uv)x +

1
2
vxx. (36)

This system describes the bi-directional propagation of long wave in shallow water. The traveling wave
variables (8) permit us converting Eqs. (35) and (36) into ODEs in the forms:

−V up − uup − vp +
1
2
upp = 0, (37)

and
−V vp − (uv)p − 1

2
vpp = 0, (38)

On integrating (37), (38) with respect to ξ once, we get

C1 − V u− 1
2
u2 − v +

1
2
up = 0, (39)

and
C2 − V v − uv − 1

2
vp = 0, (40)
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where C1 and C2 are integration constants.
Suppose that the solutions of the ODEs (39) and (40) can be expressed by polynomials in terms of ( Ǵ

G )
as in (13) and (14). Considering the homogeneous balance between the highest order derivatives and the
nonlinear terms in (39) and (40), we get :

u(ξ) = α1

(
Ǵ

G

)
+ α0, α1 6= 0, (41)

and

v(ξ) = β2

(
Ǵ

G

)2

+ β1

(
Ǵ

G

)
+ β0, β2 6= 0, (42)

Consequently, we have

up(ξ) = −α1

(
Ǵ

G

)2

− λα1

(
Ǵ

G

)
− µα1, (43)

and

vp(ξ) = −2β2

(
Ǵ

G

)3

− (2λβ2 + β1)
(

Ǵ

G

)2

− (2µβ2 + λβ1)
(

Ǵ

G

)
− β1µ. (44)

On substituting (41)-(44) into (39) and (40), collecting all terms with the same powers of
(

Ǵ
G

)
and

setting them to zero. Consequently, we have the following system of algebraic equations:

−V α1 − α1α0 − β1 − 1
2
λα1 = 0,

−1
2
α2

1 − β2 − 1
2
α1 = 0,

C1 − V α0 − 1
2
α2

0 − β0 − 1
2
µα1 = 0,

−V β1 − α1β0 − α0β1 +
1
2
(2µβ2 + λβ1) = 0,

−V β2 − α0β2 − α1β1 +
1
2
(2λβ2 + β1) = 0,

−α1β2 + β2 = 0,

C2 − V β0 − α0β0 +
1
2
β1µ = 0. (45)

On solving the algebraic equations (45) by using the Maple or Mathematica, we have

α1 = 1, β2 = −1,

V = −α0 +
1
2
λ, β1 = −λ,

β0 = −µ,

C1 = −1
2
α2

0 −
1
2
µ +

1
2
λα0,

C2 = 0. (46)

Substituting (46) into (41) and (42) yields

u(ξ) =
(

Ǵ

G

)
+ α0, (47)

and

v(ξ) = −
(

Ǵ

G

)2

− λ

(
Ǵ

G

)
− µ, (48)

where
ξ = x + (α0 − 1

2
λ)t. (49)
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From (25) and (47) and (48), we deduce the following three types of traveling wave solutions:
Case 1 . If λ2 − 4µ > 0, then we have

u(ξ) =
1
2

√
(λ2 − 4µ)

(
A cosh(1

2

√
(λ2 − 4µ)ξ) + B sinh(1

2

√
(λ2 − 4µ)ξ)

A sinh(1
2

√
(λ2 − 4µ)ξ) + B cosh(1

2

√
(λ2 − 4µ)ξ)

)
+ α0 − λ

2
, (50)

and

v(ξ) = −(λ2 − 4µ)
4

(
A cosh(1

2

√
(λ2 − 4µ)ξ) + B sinh(1

2

√
(λ2 − 4µ)ξ)

A sinh(1
2

√
(λ2 − 4µ)ξ) + B cosh(1

2

√
(λ2 − 4µ)ξ)

)2

+
λ2

4
− µ . (51)

Case 2 . If λ2 − 4µ < 0, then we have

u(ξ) =
1
2

√
(4µ− λ2)

(
−A sin(1

2

√
4µ− λ2ξ) + B cos(1

2

√
4µ− λ2ξ)

A cos(1
2

√
4µ− λ2ξ) + B sin(1

2

√
4µ− λ2ξ)

)
+ α0 − λ

2
, (52)

and

v(ξ) = −(4µ− λ2)
4

(
−A sin(1

2

√
4µ− λ2ξ) + B cos(1

2

√
4µ− λ2ξ)

A cos(1
2

√
4µ− λ2ξ) + B sin(1

2

√
4µ− λ2ξ)

)2

+
λ2

4
− µ . (53)

Case 3 . If λ2 − 4µ = 0, then we have

u(ξ) =
B

A + B ξ)
+ α0 − λ

2
, (54)

and

v(ξ) = −
(

B

A + B ξ

)2

+
λ2

4
− µ . (55)

In particular, if A = 0, B 6= 0, λ > 0, µ = 0, then we get from (50) and (51) that:

u(ξ) =
1
2
λ tanh(

λ

2
ξ) + α0 − λ

2
, (56)

and

v(ξ) =
λ2

4
sech2(

λ

2
ξ), (57)

where
ξ = x + (α0 − 1

2
λ)t. (58)

which represent the solitary wave solutions of the (1+1) - dimensional Broer- Kaup system of equations (35)
and (36) .

3.3 Example 3. The (1+1)- dimensional variant Boussinesq equations

In this subsection, we consider the following (1+1)- dimensional variant Boussinesq equations [9,20,24,34]
in the form:

vt + ux + (vu)x − αuxxx = 0, (59)

and
ut + uux + vx − 3αuxxt = 0, (60)

where α is a constant. As models for water waves, u is the velocity and v is the total depth. Wang [24]
obtained their solitary wave solutions by using homogeneous balance method while Fan et al [9] got a series
of new traveling wave solutions of this system by using an algebraic method. The traveling wave variables
(8) permit us converting the equations (59) and (60) into ODEs in the forms:

−V vp + up + (vu)p − αuppp = 0, (61)
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and
−V up + uup + vp + 3αV uppp = 0, (62)

On integrating (61) and (62) with respect to ξ once, we get

C1 − V v + u + vu− αupp = 0, (63)

and
C2 − V u +

1
2
u2 + v + 3αV upp = 0, (64)

where C1 and C2 are integration constants. Considering the homogeneous balance between the highest
order derivatives and the nonlinear terms in (63) and (64), we get :

u(ξ) = α2

(
Ǵ

G

)2

+ α1

(
Ǵ

G

)
+ α0, α2 6= 0, (65)

and

v(ξ) = β2

(
Ǵ

G

)2

+ β1

(
Ǵ

G

)
+ β0, β2 6= 0, (66)

Consequently, we have

upp(ξ) = 6α2

(
Ǵ

G

)4

+ (2α1 + 10α2λ)
(

Ǵ

G

)3

+ (8α2µ + 3λα1 + 4α2λ
2)

(
Ǵ

G

)2

+

(6α2µλ + 2µα1 + α1λ
2)

(
Ǵ

G

)
+ 2α2µ

2 + α1λµ , (67)

and

u2(ξ) = α2
2

(
Ǵ

G

)4

+ 2α2α1

(
Ǵ

G

)3

+ (α2
1 + 2α2α0)

(
Ǵ

G

)2

+ 2α0α1

(
Ǵ

G

)
+ α2

0 . (68)

On substituting (65)-(66) into (63) and (64), collecting all terms with the same powers of
(

Ǵ
G

)
and

setting them to zero. Consequently, we have the following system of algebraic equations

−V β1 + α1 + α0β1 + β0α1 − α(6α2µλ + 2α1µ + α1λ
2 = 0,

−V β2 + α2 + α0β2 + β1α1 + β0α2 − α(8α2µ + 3α1λ + 4α2λ
2) = 0,

β2α1 + α2β1 − α(2α1 + 10 α2λ) = 0,

β2α2 − 6α2α = 0,

C1 − V β0 + α0 + α0β0 − α(2α2µ
2 + α1λµ) = 0,

−V α1 + α0α1 + β1 + 3αV (6α2µλ + 2α1µ + α1λ
2) = 0, (69)

−V α2 +
1
2
α2

1 + β2 + α2α0 + 3αV (8α2µ + 3α1λ + 4α2λ
2) = 0,

α2α1 + 3αV (2α1 + 10 α2λ) = 0,

1
2
α2

2 + 18V αα2 = 0,

C2 − V α0 +
1
2
α2

0 + β0 + 3αV (2α2µ
2 + α1λµ) = 0.

On solving the algebraic equations (69) by using the Maple or Mathematica, we have

α2 = −36 αV, α1 = −36 αλV,

β2 = 6α, β1 = 6λα,

β0 = −1 + 4µα +
1
2
αλ2 +

1
36V 2

,

α0 = −24µαV − 3αV λ2 + V +
1

6V
, (70)

C1 = −V − 12α2V µλ2 + 24α2V µ2 +
3
2
α2V λ4 − 1

216V 3
,

C2 = 1 +
1
2
V 2 − 72α2V 2µ2 + 36α2V 2µλ2 − 9

2
α2V 2λ4 − 1

24V 2
.
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Substituting (70) into (65) and (66), we get

u(ξ) = −36 αV

(
Ǵ

G

)2

− 36 αλV

(
Ǵ

G

)
− 24µαV − 3αV λ2 − V − 1

6V
, (71)

and

v(ξ) = 6α

(
Ǵ

G

)2

6λα

(
Ǵ

G

)
− 1 + 4µα +

1
2
αλ2 +

1
36V 2

, (72)

where
ξ = x− V t. (73)

From (25) , (71) and (72) we have the following three types of traveling wave solutions:
Case 1 . If λ2 − 4µ > 0, then we have

u(ξ) = −9αV (λ2 − 4µ)

(
A cosh(1

2

√
(λ2 − 4µ)ξ) + B sinh(1

2

√
(λ2 − 4µ)ξ)

A sinh(1
2

√
(λ2 − 4µ)ξ) + B cosh(1

2

√
(λ2 − 4µ)ξ)

)2

+

6αV λ2 − 24µαV + V +
1

6V
, (74)

and

v(ξ) =
3α(λ2 − 4µ)

2

(
A cosh(1

2

√
(λ2 − 4µ)ξ) + B sinh(1

2

√
(λ2 − 4µ)ξ)

A sinh(1
2

√
(λ2 − 4µ)ξ) + B cosh(1

2

√
(λ2 − 4µ)ξ)

)2

+

−αλ2 − 1 + 4µα +
1

36V 2
. (75)

Case 2 . If λ2 − 4µ < 0, then we have

u(ξ) = −9αV (4µ− λ2)

(
−A sin(1

2

√
4µ− λ2ξ) + B cos(1

2

√
4µ− λ2ξ)

A cos(1
2

√
4µ− λ2ξ) + B sin(1

2

√
4µ− λ2ξ)

)2

+

6αV λ2 − 24µαV + V +
1

6V
, (76)

and

v(ξ) =
3α(4µ− λ2)

2

(
−A sin(1

2

√
4µ− λ2ξ) + B cos(1

2

√
4µ− λ2ξ)

A cos(1
2

√
4µ− λ2ξ) + B sin(1

2

√
4µ− λ2ξ)

)2

+

−αλ2 − 1 + 4µα +
1

36V 2
. (77)

Case 3 . If λ2 − 4µ = 0, then we have

u(ξ) = −36αV (
B

A + B ξ
)2 + 6αV λ2 − 24µαV + V +

1
6V

. (78)

and

v(ξ) = 6α

(
B

A + B ξ

)2

− αλ2 − 1 + 4µα +
1

36V 2
. (79)

In particular, if A = 0, B 6= 0, λ > 0, µ = 0, then we deduce from (74) and (75) that:

u(ξ) = 9αV sech2(
λ

2
ξ)− 3αV λ2 + V +

1
6V

, (80)

and
v(ξ) = −3

2
αλ2 sech2(

λ

2
ξ)− 1 +

1
2
αλ2 +

1
36V 2

, (81)

where
ξ = x− V t. (82)

which represent the solitary wave solutions of the variant Boussinesq equations (59) and (60) .
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G )− expansion method and its applications to some nonlinear evolution equations

in the mathematical physics. J.Appl. Math. Computing. 30:89-103(2009)
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