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Fault Detection and Diagnosis for GTM UAV with Dual 
Unscented Kalman Filter  
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This paper presents an applicable procedure for Fault Detection and Diagnosis (FDD) in 
a realistic nonlinear six degree-of-freedom unmanned aerial vehicle (UAV) model. The work 
has been developed based on the Matlab/Simulink environment of the NASA Generic 
Transport Model (GTM) UAV under the NASA Aviation Safety Program (AvSP). By 
introducing the partial loss fault in aircraft actuators into the GTM model, the dual 
Unscented Kalman Filter (UKF) algorithm is implemented for online estimation of both 
flight states and fault parameters, and for making statistical decisions associated with fault 
detection and diagnosis.   

Nomenclature 
  = Mass of the vehicle 

 = Angle of attack (rad) 
q = Pitch angle rate (rad/sec) 

 = Pitch angle (rad) 
m = Mass of GTM 

 = Position of surface Z ( : throttle) 
 = Composite scaling parameter 

L  =  Dimension of the state 
    =  Process noise covariance 
  =  Measurement noise covariance 

 
 

I. Introduction 

In flight, loss of control has become one of the causes of airplane crashes and crash-related fatal accidents 
worldwide for many years. Thus, it is necessary to enable aircraft to increase the fault tolerance ability where 
unexpected faults occur in the aircraft. When a fault occurs in the aircraft, the first and main problem to be solved is 
to detect what and where the fault is and to diagnose it, and then to give a solution for it. This is the motivation for 
the Fault Detection and Diagnosis (FDD) and Fault Tolerant Control (FTC) in the aviation industry1. A good FDD 
scheme should be able to report detailed information for the post-fault system as accurate as possible. On the 
purpose of investigating flight dynamic and studying the behavior of the aircraft in upset conditions, NASA built a 
test bed which is the Generic Transport Model (GTM). GTM is a 5.5% dynamically scaled, turbine powered 
fixed-wing Unmanned Aerial Vehicle (UAV)2. In this paper, we will focus on developing application of a FDD 
scheme for Linear Parameter Varying (LPV) model3,4,5 of the GTM in the event of actuator faults or failures. The 
scheme utilizes a Dual Unscented Kalman Filter (DUKF)6,7 with real time fault parameters identification based on 
the measured outputs of the sensors and the control inputs to actuators. 
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For a high performance FDD/FTC scheme, when a fault/failure occurs either in an actuator or sensor, the FDD 
scheme will detect and diagnose the source and the magnitude of the fault timely. The reconfiguration scheme will 
design the reconfigurable controller based on this information to balance and adapt to the faults/failures. Therefore 
the entire dynamic system can still achieve acceptable level of performance and keep stability of the airplane. Figure 
1 depicts the general structure of FDD/FTC. In this work, both the system state variables and the actuator fault 
parameters are estimated by using DUKF in the FDD module. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  General structure of a fault tolerant control system (FTCS) 
  

 
Many researchers focus on developing methodologies to detect and diagnose actuator faults. An actuator fault 

may enable aircraft becoming unstable and may cause crash. In this paper, in order to simplify the presentation, we 
will focus on one actuator fault: elevator partial loss fault and we will investigate how elevator partial loss fault 
affects the performance of the GTM in the longitudinal motion. Although the proposed FDD scheme is tested based 
only on the longitudinal motion of the six degree of freedom (DOF) nonlinear GTM, the developed FDD scheme is 
suitable to both longitudinal and lateral motion of the UAV. Investigation and implementation of the proposed FDD 
scheme on both longitudinal and lateral motion are one of our future works. 

The known FDD approaches can be classified into two categories1: 1) model-based and 2) data-based 
(model-free) schemes; these two schemes are also known as quantitative and qualitative approaches. In general, we 
can use a set of equations of motion to describe the dynamic motion of a flight vehicle. In this paper, faults occurring 
in the GTM are considered as additive random biases. Hence, we can approach fault detection and diagnosis as a 
model-based bias estimation problem8,9.  

For nonlinear aircraft system, the Extended Kalman Filter (EKF) has been applied widely. The EKF is the 
nonlinear version of the Kalman filter, and it only simply linearizes about the current equilibrium point with the 
characteristics of random state variables described by mean and covariance. Hence, the EKF can only preserve the 
first-order system statistics and may quickly diverge if the process is not modeled correctly, due to the linearization 
operation. The UKF is the improvement of the EKF to replace the EKF in nonlinear filtering problems. In the UKF, 
the probability density is approximated by the nonlinear transformation of a random variable, which returns much 
more accurate results than the first-order Taylor expansion of the nonlinear functions used in the EKF. The 
approximation utilizes a set of sample points, which guarantees accuracy with the posterior mean and covariance to 
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the second order for any nonlinearity6. 
The paper is organized as follows. In Section II, the Linear Parameter Varying (LPV) model of the nonlinear 

GTM model is briefly introduced. In Section III, the DUKF is presented. In Section IV, fault detection and diagnosis 
schemes are described. In Section V, simulation results and analysis for the proposed FDD scheme implemented in 
the six DOF of nonlinear GTM are reported. A brief overall conclusion is given in Section VI. 

 

II.  Linear Parameter Varying Model of GTM 

In this section, we will briefly introduce the concept of Linear Parameter Varying (LPV) models of nonlinear 
longitudinal motion of GTM5. The GTM is a dynamically scaled small unmanned aerial vehicle developed by 
NASA to investigate modeling and control of large transport vehicles in upset conditions2. 

The nonlinear equations for the longitudinal motion of GTM are given by: 
 

  (1) 

   (2) 

   (3) 

   (4) 

These equations contain transcendental functions and aerodynamic data which are obtained through wind tunnel 
testing and flight tests. Since our FDD is model-based bias estimation, LPV model is chosen for FDD design to the 
nonlinear model of GTM due to real-time implementation consideration. 

LPV modeling and control of nonlinear systems have been widely studied since the early 1990’s3,4. LPV model 
will simulate the actual nonlinear system by using time-varying real parameters like altitude and/or speed to obtain 
smooth semi-linear models. The state-space matrices  of a LPV model depend continuously on some 
vector of time-varying parameters . Parameters  are assumed to be measured at the current time and not 
known in advance although its value is constrained a priori to lie in some known, bounded set and is continuous. 
There are three techniques for obtaining LPV models from a nonlinear system5. The first method is to use Jacobian 
linearization at a number of selected equilibrium points. The second technique is based on exact state 
transformations at a number of selected equilibrium points. The last method corresponds to obtain a LPV model at a 
unique trim point by decomposing the nonlinear function. 

The transcendental functions can be approximated by third-order Taylor series extension. The aerodynamic data 
which are obtained by using look-up table in the nonlinear model of GTM can be approximated by polynomial 
equations10. The LPV model of longitudinal motion of the GTM has state variables , with 
equivalent airspeed ( ), pitch angle rate ( ), angle of attack ( , and pitch angle ( ) and input 

, with  representing elevator deflection and representing throttle deflection. 
In the original LPV model of the GTM, fault models were not included. Partial loss of control effectiveness in 

elevator has been implemented for FDD purpose in this work.  
 

III.  Dual Unscented Kalman Filter Algorithm 

In this section, we will present an overview of the Dual UKF state-parameter estimation scheme implemented for 
estimation of the reduction of the actuator’s control effectiveness.  

UKF was originally developed by Eric A. Wan and Rudolph van der Merwe in 20006, and it is mainly used to 
nonlinear system identification, training of neural networks and dual estimation problems. The model is highly 
non-linear, and the UKF picks a minimal set of sample points which are called sigma points around the mean by the 
unscented. These sigma points are then propagated through the non-linear functions and the covariance of the estimate 
is then recovered. It captures the posterior mean and covariance accurately to the 3rd order (Taylor series expansion) 
for any nonlinearity. Therefore, the UKF captures both the first-order and second-order statistics of the nonlinear 
system. It has been demonstrated that the UKF has better filter performance compared with EKF and is equivalent to 
the performance of second-order EKF6,7. Figure 2 shows an example of the unscented transformation (UT) for mean 
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and covariance propagation. 

 
Figure 2.  Example of the UT for mean and covariance propagation  

    From Figure 2, we can find that the result of UKF is more accurate to capture the true mean and covariance than 
other Kalman filters do. 

A. Unscented Transformation 
The unscented transformation is a method for calculating the statistics of a random variable which undergoes a 

nonlinear transformation6. It is built on the principle that it is easier to approximate a probability distribution than an 
arbitrary nonlinear function . The approach is illustrated in Figure 3. 

 
 

Figure 3. The principle of the unscented transform  
 

    Consider a nonlinear model , and the random variable  whose dimension is L and assume x has 
mean  and covariance . To calculate the statistics of , one needs obtain: 

       (5) 

   (6)  

            (7)  
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   (8) 

     (9) 

                    (10) 

  

where  is a scaling parameter. In this paper, .  

B.  State Estimation 
Consider a nonlinear transform of a random variable: 

               

      Given:   

      Find:          

A set of 2L+1 sigma points are derived from the augmented state and covariance where L is the dimension of the 
augmented state. 

                   (11) 

   (12)  

   (13)   

where  is the ith column of the matrix square root of . 

    Using the definition: square root A of matrix B satisfies 

 
 

The complete state estimation of the UKF is given below: 
  (14) 

      (15) 

   (16) 

                               (17) 

For , 
 
Calculate the sigma points: 
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   (18) 

The time-update equations are: 
 

  (19) 

   (20) 

                                          (21) 

   (22) 

   (23) 

and the measurement-update equations are: 
       (24) 

    (25) 

The complete parameter estimation of UKF is given below: 
 

  (26) 

   (27) 

For , the time update and sigma-point calculation are given by: 
   (28) 

   (29) 

                                           (30) 

   (31) 

  Option 1:     

  Option 2:     

and the measurement-update equations are: 
 

  (32) 

    (33) 

   (34) 

   (35) 

   (36  

where ,  is the composite scaling parameter,  is the dimension of the state,  is the process noise 
covariance,  is the measurement noise covariance. 
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C.  UKF Dual Estimation 
In the dual UKF estimation, both states of the dynamical system and its parameters are estimated simultaneously, 

given only noisy observations. At every time sample, a UKF state filter estimates the state using the current model 
estimate , while the UKF parameter filter estimates the parameters using the current state estimate . The 
estimation scheme is shown in Figure 4. 

 

 
Figure 4. Sequential approach of DUKF designed to pass over the data one point at a time 

D. Actuator Fault Model 
Faults that develop in a linear time-varying system associated with the actuators can be represented by an 

equation as follows: 
 

  (37) 

  (38) 

with  is the state, control input and output variables, respectively.  and 
 denote white noise. where  are scalars satisfying . If  the ith 

actuator is working perfectly whereas if , a fault is present. Hence, to avoid estimating  directly, we switch 
to estimate the control effectiveness  which is formulated in above equations. The objective of FDD is to 
determine the extent of the loss in the control effectiveness, 8,9. 

  

IV.  Fault Detection and Diagnosis Schemes 

The state and parameter estimation methods for FDD are based on the concept that faults typically affect the 
physical coefficients of the process. By estimating the parameters of a process model on-line, residuals are computed 
as the parameter estimation errors and will be passed to the reconfiguration controller scheme. To successfully 
diagnosis faults and failure, the mapping from the model coefficients to the process parameters is necessary. Part of 
the diagnosis task is to recognize the changes in a dynamic system. The detection is based on statistical hypothesis 
test which involves two phases. 

The first phase is to get the statistical quantities of the normal operations after system becomes stable, like mean 
values and variances. Assume that the residuals from the output estimates and from the estimated fault parameters 
follow the Normal or Gaussian distribution, or very close. The second phase determines the same statistical 
quantities when the system is not normal by using smaller moving window. By defining an appropriate statistical 
detection variable to accentuate the deviation in the statistical quantities from their normal values, the detection and 
diagnosis of a loss of control effectiveness can be achieved. To carry out an on-line fault detection and isolation, the 
recursive calculation of the detection variables is highly desirable. 

Phase I: Define , where  denotes the chosen residuals vector from the 
estimated fault parameters and the measurement residuals of the filter.  represents the mean value of  

 denotes the associated variance.  
For , using 

   (39) 



   
2010 Guidance, Navigation and Control Conference 

8

to obtain the mean, and covariance can be obtained by 

  (40) 

Or in recursive form: 
  (41) 

   (42) 

 is sample size of a discrete random vector, and generally it is chosen to ensure a sufficient accuracy of 
getting the statistical quantities of the normal operations. 

Phase II: to determine the statistical quantities of the abnormal operation. 
Define the following moving data window based statistical quantities 

     

                

       (43) 

  (44) 

  (45) 

Then, a fault in the system corresponding to the th residual is declared at time  if the following detection 
variable 

   (46) 

exceeds a predetermined threshold .  
 

                                                                     (47) 

 
where th residual no fault indication , th residual  fault indication . The selection of the window 
length, , and the threshold, , represents some trade-off between the probability of false alarm the probability of 
missed detection. 

 

V. Simulation Results of GTM 

The FDD method introduced in the previous section is implemented in the LPV model of GTM, and simulation 
results and analysis will be presented in this section. The application to GTM is based on LPV model. In this paper, 
we assume that the collective elevator actuator has the failure while others are remain healthy. The response to the 
airplane is captured through equivalent airspeed (EAS), pitch angle (q), angle of attack ( , and pitch attitude ( ). 
The throttle is kept constant at its trim setting through out the maneuver.  

 
In the following, two fault scenarios are simulated: 1) a 50% of loss of control effectiveness fault in elevator at 5 

sec. 2) a 20% of loss of control effectiveness fault in elevator at 6 sec. The measurement interval is  sec. 
 
The UKF parameters are listed as follows: 

where L is the dimension of the augmented state. 
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As shown in Figure 5, it can be easily seen that the states outputs of TSKF and UKF equivalent airspeed (EAS), 

pitch angle (q), angle of attack ( , and pitch attitude ( ) matched well with measured outputs. 
 
1) A 50% of loss of control effectiveness fault in elevator at 5 sec. 
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Figure 5.  Results of estimated states 
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Figure 6.  Results of estimated parameters 

 
2)  A 20% of loss of control effectiveness fault in elevator at 6 sec. 
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 Figure 7. Results of estimated states 
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 Figure 8. Results of estimated parameters 

 
 
Figure 6 and Figure 8 show that the better performance has been achieved by the Dual UKF. In this case, the 

actuator faults have been detected at 5.3 sec and 6.3 sec, with 0.3 sec delay. For comparison purpose, a TSKF 
(Two-Stage Kalman Filter) developed in [8,9] is also applied to GTM, it can be viewed that similar parameter 
estimation accuracy has been achieved by both DUKF and TSKF. 

 

VI. Conclusion and Future Work 

This paper presents results of an on-line Fault Detection and Diagnosis (FDD) design based on nonlinear 
recursive parameter estimation in the discrete-time stochastic system. Dual UKF has been introduced for aircraft 
on-line state and parameter dual estimation. Dual UKF can correctly estimate all the states and fault parameters 
within the given time limits in the LPV model of nonlinear aircraft model. The Dual UKF has the advantage that it 
separates state estimation and parameter estimation, which is more accurate, compared with other Kalman filters, 
and furthermore Dual UKF can use the nonlinear model of system directly, no need to linearize the system. However, 
the Dual UKF is also computationally more expensive. Through experience in this work, it can be seen that the Dual 
UKF is a powerful recursive state and parameter estimation algorithm and it improves the reliability of parameter 
estimates in the nonlinear systems. 

In this paper, only actuator faults have been considered while others are remained proper. In reality, the faults can 
also occur in the sensors and system components such as wing damages. Furthermore, due to the limited time, only 
partial loss type faults have been considered. Our future work includes consideration of actuator stuck failures and 
wing damages, improvement of robustness and performance of Dual UKF based FDD algorithms, and integration to 
fault tolerant control to form a complete active fault tolerant control system. 
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