
Modeling Behavioral Design Patterns of Concurrent Objects
Robert G. Pettit IV

The Aerospace Corporation
15049 Conference Center Dr

Chantilly, Virginia (USA)
+1-703-324-8937

rob.pettit@aero.org

Hassan Gomaa
George Mason University

4400 University Dr
Fairfax, Virginia (USA)

+1-703-993-1652

hgomaa@gmu.edu

ABSTRACT
Object-oriented software development practices are being
rapidly adopted within increasingly complex systems, including
reactive, real-time and concurrent system applications. While
data modeling is performed very well under current object-
oriented development practices, behavioral modeling necessary
to capture critical information in real-time, reactive, and
concurrent systems is often lacking. Addressing this deficiency,
we offer an approach for modeling and analyzing concurrent
object-oriented software designs through the use of behavioral
design patterns, allowing us to map stereotyped UML objects to
colored Petri net (CPN) representations in the form of reusable
templates. The resulting CPNs are then used to model and
analyze behavioral properties of the software architecture,
applying the results of the analysis to the original software
design.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Object-oriented design methods, Petri nets.

General Terms
Performance, Design, Reliability

Keywords
Software Architecture, COMET, Colored Petri Nets, Behavioral
Design Patterns

1. Introduction
Object-oriented software development practices are being
rapidly adopted within increasingly complex systems, including
reactive, real-time and concurrent system applications. In
practice, though, object-oriented software design techniques are
still predominantly focused on the creation of static class
models. Dynamic architectural models capturing the overall
behavioral properties of the software system are often
constructed using ad hoc techniques with little consideration
given to the resulting performance or reliability implications
until the project reaches implementation. Efforts to analyze

behavioral issues of these architectures occur through
opportunistic rather than systematic approaches and are
inherently cumbersome, unreliable, and unrepeatable.
One means of improving the behavioral modeling capabilities of
object-oriented architecture designs is to integrate formalisms
with the object-oriented specifications. Using this technique,
object-oriented design artifacts are captured in a format such as
the Unified Modeling Language (UML) [1], which is intuitive to
the software architect. The native object-oriented design is then
augmented by integrating an underlying formal representation
capable of providing the necessary analytical tools. The
particular method used in this research [2] is to integrate colored
Petri nets (CPNs) [3] with object-oriented architecture designs
captured in terms of UML communication diagrams.
Specifically, this paper will present a method to systematically
translate a UML software architecture design into an underlying
CPN model using a set of pre-defined CPN templates based on a
set of object behavioral roles. These behavioral roles are based
on the object structuring criteria found in the COMET method
[4], but are not dependent on any given method and are
applicable across application domains. This paper will also
demonstrate some of the analytical benefits provided by
constructing a CPN representation of the UML software
architecture. After a survey of related research, Section 2
descries the concept of behavioral design pattern templates for
modeling concurrent objects. Section 3 discusses how we
construct an overall CPN model of the concurrent software
architecture by interconnecting the individual behavioral design
pattern templates. Section 4 describes the validation of the
approach.

1.1 Related Research
There are many existing works dealing with the use of Petri nets
for describing software behavior. As they relate to this paper,
the existing works can be broadly categorized into the modeling
of software code and the modeling of software designs. In this
research, the focus is on improving reliability of object-oriented
software designs rather than delaying detection to the software
code. In terms of object-oriented design, the related Petri net
research can be categorized as new development methodologies
[5-8]; object-oriented extensions to Petri nets [9-12]; and the
integration of Petri nets with existing object-oriented
methodologies [13-20]. Since one of the goals of this research
effort is to provide a method that requires no additional tools or
language constructs beyond those currently available for the
UML and CPN definitions, this approach [2,21-25] falls into the
last category of integrating Petri nets with existing
methodologies. The main features that distinguish this approach
from other related works are a focus on the concurrent software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE'06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

202

architecture design and the use of consistent, reusable CPN
templates to model the behavior of concurrent objects and their
interactions. This paper also extends our more recent works
[25] by specifically focusing on the behavioral design patterns
of individual concurrent objects and applying these patterns to
construct an underlying representation of the concurrent
software design architecture.

2. Modeling Behavioral Design Patterns
To model concurrent object behavioral design patterns with
CPNs, our approach starts with a concurrent software
architecture model captured in UML. For the construction of
this architecture model, we identify a set of behavioral design
patterns used to categorize the objects along with a set of
specification requirements necessary to correctly model the
concurrent behavior with the underlying CPN model. Each of
the identified behavioral design patterns then has a
corresponding template, represented as a CPN segment, which is
paired with the UML object and is instantiated to capture
specific behavioral characteristics based on the object
specifications. The following sections describe the object
architecture definition along with the concept of behavioral
pattern templates for modeling concurrent objects. Section 3
will then discuss how we construct an overall CPN model of the
concurrent object architecture by connecting the individual
behavioral pattern templates.

2.1 Concurrent Object Modeling
Our approach uses a UML communication diagram to capture
the concurrent software architecture. Depending on the desired
level of modeling, this architecture model can be constructed for
an entire software system or for one or more individual
subsystems. This communication diagram contains a collection
of concurrent (active) and passive objects along with the
message communication that occurs between the objects. Using
our approach, objects within the concurrent software
architecture are organized using the notion of components and
connectors. Under this paradigm, concurrent objects are treated
as components that can be connected through passive message
communication objects and entity objects. In keeping with the
COMET object structuring criteria, each object is assigned a
UML stereotype to indicate its behavioral design pattern.
Objects are broadly divided into application objects, which
perform the work, and connector objects, which provide the
means of communicating between application objects. For
application objects, we use six stereotyped behavioral design
patterns as illustrated in Figure 1: interface, entity, coordinator,
state-dependent, timer, and algorithm. Additionally, connector
objects can take the roles of: queue, buffer, or buffer-with-
response, corresponding to asynchronous, synchronous, and
return messages. These patterns are not intended to be an
exhaustive list, but rather are intended to represent sufficient
variety to model concurrent systems across a wide range of
domains while also allowing these patterns to be extended as
necessary for future applications.
The identification of stereotyped behavioral roles allows us to
select a specific CPN template to model each object (further
described in Section 3.2). These behavioral stereotypes are
generic across applications, so we also capture specific
application information using the following tagged values:

− Execution Type. Each object must be declared as either
passive or concurrent and for concurrent objects, further
specified to be asynchronous or periodic.

− IO Mapping. Input-output message pairings must be
specified for each object

− Communication Type. Indicate whether message
communication occurs through asynchronous or synchronous
means.

− Activation Time. The period of activation must be specified
for each periodic concurrent object.

− Processing Time. Estimated processing times for completing
an execution cycle should be assigned to each object if
timing is to be accounted for in performance analysis.

− Operation Type. Indicate whether operations on entity
objects perform “reader” or “writer” functionality.

− Statechart. For each state-dependent object, a UML
statechart is used to capture the state behavior for that object.
A detailed discussion of how the statechart is translated into
the CPN model is provided in Pettit and Gomaa [24].

 Figure 1. Stereotype Hierarchy for Application Objects

2.2 Defining Behavioral Pattern Templates
The basis for our approach to modeling concurrent object
behavior lies in the notion of a behavioral design pattern (BDP)
template, which represents concurrent objects according to their
role along with associated message communication constructs.
For each BDP template, we employ a self-contained CPN
segment that, through its places, transitions, and tokens, models
a given stereotyped behavioral pattern. Each template is generic
in the sense that it provides us with the basic behavioral pattern
and component connections for the stereotyped object but does
not contain any application-specific information. The
connections provided by each template are consistent across the
set of templates and allow concurrent objects to be connected to
passive objects (entities or message communication) in any
order.
We provide a BDP template for each object type identified in
the previous section. Since each of these templates captures a
generic behavioral design pattern, when a template is assigned
to a specific object, we then augment that template with the
information captured in the tagged values for the object. For the
resulting CPN representation, this affects the color properties of
the tokens (e.g. to represent specific messages) and the rules for
processing tokens (e.g. to account for periodic processing or
special algorithms). The following sections describe a subset of
our behavioral templates for both concurrent object components
and their connectors.

«application»

«interface» «entity» «control» «algorithm»

«coordinator» «timer»«state dependent»

«application»

«interface» «entity» «control» «algorithm»

«coordinator» «timer»«state dependent»

«application»

«interface» «entity» «control» «algorithm»

«coordinator» «timer»«state dependent»

«application»

«interface» «entity» «control» «algorithm»

«coordinator» «timer»«state dependent»

203

2.2.1 Asynchronous Interface Object Template
Consider the case of an asynchronous, input-only interface
object. The template for this behavioral design pattern is given
in Figure 2.
This template represents a concurrent object, that is, an object
that executes its own thread of control concurrently with other
objects in the software system. While this template models
relatively simple behavior (wait for input; process input; wait for
next input), it features characteristics found throughout the
concurrent object templates. First, to model the thread of
control within a concurrent object, a control token (CTRL) is
assigned to each concurrent object. For this template, a control
token is initially present in the Ready place. Thus, this template
is initialized in a state whereby it is ready to receive an input at
the ProcessInput transition. As an input arrives (and given that
the control token is in the Ready place), ProcessInput is allowed
to fire, simulating the processing of the external input and the
behavior of the asynchronous input interface object.
ProcessInput consumes both a token representing the external
input as well as the control token representing the executable
thread of control. An output arc from ProcessInput uses a
function, processInput (Input_event) to generate the appropriate
token representing an internal message passed to another object
within the system. The exact behavior of the processInput
function (as with any arc-inscription functions throughout the
templates) is determined from the object specification when a
template is instantiated for a specific object. Finally, to
complete the behavioral pattern for this template, the control
token is passed to the MessageSent place and eventually back to
the Ready place, enabling the template to process the next input.

2.2.2 Periodic Algorithm Object Template
The asynchronous interface template addressed asynchronous
behavior for a concurrent object, where the object is activated
on demand by the receipt of a message or an external stimulus
(as in the case of the interface example). For periodic behavior,
where an object is activated on a regular periodic interval,
consider the template for a concurrent periodic algorithm object
given in Figure 3.
Algorithm objects are internal concurrent objects that
encapsulate algorithms, which may be activated or deactivated
on demand. In the case of the periodic algorithm object, once
the algorithm is enabled, it awakens on its activation period,
performs the desired algorithmic task, and then returns to a sleep
state until the next activation period.
Looking at the periodic algorithm template from Figure 3, you
should notice that, like the previous concurrent object template,
there is Ready place with a control token that indicates when the
object is ready to start its next processing cycle and models the
thread of execution. This is common across all concurrent
object templates. To model the ability for an algorithm object to
be enabled or disabled, the input interface to this template
occurs through the Enable_Alg and Disable_Alg transitions.
(Note that we maintain the use of transitions as the interface
points for all concurrent objects.) Thus, in addition to the
control token being present on the Ready place, an Enable token
must also be present on the Alg_Enabled place in order for the
Perform_Alg transition to be enabled and subsequently fired.
The actual behavior performed by the algorithm is captured by
decomposing the Perform_Alg transition.

The resulting decomposition uses one or more place-transition
paths to model the behavior performed within the algorithm.
The information necessary to derive the CPN algorithm model
may be contained in the UML class specification for the
algorithm object or, for more complex algorithms, may be
captured in supporting UML artifacts such as the activity
diagram. Multiple algorithms may be encapsulated within the
same algorithm object. In these cases, the enable/disable
transitions, enabled place, and processing transition are repeated
for each encapsulated algorithm. However, there will only ever
be one control token and ready place in a single concurrent
object as our approach does not allow for multi-threaded
concurrent objects.
Finally, to capture the periodic nature of this template, a Sleep
place along with Wakeup and Timeout transitions have been
added to the basic asynchronous object template. This place-
transition pair will be common to all periodic templates. In this
case, the periodic algorithm starts in the Sleep place rather than
Ready. After the desired sleep time (indicating the activation
period of the object) has elapsed, the Wakeup transition is
enabled and, when fired, removes the CTRL token from the
Sleep place and places it in the Ready place. This now enables
the template to perform any enabled algorithms. If one or more
algorithms are enabled, the template proceeds in the same
manner as the previous asynchronous algorithm template.
However, if no algorithms are enabled when the template wakes
up, the Timeout transition will fire and return the Control token
to the Sleep place and wait for the next period of activation.

2.2.3 Entity Object Template
In contrast to concurrent objects, passive objects do not execute
their own thread of control and must rely on operation calls
from a concurrent object. Using our approach, the entity objects
from Figure 1 are passive objects. The purpose of an entity
object is to store persistent data. Entities provide operations to
access and manipulate the data stored within the object. These
operations provide the interface to the entity object. To account
for the possibility of multiple concurrent objects accessing a
single entity object, our approach stipulates that each operation
be tagged as having “read” or “write” access and for the object
to be tagged with “mutually exclusive” or “multiple-
reader/single-writer” rules for access control. This allows us to
apply the appropriate template with the desired mutual exclusion
protection for the encapsulated object attributes. The behavioral
design pattern template representing an entity object with
mutually exclusive access is shown in Figure 4.
In this template, attributes are modeled with a CPN place
containing tokens representing the attribute values. The
underlying functionality of each operation is captured in an
“idmOperation” transition that can be further decomposed as
necessary to implement more complex functions. When
instantiated for a specific entity object, the “idm” tag is replaced
with a specific identifier for each operation. Finally, the
interface to each operation is provided by a pair of CPN places –
one place for the operation call and another for the return.
Collectively, these places form the interface to the entity object.
As opposed to concurrent objects, all passive objects and
message connectors will use CPN places for their interface,
allowing concurrent objects to be connected through their
transition interfaces. Thus, for performing an operation call, a

204

concurrent object places its control token and any necessary
parameter tokens on the calling place and then waits for the
control token to be returned along with any additional operation
results at the call return place. Recall that entity objects do not
have their own thread of control, thus they become part of the
calling object’s thread of control for the duration of the
operation call.

2.2.4 Message Communication Templates
Finally, in addition to application object templates, our method
also provides templates for connector objects representing
message communication. These connectors may represent
asynchronous or synchronous message communication between
two concurrent objects.

Figure 2. Asynchronous Input-Only Interface Object: (a) UML (2.0); (b) CPN Template

Figure 3. Periodic Algorithm Template: (a) UML; (b) CPN Representation

{Execution = async;
IO = input
Process Time = <process time>
}

asyncInput
Interface

<<interface>>

external
InputSource

<<external input device>> inputEvent asyncMsg To internal
connector

object

(a)

(b)

{Execution = async;
IO = input
Process Time = <process time>
}

asyncInput
Interface

<<interface>>

external
InputSource

<<external input device>> inputEvent asyncMsg To internal
connector

object

(a)

(b)

{Execution = periodic;
Activation Time = <sleep time>
Process Time = <process time>
}

periodic
Algorithm

Object

<<algorithm>>enable

(a)

(b)

periodic
Algorithm

Object

{Execution = periodic;
Activation Time = <sleep time>
Process Time = <process time>
}

periodic
Algorithm

Object

<<algorithm>>enable

(a)

(b)

periodic
Algorithm

Object

205

 Figure 4. Passive Entity Template: (a) UML; (b) CPN Representation
Consider the message buffer template shown in Figure 5.
Notice that, as with passive entity objects, the interface to
connector objects always occurs through a place rather than a
transition, thus allowing concurrent object interfaces to be
linked with connector interfaces while still enforcing the Petri
net connection rules of only allowing arcs to occur between
transitions and places. The message buffer template models
synchronous message communication between two concurrent
objects. Thus, only one message may be passed through the
buffer at a time and both the producer (sender) and consumer
(receiver) are blocked until the message communication has
completed. The behavior of synchronous message
communication is modeled through this template by first having
the producer wait until the buffer is free as indicated by the
presence of a “free” token in the buffer. The producer then
places a message token in the buffer and removes the free token,
indicating that the buffer is in use. Conversely, the consumer
waits for a message token to appear in the buffer. After
retrieving the message token, the consumer sets the buffer once
again to free and places a token in the “Return” place, indicating
to the producer that the communication has completed.
Asynchronous message connector templates continue to employ
places for their interfaces. However, asynchronous message
communication, which involves the potential for queuing of
messages, is more involved than the simple synchronous
message buffer and must therefore add a transition to handle this
behavior. The corresponding template is shown in Figure 6.
With asynchronous communication the sender is not blocked
awaiting acknowledgement that the sent message has been
received and a message queue is allowed to form for the object
receiving the asynchronous messages. In this template, the
ManageQueue transition is decomposed into a subnet that
implements the FIFO placement and retrieval of messages in the

queue [26]. To send an asynchronous message, a concurrent
object places a message token on the Enqueue place. The
subnet under ManageQueue would then add this message token
to the tail of the queue. Another concurrent object receiving the
asynchronous message would wait for a message token to be
available in the Dequeue place (representing the head of the
queue). It would then remove the message token from Dequeue
and signal DequeueComplete in a similar manner to the
operation calls previously described for entities. This signals
the queue that a message token has been removed from the head
of the queue and that the remaining messages need to be
advanced.

Figure 5. Synchronous Message Buffer Connector Template:
(a) UML; (b) CPN Representation

(a)

(b)

anActiveObject anotherActive
ObjectanEntityObject

read() write()<<entity>>

{Access Control = mutually-exclusive}

(a)

(b)

anActiveObject anotherActive
ObjectanEntityObject

read() write()<<entity>>

{Access Control = mutually-exclusive}

(a)

(b)

producer consumer

data

(a)

(b)

producer consumer

data

206

Figure 6. Asynchronous Message Queue Template

3. Constructing CPN Models from UML
Up to this point, we have just discussed individual CPN
templates being used to model behavioral design patterns of
concurrent objects, passive «entity» objects, and message
communication mechanisms. This section presents our method
for constructing a CPN model of the concurrent software
architecture by applying and interconnecting these templates.
The basic construction process consists of the following steps:
1. Construct a concurrent software architecture model using a

UML communication diagram to show all concurrent and
passive objects participating in the (sub) system to be
analyzed along with their message communication.

2. Begin constructing the CPN model by first developing a
context-level CPN model showing the system as a single
CPN substitution (hierarchically structured) transition and
the external interfaces as CPN places. Using a series of
hierarchically structured transitions allows us to work with
the CPN representation at varying levels of abstraction, from
a completely black-box view, a concurrent software
architecture view (in the next step), or within an individual
object as desired for the level of analysis being applied to the
model.

3. Decompose the system transition of the CPN context-level
model, populating an architecture-level model with the
appropriate CPN templates representing the objects from the
concurrent software architecture.

4. Elaborate each instance of CPN template to account for the
specific behavioral properties of the object it models.

5. Connect the templates, forming a connected graph between
concurrent object templates and passive entity objects or
message communication mechanisms.

To illustrate the application of this approach, consider a partial
example from the well-known Cruise Control System [4]. This
example was chosen for this paper as it requires little
explanation for the UML model and allows us to focus on the
use of behavioral design pattern templates and the CPN
representations. Figure 7 provides a partial communication
diagram of the Cruise Control System concurrent software
architecture.
To begin, focus on the input events being provided by the
Cruise Control Lever. (We will return to the brake and engine
inputs later in this section.) Cruise control lever events enter the
system via a concurrent «interface» object that sends an
asynchronous message to the «state dependent control» object to
process the requests based on rules defined in a corresponding
statechart. Based on the state of the CruiseControl object,
commands are given to a concurrent periodic «algorithm» object

enabling it to compare speed values from two passive «entity»
objects and determine the correct throttle values, which are then
passed on to the periodic output interface, ThrottleInterface.
Given this concurrent software architecture, the second step in
our process would construct the context-level CPN model
shown in Figure 8. At this level, we see the system as a black-
box represented as a single transition, “CruiseControlSystem”.
External input and output interfaces for the cruise control lever,
brake, and engine devices are represented as places. The
purpose of this context-level CPN model is to provide a central
starting point for our modeling and analysis. By structuring the
CPN model in this way, we can analyze the system as a black
box, dealing only with external stimuli and observed results
(corresponding to the tokens stored in these places) or we can
use hierarchical decomposition to gain access to the individual
object behavioral design pattern templates (and their detailed
CPN implementation) by systematically decomposing the
hierarchically structured transitions (indicated with the HS tag).
In the third step, the CruiseControlSystem transition from the
context-level model is decomposed into an architecture-level
model populated with the appropriate CPN behavioral design
pattern template for each of the cruise control objects. Given
the architecture design from Figure 7 (and continuing to ignore
AutoSensors for the moment), we would need to instantiate two
«interface» templates, two «entity» templates, one «state
dependent control» template, and one «algorithm» template. We
would also need to use «queue» and «buffer» templates for the
asynchronous and synchronous message communication
respectively.
Once the appropriate templates have been assigned to each
object, the fourth step in the process is to elaborate each
template to model a specific object. To illustrate, consider
CruiseControlLeverInterface. This object is an asynchronous
input-only interface that accepts events from the cruise control
lever device and, based on the input event, generates the
appropriate messages for the cruise control request queue.
Applying the asynchronous input interface template from Figure
2, we arrive at the elaborated CPN segment for
CruiseControlLeverInterface shown in Figure 9.
To elaborate the template for the CruiseControlLeverInterface,
the place and transition names from the basic template have
been appended with the object ID (1) for the specific object.
The control token for this model has also been set to the specific
control token for the CruiseControlLeverInterface object
(CTRL1) and the time region for the PostProcessing_1
transition has been set to “@+100” to reflect the Process Time
tagged value. The CruiseControlLeverInterface CPN
representation is then connected to the software architecture by
establishing an input arc from the CruiseControlLeverDevice
place, representing the external input from the device, and an
output arc to the Enqueue place, modeling the asynchronous
message communication identified in the UML software
architecture. Token types (colors) are then specifically created
to represent the incoming event and outgoing messages. Finally,
the processInput1() function is elaborated to generate the
appropriate asynchronous message based on an incoming lever
event. This elaboration process is similar for all templates.

(a)

(b)

anActiveObject anotherActive
Object

data

(a)

(b)

anActiveObject anotherActive
Object

data

207

 Figure 7. Partial Concurrent Software Architecture for Cruise Control

Figure 8. CPN Context-Level Model for Cruise Control
Figure 9. Asynchronous Input-Only Interface Template

Applied to CruiseControlLeverInterface
Once all templates have been elaborated, our fifth and final step
connects the templates to form a connected graph of the
concurrent software architecture. The entire CPN architecture
model for cruise control is too large for inclusion in this paper.
However, Figure 10 illustrates the component connections
between the CruiseControlLeverInterface and the CruiseControl
templates using an asynchronous message queue connector. As
can be seen from this figure, the two concurrent object templates
communicate via the queue connector by establishing arcs
between the interface transitions of the concurrent objects and
the interface places of the queue connector. This component
connection method applies to the entire software architecture
using our approach of allowing concurrent objects to be
connected to either passive entity objects or to a message
communication connector.
To further illustrate the component-based approach used for
constructing these CPN let us now consider expanding the
model to include input from the brake and engine devices. In
addition to the cruise control lever inputs, Figure 7 also shows
brake and engine status messages arriving from the respective
devices. These status messages are handled by the AutoSensors
periodic interface object and are passed to CruiseControl via an
asynchronous message through the same cruise control request
queue already being used by CruiseControlLeverInterface.
Using our component-based modeling approach, the

AutoSensors object can be added to our CPN model by simply
instantiating a CPN representation of the periodic input interface
behavioral design pattern template using the specified
characteristics for AutoSensors and then connecting it to the
existing queue template. The resulting CPN model is given in
Figure 11.
The addition of AutoSensors also illustrates another capability
of the interface template. Whereas the cruise control lever is an
asynchronous device, providing interrupts to
CruiseControlLeverInterface, the brake and engine devices are
passive devices that must be polled for their status. In Figure
11, every time AutoSensors is activated, it retrieves the status
token from the brake and engine device places. After checking
the status, the token is immediately returned to the device
places, modeling persistence of device status information that
can be polled as necessary. The remainder of the AutoSensors
template should be familiar, being constructed of the standard
Ready and ProcessInput place-transition pair for interface object
templates (Section 2.2.1) and the Sleep and Wakeup place-
transition pair included for periodic objects (Section 2.2.2).
As demonstrated in this section, the primary benefits of our
component-based modeling approach are that connections can
easily be added or modified as the architecture evolves or to
provide rapid “what-if” modeling and analysis.

select(),
clear()

«entity»
:DesiredSpeed

«entity»
:CurrentSpeed

ccCommand

throttleValue

throttleOutput

to throttle

read()

read()

cruiseControlLeverInput

cruiseControlRequest

{Execution = async;
IO = input
Process Time = 100ms
}

{Execution = async;
Process Time = 200ms
}

{Execution = periodic;
Activation Time = 100ms
Process Time = 50ms
}

{Execution = periodic;
IO = output
Process Time = 20ms
Activation Time = 100ms
}

cruiseControlRequest

brakeStatus

engineStatus

{Execution = periodic;
IO = input
Activation Time = 100ms
Process Time = 20ms
}

CruiseControl
LeverInterface

<<interface>>

CruiseControl

<<state dependent>>

Speed
Adjustment

<<algorithm>>

Throttle
Interface

<<interface>>

AutoSensors

<<interface>>

CruiseControl
LeverDevice

EngineDevice

BrakeDevice

<<external input device>>

<<external input device>>

<<external input device>>

select(),
clear()

«entity»
:DesiredSpeed

«entity»
:CurrentSpeed

ccCommand

throttleValue

throttleOutput

to throttle

read()

read()

cruiseControlLeverInput

cruiseControlRequest

{Execution = async;
IO = input
Process Time = 100ms
}

{Execution = async;
Process Time = 200ms
}

{Execution = periodic;
Activation Time = 100ms
Process Time = 50ms
}

{Execution = periodic;
IO = output
Process Time = 20ms
Activation Time = 100ms
}

cruiseControlRequest

brakeStatus

engineStatus

{Execution = periodic;
IO = input
Activation Time = 100ms
Process Time = 20ms
}

CruiseControl
LeverInterface

<<interface>>

CruiseControl

<<state dependent>>

Speed
Adjustment

<<algorithm>>

Throttle
Interface

<<interface>>

AutoSensors

<<interface>>

CruiseControl
LeverDevice

EngineDevice

BrakeDevice

<<external input device>>

<<external input device>>

<<external input device>>

208

Figure 10 Connecting CruiseControlLeverInterface and CruiseControl via Asynchronous Communication

Figure 11. Addition of AutoSensors to the CPN Architecture

Furthermore, by maintaining the integrity between a CPN
template and the object it represents, modeling and analysis
results can readily be applied to the original UML software
architecture model. Thus, while from a pure CPN perspective,
our CPNs could be further optimized, we feel that it is of greater
benefit to maintain a component-based architecture that closely
represents the structure of our original UML design artifacts.

4. Validation
The validation of our approach was in three parts. First, there
was the issue of whether our behavioral stereotypes and
corresponding templates could be applied across domains and
projects. This was demonstrated by successfully applying our
process to two case studies, the cruise control system (a portion
of which was shown in the previous sections) and the signal
generator system [2]. Secondly, we performed validation to
determine if the resulting CPN models provided a correct model
of the concurrent software architecture. This was necessary to
validate that our approach would result in an accurate
representation of the original architecture and was by far the
most tedious part of validation, as it required manual inspection

and unit testing of each object and its corresponding CPN
template representation for the two case studies. Finally, after
determining that our template approach satisfied the modeling
requirements for both case studies, we then sought to
demonstrate the analytical capabilities gained from using CPNs
to model concurrent software architectures. The behavioral
analysis addresses both the functional behavior of the concurrent
architecture as well as its performance, as described next. The
detailed analytical results for both case studies are provided in
[2].

4.1 Validating Functional Behavior
For functional analysis, the simulation capabilities of the
DesignCPN tool are used to execute the model over a set of test
cases. These test cases may be black-box tests in which we are
only monitoring the context-level model in terms of input events
and output results or they may be white-box tests in which we
analyze one or more individual object representations. In our
approach, black box test cases were derived from use cases
while white box test cases were derived from object interactions,
object specifications, and statecharts. In each of these cases, the

209

appropriate inputs for each test case were provided by placing
tokens on the CPN places representing the external actors in the
context model. The CPN model was then executed in the
simulator and observed at the desired points to determine if the
correct output was generated or if the correct logical paths were
chosen.
Again, consider the cruise control system. Figure 12 illustrates
a black-box simulation in which the driver has selected
“Accelerate” from the cruise control lever (with the engine being
on and the brake being released). Figure 12(a) shows the state
of the system before the simulation run and Figure 12(b)
illustrates the results of accelerating, namely a value being sent
to the throttle. This form of simulation may be applied to as low
or as high of a level of abstraction as desired in order to gain
visibility into the desired behavior of the architecture. For
example, one could choose to simply conduct black box testing
by placing input tokens on actor places, executing the
simulation, and then observing the resulting token values on
output actor places. Alternatively, if a more detailed
investigation is desired, the engineer may navigate the CPN
hierarchical construction and observe such characteristics as the
behavior of state changes within a state dependent object’s CPN
representation. A detailed analysis of this state-dependent
behavior is provided in [24].

 Figure 12. Example Cruise Control Black-Box Simulation

4.2 Validating Performance
In addition to simulation capabilities, the DesignCPN [27] tool
used in this effort also has a very powerful performance tool
[28] that can be employed to analyze performance aspects of the
concurrent software architecture. This tool can be used to
analyze such things as queue backlogs, system throughput, and
end-to-end timing characteristics. As an example of the latter,
we conducted a test to monitor the cruise control system
response times to commands being input from the cruise control
lever. To conduct this analysis, commands were issued to the
cruise control system while the system was in a simulated state
of operation with a speed of 60 miles per hour (100 kph). The
performance tool was used to monitor changes in the throttle

output and compare the time at an observed output change to the
time the original command was issued.
The results from this analysis are shown in Figure 13. From this
figure, we can see that all cruise control commands complete in
less than one second (1000ms) and most complete in less than
500ms. Detailed performance requirements were not provided
for our cruise control case study. However, if this cruise control
system was an actual production system, an engineer could
compare the analysis results against documented performance
requirements to determine if the system in fact satisfies the
necessary performance criteria. By being able to conduct this
form of analysis from the concurrent software design, an
engineer can both improve the reliability of the software
architecture at the design level and correct problems prior to
implementation.

 Figure 13. Cruise Control End-to-End Timing Analysis

5. Conclusions and Future Research
The long-term goal of this research effort is to provide an
automated means of translating a UML concurrent software
architecture design into an underlying CPN representation that
can then be used to conduct behavioral analysis with results
communicated in terms of the original UML model. To date, we
have developed a method for systematically translating a UML
software architecture into a CPN representation. This method
employs reusable templates that model the behavior of a set of
objects according to their stereotyped behavioral roles. Each
template provides a consistent interface that allows templates to
be interconnected as components of a larger system, thus
creating the overall CPN representation. The resulting CPN
model enables the analysis of both the functional and
performance behavior of the concurrently executing objects. As
the CPN representation mirrors the structure of the concurrent
software architecture, the results can be readily applied to the
original UML model.
Future research in this area will need to investigate approaches
to facilitate the automated translation from a UML model into a
CPN model that can be read by a tool such as DesignCPN.
Additional research also needs to be conducted to investigate the
scalability of this approach to larger systems, including
distributed applications and providing behavioral templates for
the COMET distributed components [4]. Finally, the use of
state space analysis should be investigated further. Most of the
analysis conducted with this research effort has focused on the
use of simulations for functional analysis and on the
performance tool for performance analysis. State space analysis

Cruise Control End-To-End Timing Performance

0

200

400

600

800

1000

1200

0 5000 10000 15000 20000 25000 30000

Elapsed Time (ms)

C
om

m
an

d
Co

m
pl

et
io

n
Ti

m
e

(m
s)

(a)

(b)

1`”BrakeOff”

1`”Accel”

1`”Engine
On”

1

1

1

1

1

1 1`”BrakeOff”

1`50

1`”Engine
On”

210

could also be used to further refine deadlock detection as well as
to analyze system-wide state changes.

6. References
[1] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified

Modeling Language Reference Manual. 2nd Edition.
Addison-Wesley, 2005.

[2] R. G. Pettit, Analyzing Dynamic Behavior of Concurrent
Object-Oriented Software Designs, Ph.D., School of IT&E,
George Mason University, 2003.

[3] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis
Methods, and Practical Use, vol. I-III. Berlin, Germany:
Springer-Verlag, 1997.

[4] H. Gomaa, Designing Concurrent, Distributed, and Real-
Time Applications with UML, Addison-Wesley, 2000.

[5] M. Baldassari, G. Bruno, and A. Castella, “PROTOB: an
Object-Oriented CASE Tool for Modeling and Prototyping
Distributed Systems,” Software-Practice & Experience,
v.21, pp. 823-44, 1991.

[6] B. Mikolajczak and C. A. Sefranek, “Integrating Object
Oriented Design with Concurrency Using Petri Nets,”
IEEE International Conference on Systems, Man and
Cybernetics, Piscataway, NJ, USA, 2001.

[7] R. Aihua, “An Integrated Development Environment for
Concurrent Software Developing Based on Object Oriented
Petri Nets,” Fourth International Conference/Exhibition on
High Performance Computing in the Asia-Pacific Region.,
Los Alamitos, CA, USA, 2000.

[8] X. He and Y. Ding, “Object Orientation in Hierarchical
Predicate Transition Nets,” Concurrent Object-Oriented
Programming and Petri Nets. Advances in Petri Nets,
Berlin: Springer-Verlag, 2001, pp. 196-215.

[9] O. Biberstein, D. Buchs, and N. Guelfi, “Object-Oriented
Nets with Algebraic Specifications: The CO-OPN/2
Formalism,” Concurrent Object-Oriented Programming
and Petri Nets. Advances in Petri Nets, Berlin: Springer-
Verlag, 2001, pp. 73-130.

[10] S. Chachkov and D. Buchs, “From Formal Specifications
to Ready-to-Use Software Components: The Concurrent
Object Oriented Petri Net Approach,” Second International
Conference on Application of Concurrency to System
Design, Los Alamitos, CA, USA, 2001.

[11] A. Camurri, P. Franchi, and M. Vitale, “Extending High-
Level Petri Nets for Object-Oriented Design,” IEEE
International Conference on Systems, Man and
Cybernetics, New York, NY, USA, 1992.

[12] J. E. Hong and D. H. Bae, “Software Modeling and
Analysis Using a Hierarchical Object-Oriented Petri Net,”
Information Sciences, v.130, pp. 133-64, 2000.

[13] D. Azzopardi and D. J. Holding, “Petri Nets and OMT for
Modeling and Analysis of DEDS,” Control Engineering
Practices, v.5, pp. 1407-1415, 1997.

[14] C. Lakos, “Object Oriented Modeling With Object Petri
Nets,” Concurrent Object-Oriented Programming and
Petri Nets. Advances in Petri Nets, Berlin: Springer-Verlag,
2001, pp. 1-37.

[15] C. Maier and D. Moldt, “Object Coloured Petri Nets- A
Formal Technique for Object Oriented Modelling,”
Concurrent Object-Oriented Programming and Petri Nets.
Advances in Petri Nets, Berlin: Springer-Verlag, 2001, pp.
406-27.

[16] J. A. Saldhana, S. M. Shatz, and H. Zhaoxia,
“Formalization of Object Behavior and Interactions from
UML Models,” International Journal of Software
Engineering & Knowledge Engineering, v.11, pp. 643-73,
2001.

[17] L. Baresi and M. Pezze, “On Formalizing UML with High-
Level Petri Nets,” Concurrent Object-Oriented
Programming and Petri Nets. Advances in Petri Nets,
Berlin: Springer-Verlag, 2001, pp. 276-304.

[18] K. M. Hansen, “Towards a Coloured Petri Net Profile for
the Unified Modeling” Centre for Object Technology,
Aarhus, Denmark, Technical Report COT/2-52-V0.1
(DRAFT), 2001.

[19] J. B. Jørgensen, “Coloured Petri Nets in UML-Based
Software Development - Designing Middleware for
Pervasive Healthcare,” CPN '02, Aarhus, Denmark, 2002.

[20] B. Bordbar, L. Giacomini, and D. J. Holding, “UML and
Petri Nets for Design and Analysis of Distributed Systems,”
International Conference on Control Applications,
Anchorage, Alaska, USA, 2000.

[21] R. G. Pettit and H. Gomaa, “Integrating Petri Nets with
Design Methods for Concurrent and Real-Time Systems,”
Real Time Applications Workshop, Montreal, Canada,
1996.

[22] R. G. Pettit, “Modeling Object-Oriented Behavior Using
Petri Nets,” OOPSLA Workshop on Behavioral
Specification, 1999.

[23] R. G. Pettit and H. Gomaa, “Validation of Dynamic
Behavior in UML Using Colored Petri Nets,” UML 2000,
York, England, 2000.

[24] R. G. Pettit and H. Gomaa, “Modeling State-Dependent
Objects Using Colored Petri Nets,” CPN 01 Workshop on
Modeling of Objects, Components, and Agents, Aarhus,
Denmark, 2001.

[25] R.G. Pettit and H. Gomaa, “Modeling Behavioral Patterns
of Concurrent Software Architectures Using Petri Nets.”
Working IEEE/IFIP Conference on Software Architectures,
Oslo, Norway, 2004.

[26] R. David and H. Alla, “Petri Nets for Modeling of Dynamic
Systems: A Survey.” Automatica v.30(2). Pp. 175-202.
1994.

[27] K. Jensen, “DesignCPN,” 4.0 ed. Aarhus, Denmark:
University of Aarhus, 1999.

[28] B. Lindstrom and L. Wells, “Design/CPN Performance
Tool Manual,” University of Aarhus, Aarhus, Denmark
September 1999.

211

