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We discuss a new class of Banach spaces which are the generalization of uniformly extremely convex spaces introduced byWulede
and Ha. We prove that the new class of Banach spaces lies strictly between either the classes of 𝑘-uniformly rotund spaces and
𝑘-strongly convex spaces or classes of fully 𝑘-convex spaces and 𝑘-strongly convex spaces and has no inclusive relation with the
class of locally 𝑘-uniformly convex spaces. We obtain in addition some characterizations and properties of this new class of Banach
spaces. In particular, our results contain the main results of Wulede and Ha.

1. Introduction

Different uniformly convex spaces have been defined be-
tween the uniformly convex spaces [1] and the reflexivity of
the Banach spaces [2–6]. In the previous paper [7] we intro-
duce a new class of this type, namely, uniformly extremely
convex spaces. This new class of Banach spaces lies strictly
between either the classes of uniformly convex spaces and
strongly convex spaces or the classes of fully 𝑘-convex spaces
and strongly convex spaces.

Here we consider another new class of this type, namely,
𝑘-uniformly extremely convex spaces, as a generalization of
uniformly extremely convex spaces and discuss its relation
to the drop property, the 𝑘-uniformly rotund spaces, the full
𝑘-convex spaces, the 𝑘-strongly convex spaces, the nearly
uniformly convex spaces, and 𝑘-nearly uniformly convex
spaces. We also give some characterizations of 𝑘-uniformly
extremely convex spaces and find that this new class of
Banach spaces has the following features:

(1) 1-uniformly extremely convex spaces (indeed lower
case) coincide with uniformly extremely convex spa-
ces;

(2) 𝑘-uniformly extremely convex spaces possess the
drop linebreak property;

(3) 𝑘-uniformly extremely convex spaces are (𝑘 + 1)-
uniformly extremely convex spaces, but the converse
implication is not true.

Throughout this paper𝑋 denotes an infinite-dimensional
real Banach space with the norm ‖ ⋅ ‖.The symbol𝑋∗ denotes
the dual of the space𝑋.𝑈(𝑋) and 𝑆(𝑋) denote the closed unit
ball and the unit sphere of𝑋, respectively. The symbol 𝑆(𝑋∗)
denotes the unit sphere of 𝑋∗. The symbol 𝜎(𝑋,𝑋∗) denotes
the weak topology of𝑋.
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Here, and throughout the sequel, the symbol | ⋅ | denotes the
determinant.

Sullivan [6] has introduced the 𝑘-uniformly rotund
(𝑘UR) spaces and locally 𝑘-uniformly rotund (L𝑘UR) spaces.
Fan and Glicksberg [2] have introduced the fully 𝑘-convex
(𝑘R) Banach spaces. It is well known that 𝑘UR and 𝑘R spaces
imply reflexivity. About 𝑘UR and 𝑘R spaces, we have the
following chain of implications [2, 6, 8]:

UR = 1UR ⇒ ⋅ ⋅ ⋅ ⇒ 𝑘UR ⇒ (𝑘 + 1)UR;

2R ⇒ ⋅ ⋅ ⋅ ⇒ 𝑘R ⇒ (𝑘 + 1)R;

LUR = L1UR ⇒ ⋅ ⋅ ⋅ ⇒ L𝑘UR ⇒ 𝐿 (𝑘 + 1)UR.

(2)

A Banach space𝑋 is said to be a 𝑘UR space (𝑘 ≥ 1) [6] if,
for any 𝜖 > 0, there exists a 𝛿(𝜖) > 0 such that, for all norm-1
elements 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘+1
and ‖𝑥

1
+𝑥
2
+⋅ ⋅ ⋅+𝑥

𝑘+1
‖ > (𝑘+1)−𝛿,

we have 𝑉(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘+1
) < 𝜖.

A Banach space 𝑋 is said to be a 𝑘R space (𝑘 ≥ 2) [2] if,
for any sequence {𝑥

𝑛
} in𝑋 such that lim

𝑛
1
,...,𝑛
𝑘
→∞

(1/𝑘)‖𝑥
𝑛
1

+

𝑥
𝑛
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛
𝑘

‖ = 1, then {𝑥
𝑛
} is a Cauchy sequence in 𝑋.

A point 𝑥
0
∈ 𝑆(𝑋) is said to be a denting point of 𝑈(𝑋)

[8] if 𝑥
0
∉ co(𝑀(𝑥

0
, 𝜖)) for all 𝜖 > 0, where𝑀(𝑥

0
, 𝜖) = {𝑦 :

𝑦 ∈ 𝑈(𝑋), ‖𝑦 − 𝑥
0
‖ ≥ 𝜖}.

Huff [3] has introduced the nearly uniformly convex
(NUC) spaces as a generalization of uniformly convexBanach
spaces and showed that the NUC spaces are equivalent to
reflexive spaces possessing the uniformKadec-Klee property.
The local version of NUC spaces, namely, locally nearly
uniformly convex (LNUC), was studied byKutzarova and Lin
[9]. Kutzarova [4] introduced the 𝑘-nearly uniformly convex
(𝑘NUC) spaces as a generalization of nearly uniformly convex
Banach spaces. In [4, 9], it is pointed out that NUC⇒ LNUC
and 𝑘NUC⇒ NUC for every 𝑘 ≥ 2.

A Banach space 𝑋 is said to be a NUC [3] space if, for
any 𝜖 > 0, there exists a 𝛿(𝜖) > 0 such that, for any sequence
{𝑥
𝑛
} ⊂ 𝑈(𝑋), sep(𝑥

𝑛
) > 𝜖, we have co({𝑥

𝑛
})∩(1−𝛿)𝑈(𝑋) ̸= 0,

where sep(𝑥
𝑛
) = inf{‖𝑥

𝑛
− 𝑥
𝑚
‖ : 𝑛 ̸= 𝑚} and co({𝑥

𝑛
})means

the convex hull of {𝑥
𝑛
}.

A Banach space 𝑋 is said to be a LNUC [9] space if, for
any norm-1 element 𝑥 and 𝜖 > 0, there exists a 𝛿 = 𝛿(𝜖, 𝑥) > 0
such that, for any sequence {𝑥

𝑛
} ⊂ 𝑈(𝑋), sep(𝑥

𝑛
) > 𝜖, we have

co({𝑥} ∪ {𝑥
𝑛
}) ∩ (1 − 𝛿)𝑈(𝑋) ̸= 0, where co({𝑥} ∪ {𝑥

𝑛
})means

the convex hull of {𝑥} and {𝑥
𝑛
}.

A Banach space𝑋 is said to be a 𝑘NUC [4] space, if for any
𝜖 > 0 there exists a 0 < 𝛿(𝜖) < 1 such that, for any sequence
{𝑥
𝑛
} ⊂ 𝑈(𝑋), sep(𝑥

𝑛
) > 𝜖, there are indices {𝑛

𝑖
} and scalars

𝜆
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑘, with ∑𝑘

𝑖=1
𝜆
𝑖
= 1 so that ‖∑𝑘

𝑖=1
𝜆
𝑖
𝑥
𝑛
𝑖

‖ ≤

1 − 𝛿.

Singer [10] has introduced the 𝑘-strictly convex spaces. It
is well known that 𝑘-strictly convex spaces are (𝑘 + 1)-strictly
convex spaces; 1-strictly convex spaces (indeed lower case)
coincide with strictly convex spaces; 𝑘R spaces are 𝑘-strictly
convex spaces andhave the drop property.Wu andLi [11] have
introduced the strongly convex spaces. Wulede and Wu [12]
introduced the 𝑘-strongly convex spaces as a generalization
of strongly convex Banach spaces and gave an equivalent def-
inition of 𝑘-strongly convex spaces (see Theorem 5 in [13]).

It is well known that 𝑘-strongly convex spaces are 𝑘-strictly
convex spaces; 1-strongly convex spaces (indeed lower case)
coincide with strongly convex spaces; 𝑘-strongly convex
spaces are (𝑘 + 1)-strongly convex spaces, but the converse
implication is not true.

A Banach space 𝑋 is said to be a 𝑘-strictly convex space
[10] if, for all norm-1 elements 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘+1
such that

‖∑
𝑘+1

𝑖=1
𝑥
𝑖
‖ = 𝑘+1, then𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘+1
are linearly dependent.

A Banach space𝑋 is said to be a strongly convex space [11]
if, for any 𝑥 ∈ 𝑆(𝑋), {𝑥

𝑛
} ⊂ 𝑆(𝑋) and for a certain functional

𝑓 ∈ 𝑆
𝑥
such that 𝑓(𝑥

𝑛
) → 1 (𝑛 → ∞), then ‖𝑥

𝑛
− 𝑥‖ →

0 (𝑛 → ∞), where 𝑆
𝑥
= {𝑓 : 𝑓 ∈ 𝑆(𝑋

∗

), 𝑓(𝑥) = 1}.
A Banach space𝑋 is said to be a 𝑘-strongly convex space

[12] if, for any norm-1 element 𝑥, 𝜖 > 0 and for any functional
𝑓 ∈ 𝑆

𝑥
, there is a 𝛿(𝑥, 𝑓, 𝜖) > 0 such that, for all norm-1

elements 𝑥
1
, . . . , 𝑥

𝑘
and 𝑓(𝑥 + 𝑥

1
+ ⋅ ⋅ ⋅ + 𝑥

𝑘
) > (𝑘 + 1) − 𝛿, we

have 𝑉(𝑥, 𝑥
1
, . . . , 𝑥

𝑘
) < 𝜖.

Rolewicz [14] has defined the norm ‖ ⋅ ‖ to have the drop
property, if for every closed set 𝐶 ⊂ 𝑋 disjoint from 𝑈(𝑋)

there exists 𝑥 ∈ 𝐶 such that𝐷(𝑥,𝑈(𝑋)) ∩ 𝐶 = {𝑥}, where the
set 𝐷(𝑥,𝑈(𝑋)), the convex hull of 𝑥 and 𝑈(𝑋), is called the
drop generated by 𝑥 ∉ 𝑈(𝑋).

Lemma 1 (Kadec-Klee property). If any 𝑥 ∈ 𝑆(𝑋), {𝑥
𝑛
} ⊂

𝑆(𝑋) such that 𝑥
𝑛

𝑤

→ 𝑥, 𝑛 → ∞, and ‖𝑥
𝑛
‖ → ‖𝑥‖, 𝑛 → ∞,

then ‖𝑥
𝑛
− 𝑥‖ → 0, 𝑛 → ∞, where 𝑥

𝑛

𝑤

→ 𝑥, 𝑛 → ∞, means
that 𝑓(𝑥

𝑛
) → 𝑓(𝑥), 𝑛 → ∞, for all 𝑓 ∈ 𝑋

∗.

Lemma 2 (Montesinos [15]). Let 𝑋 be a Banach space. Then
𝑋 has the drop property if and only if𝑋 is reflexive and has the
Kadec-Klee property.

Lemma 3 (Nan and Wang [16]). 𝑋 is 𝑘-strictly convex space
if and only if, for any 𝑓 ∈ 𝑆(𝑋

∗

), one has dim𝐴
𝑓
≤ 𝑘, where

𝐴
𝑓
= {𝑥 : 𝑥 ∈ 𝑆(𝑋), 𝑓(𝑥) = 1}.

Lemma 4 (Wulede andWu [12], Zhang and Fang [17]). Let𝑋
be a Banach space.

(i) If𝑋 is 𝑘-strongly convex, then𝑋 is 𝑘-strictly convex and
has the Kadec-Klee property.

(ii) If 𝑋 is reflexive, 𝑘-strictly convex and has the Kadec-
Klee property, then𝑋 is 𝑘-strongly convex.

(iii) If𝑋 is 𝑘-strongly convex, {𝑥
𝑛
} ⊂ 𝑈(𝑋),𝑓 ∈ 𝑆(𝑋

∗

), and
𝑓(𝑥
𝑛
) → 1, 𝑛 → ∞, then dist(𝑥

𝑛
, 𝐴
𝑓
) → 0, 𝑛 → ∞.

Lemma5 (Zhang and Fang [17]). 𝑋 is 𝑘-strongly convex if and
only if, for any 𝑥 ∈ 𝑆(𝑋) and 𝑓 ∈ 𝑆

𝑥
, 𝜖 > 0, there exist 𝛿 > 0

and a compact set 𝐶 ⊂ 𝑋 with dim𝐶 ≤ 𝑘 such that 𝐹(𝑓, 𝛿) ⊂
{𝑥 : 𝑥 ∈ 𝑋, 𝑑(𝑥, 𝐶) < 𝜖}, where the set 𝐹(𝑓, 𝛿) = {𝑥 : 𝑥 ∈

𝑈(𝑋), 𝑓(𝑥) ≥ 1 − 𝛿} is the slice generated by 𝑓 and 𝛿.

2. 𝑘-Uniformly Extremely Convex
Spaces and Drop Property

Definition 6 (see [7]). A Banach space 𝑋 is said to be
a uniformly extremely convex space if, for any sequences
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{𝑥
𝑛
}, {𝑦
𝑛
} consisting of elements of norm-1 and for a certain

functional 𝑓 of norm-1, lim
𝑛→∞

𝑓(𝑥
𝑛
) = lim

𝑛→∞
𝑓(𝑦
𝑛
) = 1

holds; then lim
𝑛→∞

‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0.

On the base of uniformly extremely convex spaces, now
we introduce the notion of 𝑘-uniformly extremely convex
spaces as a generalization of uniformly extremely convex
spaces.

Definition 7. ABanach space𝑋 is said to be a 𝑘-uniformly ex-
tremely convex space if, for any sequences {𝑥(1)

𝑛
}, . . ., {𝑥(𝑘+1)

𝑛
}

consisting of elements of norm-1 and for a certain functional
𝑓 of norm-1, lim

𝑛→∞
𝑓(𝑥
(1)

𝑛
) = ⋅ ⋅ ⋅ = lim

𝑛→∞
𝑓(𝑥
(𝑘+1)

𝑛
) = 1

holds; then lim
𝑛→∞

𝑉(𝑥
(1)

𝑛
, . . . , 𝑥

(𝑘+1)

𝑛
) = 0.

We give first a simple result which shows that the notion
of 𝑘-uniformly extremely convex space is “coherent.”

Theorem 8. If 𝑋 is 𝑘-uniformly extremely convex space, then
𝑋 is (𝑘 + 1)-uniformly extremely convex space.

Proof. If, for any sequences {𝑥(1)
𝑛
}, . . . , {𝑥

(𝑘+2)

𝑛
} consisting of

elements of norm-1 and for a certain functional 𝑓 of norm-1,
lim
𝑛→∞

𝑓(𝑥
(1)

𝑛
) = ⋅ ⋅ ⋅ = lim

𝑛→∞
𝑓(𝑥
(𝑘+2)

𝑛
) = 1 holds, then, for

all 1 ≤ 𝑗 ≤ 𝑘 + 2, we have lim
𝑛→∞

𝑉(𝑥
(1)

𝑛
, . . . , 𝑥

(𝑗−1)

𝑛
, 𝑥
(𝑗+1)

𝑛
, . . .,

𝑥
(𝑘+2)

𝑛
) = 0 by the assumption that𝑋 is 𝑘-uniformly extremely

convex space. Furthermore, by the properties of determinant
we have

lim
𝑛→∞

𝑉(𝑥
(1)

𝑛
, . . . , 𝑥

(𝑘+2)

𝑛
)

≤ lim
𝑛→∞

𝑘+1

∑

𝑗=2

𝑉(𝑥
(1)

𝑛
, . . . , 𝑥

(𝑗−1)

𝑛
, 𝑥
(𝑗+1)

𝑛
, . . . , 𝑥

(𝑘+2)

𝑛
) = 0;

(3)

this shows that𝑋 is (𝑘+1)-uniformly extremely convex space.

Now we give a simple but useful lemma. By using this
lemma we can prove that any 𝑘-uniformly extremely convex
space has the drop property. And the fact that 𝑘-uniformly
extremely convex spaces include 𝑘-strongly convex spaces
can be easily found.We also show that 1-uniformly extremely
convex spaces coincide with uniformly extremely convex
spaces by using this lemma.

Lemma 9. 𝑋 is 𝑘-uniformly extremely convex if and only if,
for any 𝜖 > 0, 𝑓 ∈ 𝑆(𝑋

∗

), there exists a 𝛿(𝜖) > 0 such that, for
all norm-1 elements 𝑥

1
, . . . , 𝑥

𝑘+1
and 𝑓(∑𝑘+1

𝑖=1
𝑥
𝑖
) > (𝑘 + 1) − 𝛿,

one has 𝑉(𝑥
1
, . . . , 𝑥

𝑘+1
) < 𝜖.

Proof.
Necessity. Suppose the contrary.Then there exist 𝜖

0
> 0, 𝑓

0
∈

𝑆(𝑋
∗

) and {𝑥
𝑖
}
𝑘+1

𝑖=1
⊂ 𝑆(𝑋) such that, for any 𝛿 = 1/𝑛, 𝑛 ∈ 𝑁,

we have 𝑓
0
(∑
𝑘+1

𝑖=1
𝑥
𝑖
) > (𝑘 + 1) − 1/𝑛, but𝑉(𝑥

1
, . . . , 𝑥

𝑘+1
) ≥ 𝜖
0
.

Take 𝑥(𝑖)
𝑛

= 𝑥
𝑖
(𝑖 = 1, . . . , 𝑘 + 1); then {𝑥

(𝑖)

𝑛
}
𝑘+1

𝑖=1
⊂ 𝑆(𝑋)

and 𝑘 + 1 − 1/𝑛 < 𝑓
0
(∑
𝑘+1

𝑖=1
𝑥
(𝑖)

𝑛
) ≤ 𝑘 + 1. It follows that

lim
𝑛→∞

𝑓
0
(𝑥
(𝑖)

𝑛
) = 1. On the other hand, by the defini-

tion of the 𝑘-uniformly extremely convex space, we have
𝑉(𝑥
1
, . . . , 𝑥

𝑘+1
) → 0; this contradicts the statement that

𝑉(𝑥
1
, . . . , 𝑥

𝑘+1
) ≥ 𝜖
0
.

Sufficiency. If, for any sequences {𝑥(1)
𝑛
}, . . . , {𝑥

(𝑘+1)

𝑛
} consisting

of elements of norm-1 and for a certain functional𝑓 of norm-
1, lim
𝑛→∞

𝑓(𝑥
(1)

𝑛
) = ⋅ ⋅ ⋅ = lim

𝑛→∞
𝑓(𝑥
(𝑘+1)

𝑛
) = 1 holds, then

lim
𝑛→∞

𝑓(∑
𝑘+1

𝑖=1
𝑥
(𝑖)

𝑛
) = 𝑘 + 1. Therefore, for any 𝛿 > 0, there

exists an integer𝑁
0
∈ 𝑁 such that, for all 𝑛 ≥ 𝑁

0
, inequality

𝑓(∑
𝑘+1

𝑖=1
𝑥
(𝑖)

𝑛
) > (𝑘 + 1) − 𝛿 holds. For any 𝜖 > 0, by the

conditions given in Lemma 9, we have𝑉(𝑥(1)
𝑛
, . . . , 𝑥

(𝑘+1)

𝑛
) < 𝜖;

this means that lim
𝑛→∞

𝑉(𝑥
(1)

𝑛
, . . . , 𝑥

(𝑘+1)

𝑛
) = 0.

Remark 10. 1-uniformly extremely convex space (indeed
lower case) coincides with uniformly extremely convex space.

In fact, by Lemma 9 we know that 𝑋 is 1-uniformly
extremely convex space if and only if, for any 𝜖 > 0, 𝑓 ∈

𝑆(𝑋
∗

), there exists a 𝛿(𝜖, 𝑓) > 0 such that, for any norm-1
elements 𝑥, 𝑦 and 𝑓(𝑥 + 𝑦) > 2 − 𝛿, we have

𝑉 (𝑥, 𝑦) = sup{


1 1

𝑓 (𝑥) 𝑓 (𝑦)



: 𝑓 ∈ 𝑆 (𝑋
∗

)}

= sup
𝑓∈𝑆(𝑋

∗
)

𝑓 (𝑥) − 𝑓 (𝑦)
 =

𝑥 − 𝑦
 < 𝜖,

(4)

and also if and only if𝑋 is uniformly extremely convex space.

Theorem 11. 𝑋 is 𝑘-uniformly extremely convex space if and
only if 𝑋 is 𝑘-strictly convex space and has the drop property.

Proof.
Necessity. Suppose that 𝑋 is 𝑘-uniformly extremely convex
space; by the definition of 𝑘-strongly convex space and a
condition which characterizes 𝑘-uniformly extremely convex
space in Lemma 9, it is easy to see that𝑋 is 𝑘-strongly convex
space. From Lemma 4(i), we know that𝑋 is 𝑘-strictly convex
space and has the Kadec-Klee property.

Now we are going to prove that 𝑋 has the drop property.
In fact, from Lemma 2, it is sufficient to prove that 𝑋 is
reflexive. Suppose that 𝑋 is not reflexive. Using the well-
known James’ theorem, for each 0 < 𝜖 < 1, we can choose
0 < 𝜃 < 1 so that 𝜃 > 1 − 𝛿(𝜖)/(𝑘 + 1) and 𝜃

𝑘

> 𝜖, and
{𝑥
1
}, . . . , {𝑥

𝑘+1
} ⊂ 𝑆(𝑋), {𝑥∗

1
}, . . . , {𝑥

∗

𝑘+1
} ⊂ 𝑆(𝑋

∗

) so that

𝑥
∗

𝑗
(𝑥
𝑖
) =

{

{

{

𝜃 if 𝑗 ≤ 𝑖

0 if 𝑗 > 𝑖.
(5)

Here 𝛿(𝜖) is the function required in Lemma 9.
Now we have that

𝑥
∗

1
(𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑘+1
) = (𝑘 + 1) 𝜃 > (𝑘 + 1) − 𝛿 (𝜖) . (6)
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On the other hand it is easy to check that

𝑉 (𝑥
1
, . . . , 𝑥

𝑘+1
)

≥



1 1 ⋅ ⋅ ⋅ 1

𝑥
∗

2
(𝑥
1
) 𝑥
∗

2
(𝑥
2
) ⋅ ⋅ ⋅ 𝑥

∗

2
(𝑥
𝑘+1

)

.

.

.
.
.
. d

.

.

.

𝑥
∗

𝑘+1
(𝑥
1
) 𝑥
∗

𝑘+1
(𝑥
2
) ⋅ ⋅ ⋅ 𝑥

∗

𝑘+1
(𝑥
𝑘+1

)



= 𝜃
𝑘

> 𝜖,

(7)

which gives the required contradiction.

Sufficiency. From the assumption that 𝑋 is 𝑘-strictly con-
vex space and has the drop property, we can deduce, by
Lemma 4(ii), that𝑋 is 𝑘-strongly convex space and reflexive.
Observing the definition of 𝑘-strongly convex space and a
condition which characterizes 𝑘-uniformly extremely convex
space in Lemma 9, by the reflexivity of𝑋, it is easy to see that
𝑋 is 𝑘-uniformly extremely convex space.

Corollary 12 (see [7]). 𝑋 is uniformly extremely convex space
if and only if 𝑋 is strictly convex space and has the drop
property.

Noticing the procedure of proving Theorem 11 we can
deduce the following.

Corollary 13. If𝑋 is 𝑘-uniformly extremely convex space, then
𝑋 is 𝑘-strongly convex space.

Now we are going to show that the converse to Corol-
lary 13 is not true. In [12], it is proved that L𝑘UR spaces are
𝑘-strongly convex spaces. In general, L𝑘UR spaces need not
be reflexive since L1UR is just the usual definition of LUR
space [18, 19]. It follows that there exists a 𝑘-strongly convex
space 𝑋 which is not reflexive. Hence𝑋 is not a 𝑘-uniformly
extremely convex space since𝑋 is not reflexive.

Corollary 14. 𝑋 is 𝑘-uniformly extremely convex space if and
only if 𝑋 is reflexive and, for any 𝑥 ∈ 𝑆(𝑋) and 𝑓 ∈ 𝑆

𝑥
, 𝜖 > 0,

there exist 𝛿 > 0 and a compact set 𝐶 ⊂ 𝑋 with dim𝐶 ≤ 𝑘

such that 𝐹(𝑓, 𝛿) ⊂ {𝑥 : 𝑥 ∈ 𝑋, 𝑑(𝑥, 𝐶) < 𝜖}, where the set
𝐹(𝑓, 𝛿) = {𝑥 : 𝑥 ∈ 𝑈(𝑋), 𝑓(𝑥) ≥ 1 − 𝛿} is the slice generated
by 𝑓 and 𝛿.

Proof. It is immediate from Corollary 13, Theorem 11, and
Lemmas 2, 4, and 5.

Theorem 15. 𝑋 is 𝑘-uniformly extremely convex space if and
only if𝑋 is reflexive and, for any𝑓 ∈ 𝑆(𝑋

∗

), one has dim𝐴
𝑓
≤

𝑘,𝐴
𝑓
∩ co(𝑈(𝑋) \𝑉

𝐴
𝑓

) = 0, where the set𝑉
𝐴
𝑓

, which includes
set 𝐴
𝑓
, is arbitrary open set with regard to norm topology

(𝑋, ‖ ⋅ ‖).

Proof.
Necessity. Suppose that 𝑋 is 𝑘-uniformly extremely convex
space; then byTheorem 11 we know that𝑋 is 𝑘-strictly convex
space and reflexive. For any 𝑓 ∈ 𝑆(𝑋

∗

), by the reflexivity of
𝑋, there exists 𝑥 ∈ 𝑆(𝑋) such that 𝑓(𝑥) = 1; hence 𝑥 ∈ 𝐴

𝑓
.

Combining the fact that 𝑋 is 𝑘-strictly convex space with
Lemma 3 we can deduce that dim𝐴

𝑓
≤ 𝑘.

Now we are going to prove the equality 𝐴
𝑓
∩ co(𝑈(𝑋) \

𝑉
𝐴
𝑓

) = 0.
Firstly, we will prove that, for any 𝑧 ∉ 𝑉

𝐴
𝑓

and every open
set 𝑉
𝐴
𝑓

(where 𝑉
𝐴
𝑓

⊃ 𝐴
𝑓
) with regard to norm topology

(𝑋, ‖ ⋅ ‖), there exists a scalar 𝑟 > 0 such that dist(𝑧, 𝐴
𝑓
) ≥ 𝑟.

Noticing that 𝐴
𝑓
is compact set in 𝑋, for any 𝑧 ∉ 𝑉

𝐴
𝑓

,
we can deduce that there exists 𝑥 ∈ 𝐴

𝑓
such that ‖𝑥 − 𝑧‖ =

dist(𝑧, 𝐴
𝑓
) = 𝑟

𝑧
. Now we claim that there exists minimum

value of 𝑟
𝑧
denoted by 𝑟, such that dist(𝑧, 𝐴

𝑓
) ≥ 𝑟 for any

𝑧 ∉ 𝑉
𝐴
𝑓

. In fact, if 𝑟
𝑧
does not have minimum value, then

1/𝑛 is impossible to be minimum value for any integer 𝑛.
Hence, there exist 𝑧

𝑛
∉ 𝑉
𝐴
𝑓

and 𝑥
𝑛
∈ 𝐴
𝑓
such that ‖𝑥

𝑛
−

𝑧
𝑛
‖ = dist(𝑧

𝑛
, 𝐴
𝑓
) < 1/𝑛. Since 𝐴

𝑓
is compact, the above

sequence {𝑥
𝑛
} has the convergent subsequence; without loss

of generality and letting the convergent subsequence be {𝑥
𝑛
}

itself, then 𝑥
𝑛
→ 𝑥
0
, 𝑥
0
∈ 𝐴
𝑓
. Noticing that ‖𝑥

𝑛
− 𝑧
𝑛
‖ =

dist(𝑧
𝑛
, 𝐴
𝑓
) < 1/𝑛, we can deduce that 𝑧

𝑛
→ 𝑥
0
, 𝑥
0
∈ 𝐴
𝑓
⊂

𝑉
𝐴
𝑓

.
On the other hand, combining the fact that 𝑋 \ 𝑉

𝐴
𝑓

is
closed set with 𝑧

𝑛
∈ 𝑋 \ 𝑉

𝐴
𝑓

, 𝑧
𝑛
→ 𝑥
0
, we can deduce that

𝑥
0
∈ 𝑋 \ 𝑉

𝐴
𝑓

.This contradicts 𝑥
0
⊂ 𝑉
𝐴
𝑓

.
Secondly, we will prove that for 𝑉

𝐴
𝑓

there exists a scalar
𝑚 > 0 such that the inequality 𝑓(𝑥) > 𝑓(𝑦) + 𝑚 holds for all
𝑥 ∈ 𝐴

𝑓
and 𝑦 ∈ 𝑈(𝑋) \ 𝑉

𝐴
𝑓

.
If the above inequality is not true, then there exists 𝑦

𝑛
∈

𝑈(𝑋) \ 𝑉
𝐴
𝑓

such that 𝑓(𝑦
𝑛
) → 𝑓(𝑥) = 1, 𝑛 → ∞.

By the condition given in Theorem 15, Corollary 13, and
Lemma 4(iii), we have dist(𝑦

𝑛
, 𝐴
𝑓
) → 0, 𝑛 → ∞. On

the other hand, by 𝑦
𝑛
∈ 𝑈(𝑋) \ 𝑉

𝐴
𝑓

, we can deduce that
dist(𝑦

𝑛
, 𝐴
𝑓
)  0, 𝑛 → ∞; this contradicts the statement

that dist(𝑦
𝑛
, 𝐴
𝑓
) → 0, 𝑛 → ∞. Hence we have

𝑓 (𝑥) − 𝑚 ≥ sup {𝑓 (𝑦) : 𝑦 ∈ 𝑈 (𝑋) \ 𝑉
𝐴
𝑓

}

= sup {𝑓 (𝑦) : 𝑦 ∈ co (𝑈 (𝑋) \ 𝑉
𝐴
𝑓

)} ;

(8)

this shows that 𝑥 ∉ co(𝑈(𝑋) \ 𝑉
𝐴
𝑓

). By the arbitrary of 𝑥 ∈

𝐴
𝑓
, we can deduce that 𝐴

𝑓
∩ co(𝑈(𝑋) \ 𝑉

𝐴
𝑓

) = 0.

Sufficiency.ByLemmas 2 and 3,Theorem 11, and the condition
given in Theorem 15, only we need to prove that 𝑋 has the
Kadec-Klee property. Let 𝑥 ∈ 𝑆(𝑋), {𝑥

𝑛
}
∞

𝑛=1
⊂ 𝑆(𝑋), and

𝑥
𝑛

𝑤

→ 𝑥, 𝑛 → ∞. By the well-known James’ theorem, there
exists 𝑓 ∈ 𝑆(𝑋

∗

) such that 𝑓(𝑥) = 1; it follows that 𝑥 ∈ 𝐴
𝑓
.

Case 1. If {𝑥
𝑛
}
∞

𝑛=1
∩𝐴
𝑓
= 0, then {𝑥

𝑛
}
∞

𝑛=1
is relatively compact.

Otherwise, every point of 𝐴
𝑓
is not accumulation point of

{𝑥
𝑛
}
∞

𝑛=1
. Hence, for any 𝑥 ∈ 𝐴

𝑓
there exists 𝜖

0
> 0 such

that {𝑦 ∈ 𝑋 : ‖𝑦 − 𝑥‖ < 𝜖
0
} does not contain any point of

{𝑥
𝑛
}
∞

𝑛=1
. We construct an open set 𝑉

𝐴
𝑓

= ⋃
𝑥∈𝐴
𝑓

{𝑦 ∈ 𝑋 :

‖𝑦 − 𝑥‖ < 𝜖
0
} with regard to norm topology (𝑋, ‖ ⋅ ‖); then

𝐴
𝑓
⊂ 𝑉
𝐴
𝑓

and 𝑉
𝐴
𝑓

∩ {𝑥
𝑛
}
∞

𝑛=1
= 0. Since co(𝑈(𝑋) \ 𝑉

𝐴
𝑓

)

is bounded closed convex set with regard to norm topology
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(𝑋, ‖ ⋅ ‖), co𝑤(𝑈(𝑋) \ 𝑉
𝐴
𝑓

) = co(𝑈(𝑋) \ 𝑉
𝐴
𝑓

). Noticing that
co𝑤(𝑈(𝑋)\𝑉

𝐴
𝑓

) is bounded set with regard to weak topology
𝜎(𝑋,𝑋

∗

), we know that co𝑤(𝑈(𝑋) \ 𝑉
𝐴
𝑓

) is compact set with
regard to weak topology 𝜎(𝑋,𝑋∗). Hence there is a function
𝑔 ∈ 𝑋

∗ which separates𝐴
𝑓
and co(𝑈(𝑋) \𝑉

𝐴
𝑓

); that is, there
is a scalar 𝑙 > 0 such that 𝑔(𝐴

𝑓
) − 𝑙 > sup𝑔(co(𝑈(𝑋) \

𝑉
𝐴
𝑓

)). Evidently, {𝑥
𝑛
}
∞

𝑛=1
⊂ co(𝑈(𝑋) \ 𝑉

𝐴
𝑓

); it follows that
𝑔(𝐴
𝑓
) − 𝑔({𝑥

𝑛
}
∞

𝑛=1
) > 𝑙. This contradicts the assumption that

𝑥
𝑛

𝑤

→ 𝑥, 𝑛 → ∞.

Case 2. If {𝑥
𝑛
}
∞

𝑛=1
∩ 𝐴
𝑓

̸= 0, then ({𝑥
𝑛
}
∞

𝑛=1
\ 𝐴
𝑓
) ∩

𝐴
𝑓
= 0. According to Case 1 we know that {𝑥

𝑛
}
∞

𝑛=1
\ 𝐴
𝑓

is relatively compact set. Hence {𝑥
𝑛
}
∞

𝑛=1
∩ 𝐴
𝑓
is compact

set since 𝐴
𝑓
is bounded closed convex set in certain finite

dimensional subspace of 𝑋. On the other hand, it is obvious
that {𝑥

𝑛
}
∞

𝑛=1
= ({𝑥
𝑛
}
∞

𝑛=1
\𝐴
𝑓
)∪({𝑥

𝑛
}
∞

𝑛=1
∩𝐴
𝑓
); hence {𝑥

𝑛
}
∞

𝑛=1
=

({𝑥
𝑛
}
∞

𝑛=1
\ 𝐴
𝑓
) ∪ ({𝑥

𝑛
}
∞

𝑛=1
∩ 𝐴
𝑓
). This shows that {𝑥

𝑛
}
∞

𝑛=1
is

relatively compact.
Consequently, in Cases 1 and 2, we always conclude that

{𝑥
𝑛
}
∞

𝑛=1
is relatively compact. Furthermore, by the assumption

that 𝑥
𝑛

𝑤

→ 𝑥, 𝑛 → ∞, we can deduce that ‖𝑥
𝑛
− 𝑥‖ →

0, 𝑛 → ∞. This completes the proof that 𝑋 has the Kadec-
Klee property.

In particular, considering the special case of Theorem 15
when 𝑘 = 1, we obtainedTheorem 2.5 in [7] as a corollary.

Corollary 16. 𝑋 is uniformly extremely convex space if and
only if𝑋 is reflexive and for any 𝑓 ∈ 𝑆(𝑋

∗

), one has dim𝐴
𝑓
=

1,𝐴
𝑓
∩ co(𝑈(𝑋) \𝑉

𝐴
𝑓

) = 0, where the set𝑉
𝐴
𝑓

, which includes
set 𝐴
𝑓
, is arbitrary open set with regard to norm topology

(𝑋, ‖ ⋅ ‖). In other words,𝑋 is uniformly extremely convex space
if and only if𝑋 is reflexive and every point of 𝑆(𝑋) is a denting
point of 𝑈(𝑋).

To show that the converse to Theorem 8 is not true, we
consider the following example.

Example 17. There exists a 𝑘-uniformly extremely convex
space 𝑋 which is not a (𝑘 − 1)-uniformly extremely convex
space.

Let 𝑘 ≥ 2 be an integer, and let 𝑖
1
< 𝑖
2
< ⋅ ⋅ ⋅ < 𝑖

𝑘
. For each

𝑥 = (𝑎
1
, 𝑎
2
, . . .) ∈ 𝑙

2
, define

‖𝑥‖
2

𝑖
1
,...,𝑖
𝑘

= (

𝑘

∑

𝑗=1


𝑎
𝑖
𝑗


)

2

+ ∑

𝑖 ̸=𝑖
1
,...,𝑖
𝑘

𝑎
2

𝑖
. (9)

From [20] we know that 𝑋
𝑖
1
,...,𝑖
𝑘

= (𝑙
2
, ‖ ⋅ ‖

𝑖
1
,...,𝑖
𝑘

) is a
𝑘UR space. It is easy to see that 𝑘UR space is 𝑘-uniformly
extremely convex space from the definition of 𝑘UR space
and a condition which characterizes 𝑘-uniformly extremely
convex space in Lemma 9. Hence 𝑋

𝑖
1
,...,𝑖
𝑘

is a 𝑘-uniformly
extremely convex space. It follows from Theorem 11 that
𝑋
𝑖
1
,...,𝑖
𝑘

is a 𝑘-strictly convex space but is not a (𝑘 − 1)-strictly
convex space that follows from [16]. Hence 𝑋

𝑖
1
,...,𝑖
𝑘

is not a
(𝑘 − 1)-uniformly extremely convex space.

3. The Relations between 𝑘-Uniformly
Extremely Convex Space and Various
Other Types of Convex Space

Now we give a list of examples to distinguish 𝑘-uniformly
extremely convex spaces from 𝑘R, 𝑘UR, 𝑘NUC, and NUC
spaces.

(i) We are ready now to distinguish 𝑘-uniformly ex-
tremely convex and 𝑘R spaces.

Since 𝑘R spaces are 𝑘-strictly convex spaces and have the
drop property, it follows fromTheorem 11 that 𝑘R spaces are
𝑘-uniformly extremely convex, but the converse is not true.

Example 18. There exists a 𝑘-uniformly extremely convex
space𝑋 which is not a 𝑘R space for every 𝑘 ≥ 2.

Let 𝑘 ≥ 2 be an integer, and let 𝑖
1
< 𝑖
2
< ⋅ ⋅ ⋅ < 𝑖

𝑘
. For each

𝑥 = (𝑎
1
, 𝑎
2
, . . .) ∈ 𝑙

2
, define

‖𝑥‖
2

𝑖
1
,...,𝑖
𝑘

= (

𝑘

∑

𝑗=1


𝑎
𝑖
𝑗


)

2

+ ∑

𝑖 ̸=𝑖
1
,...,𝑖
𝑘

𝑎
2

𝑖
, (10)

and let 𝑋
𝑖
1
,...,𝑖
𝑘

= (𝑙
2
, ‖ ⋅ ‖

𝑖
1
,...,𝑖
𝑘

). For 𝑥 ∈ 𝑙
2
, let ‖𝑥‖

𝑘
=

sup
𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘

‖𝑥‖
𝑖
1
,...,𝑖
𝑘

,𝑋
𝑘
= (𝑙
2
, ‖𝑥‖
𝑘
). It follows from [20] that

𝑋
𝑘
is a 𝑘UR space but is not a 𝑘R space. Hence 𝑋

𝑘
is a 𝑘-

uniformly extremely convex space since𝑋 is a 𝑘UR space.

(ii) We are ready now to distinguish 𝑘-uniformly
extremely convex and 𝑘UR spaces.

Example 19. For all 𝑘 ≥ 1, there exists a 𝑘-uniformly extreme-
ly convex space𝑋 which is not a 𝑘UR space.

Let 𝐸 = (𝑙
2
, ‖ ⋅ ‖); for 𝑥 = (𝑎

1
, 𝑎
2
, . . .) ∈ 𝐸, define

‖𝑥‖
2

= {
𝑎1
 + (𝑎

2

2
+ 𝑎
2

3
+ ⋅ ⋅ ⋅)

1/2

}

2

+ {(
𝑎
2

2
)

2

+ ⋅ ⋅ ⋅ + (
𝑎
𝑛

𝑛
)

2

+ ⋅ ⋅ ⋅}

2

.

(11)

It follows from [2] that 𝑋 = (∑⨁𝐸)
𝑙
2

is a 2R space; fur-
thermore, 𝑋 = (∑⨁𝐸)

𝑙
2

is a 𝑘-uniformly extremely convex
space but is not a 𝑘UR space [20].

(iii) We are ready now to distinguish 𝑘-uniformly ex-
tremely convex and L𝑘UR spaces.

We consider a nonreflexive L𝑘UR space 𝑋. Then 𝑋 is
not a 𝑘-uniformly extremely convex space since 𝑋 is not
reflexive. On the other hand, we consider Example 19; then
𝑋 = (∑⨁𝐸)

𝑙
2

is a 2R space and it follows that 𝑋 is a 𝑘-
uniformly extremely convex space for all 𝑘 ≥ 1. But 𝑋 is not
a L𝑘UR space that follows from [21].

(iv) We are ready now to distinguish 𝑘-uniformly ex-
tremely convex spaces and NUC or 𝑘NUC spaces.

Example 20. For all 𝑘 ≥ 1, there exists a 𝑘-uniformly ex-
tremely convex space𝑋 which is neither a NUC nor a 𝑘NUC
space for all 𝑘 ≥ 2.
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Let (𝑋, ‖ ⋅ ‖) be the 𝑙
2
-sum of {𝑙

𝑛
, 𝑛 ≥ 2}; then (𝑋, ‖ ⋅ ‖)

is a 2R space with normalized basis {𝑒
𝑛
}. Define, ∀𝑥 =

∑
∞

𝑛=1
𝑎
𝑛
𝑒
𝑛
∈ 𝑋,

‖|𝑥|‖ = {(
𝑎1
 +



∞

∑

𝑛=2

𝑎
𝑛
𝑒
𝑛



)

2

+

∞

∑

𝑛=2

(
𝑎
𝑛

𝑛
)

2

}

1/2

. (12)

By Theorem 4 in [9], we know that (𝑋, ‖| ⋅ |‖) is a 2R space
but is not a LNUC space. It follows that 𝑋 is a 𝑘-uniformly
extremely convex space for all 𝑘 ≥ 1 but is neither a NUC nor
a 𝑘NUC space for all 𝑘 ≥ 2.

Remark 21. (i) The class of 𝑘-uniformly extremely convex
spaces lies strictly between the classes of 𝑘UR spaces and the
𝑘-strongly convex spaces.

(ii) The class of 𝑘-uniformly extremely convex spaces lies
strictly between the classes of 𝑘R spaces and the class of 𝑘-
strongly convex spaces.

(iii)The class of 𝑘-uniformly extremely convex spaces has
no inclusive relation with the class of L𝑘UR spaces.

In particular, considering the special case of Remark 21
when 𝑘 = 1, we obtained the main conclusions of [7], that is,
Remarks 3.5 and 3.7 in [7].
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