

Exploiting real-time FPGA based adaptive systems technology for real-time
Sensor Fusion in next generation automotive safety systems

Steve Chappell a , Alistair Macarthur a , Dan Preston b , Dave Olmstead b
Bob Flint c & Chris Sullivan a

a Celoxica Ltd, 66 Milton Park, Abingdon, Oxfordshire OX14 4RX, U.K.
b Medius Inc. 911 Western Ave, Suite 530, Seattle, WA 98104, U.S.A.

c BAE SYSTEMS Ventures, Warwick House, Aerospace Centre, Farnborough GU14 6YU, U.K.

Abstract

We present a system for the boresighting of sensors
using inertial measurement devices as the basis for
developing a range of dynamic real-time sensor fusion
applications. The proof of concept utilizes a COTS
FPGA platform for sensor fusion and real-time
correction of a misaligned video sensor. We exploit a
custom-designed 32-bit soft processor core and C-based
design & synthesis for rapid, platform-neutral
development. Kalman filter and sensor fusion
techniques established in advanced aviation systems are
applied to automotive vehicles with results exceeding
typical industry requirements for sensor alignment.
Results of the static and the dynamic tests demonstrate
that using inexpensive accelerometers mounted on (or
during assembly of) a sensor and an Inertial
Measurement Unit (IMU) fixed to a vehicle can be used
to compute the misalignment of the sensor to the IMU
and thus vehicle. In some cases the model predications
and test results exceeded the requirements by an order
of magnitude with a 3-sigma or 99% confidence.

1. Automotive Sensor Fusion

Next generation automotive systems and Advanced
drive assistance systems (ADAS) such as Lane
Departure Warning, Collision Avoidance, Blind Spot
Detection or Adaptive Cruise Control require the
overlay or “fusion” of data from sensors such as video,
radar, laser, global positioning systems and inertial
measurement devices. Techniques for sensor fusion,
namely the incorporation of disparate and
complementary sensor data in order to enhance
accuracy, are well established in advanced aviation
systemsi. Indeed, as automotive systems incorporate
ever more advanced sensor electronics, manufacturers
will look to new approaches to system design
incorporating reconfigurable devices for rapid
development and deployment. As with the application
example discussed here, sensor fusion in defense and
aerospace systems may provide some solutions.

2. Boresighting

It is critical for these next generation applications that
the sensors used are accurately aligned and continuously
realigned to each other and the vehicle. Without
alignment the information from one sensor cannot be
effectively combined with that from a different sensor.
The current state of the art is to use costly mechanical
and optical methods, such as autocollimators and laser
boresight tools during vehicle production. Moreover,
these alignments must be repeated if a sensor is
disturbed (e.g. through typical ‘car park’ bumps) or
subsequently repaired/ replaced after production in order
to ensure that safety critical systems are reporting
accurately. It is therefore highly desirable to align or
“boresight” sensors dynamically through digital
computation rather than mechanical means. We present
the development of a system for this purpose below.

3. Application overview

In order to boresight a sensor we use a combination of
two other sensor systems:

• A 6 degree-of-freedom (6-DOF) inertial
measurement unit (IMU), such as that from
BAE Systemsii, consisting of 3 gyroscopes and
accelerometers, fixed to the vehicle and;

• A two-axis accelerometer (ACC) fixed to the
sensor to be boresighted.

Fixed to the vehicle the IMU defines the moving
platform reference frame. It can sense angular rate
changes and linear accelerations relative to the principal
axes of the vehicle (x,y,z). The ACC is fixed to the
sensor to be aligned and defines the sensor axes
(x’,y’,z’). As the vehicle accelerates, the common
acceleration vector will be sensed by both the IMU and
the ACC (Figure 1).

1530-1591/05 $20.00 © 2005 IEEE

Figure 1: Sensor and vehicle reference frames

X

Y

ZYaw

Roll

Pitch

Z'

Y'

X'

Any differences in acceleration components along the
sensor axes are a result of the misalignment between the
two and individual instrument errors. We exploit these
differences to computationally boresight the sensor.
We calculate sensor misalignment as roll, pitch, and
yaw values using a “Sensor Fusion Algorithm”iii
incorporating a Kalman Filteriv. The Kalman Filter also
generates a statistical confidence level in the
misalignment values. For the purpose of visualization
we chose to boresight a video camera as the misaligned
sensor, however the method extends to the alignment of
any meaningful directional sensor type (e.g. radar,
lidar). The misalignment angles are input to an “Affine
Transform”v to calculate and display a realigned version
of the video input in real-time.

Figure 2: System Architecture.

RC200E
DMU

ACC

CAN to
RS232

Camera

4. Sensors

The system incorporates a 6-DOF IMU (DMU) from
BAE SYSTEMSvi and dual-axis ACC from Analog
Devices (ADXL202EB-232A)vii. These sensors use
Micro-Electrical-Mechanical Systems (MEMS)
technology. The DMU incorporates vibrating
gyroscopesviii. The principle of operation is based on
the Coriolis effect whereby, on rotation, secondary
vibrations are induced in a vibrating element orthogonal
to the original direction of vibration. The rate of
angular turn can be detected by measuring these
vibrations. The vibrating element in the IMU used
consists of a ring resonator micro-machined from

silicon. This creates a robust gyroscope able to
withstand extreme shock and vibration.
The accelerometers in both IMU and ACC determine
acceleration through changes in the capacitance between
independent fixed plates and central plates attached to a
moving mass

5. Sensor Fusion Algorithm

After data reconstruction and subsequent data fusion,
the data is passed through a Kalman Filter that tracks the
sampled data and provides a confidence level of the
tracking quality. The resultant values from this
combined sensor fusion algorithm are roll, pitch and
yaw of the boresighted sensor with respect to the IMU
axes, with associated covariance values, that give an
indication of the error in predicted output.

6. Affine Transformations

In order to boresight and stabilize the image from the
video sensor we take the roll, pitch and yaw values
directly from the sensor fusion algorithm. These
movement values are then used in co-ordinate
transforms for correcting the video picture. These
transforms preserve parallel lines and are known as
Affine transformations:

 r’ = Ar + B ,

where A is the coordinate rotation matrix for angle θ
about the z axis

A = (cosθ -sinθ)
 (sinθ cosθ)

and B is the linear transformation vector for corrections
bx and by in x and y respectively

B = (bx 0)
(0 by)

7. System Architecture

We use a COTS (Commercial off the Shelf) platform to
demonstrate rapid integration and development of the
proof of concept prototype. The system is illustrated in
Figure 2 and consists of the IMU and ACC sensors plus
video camera to be aligned. The IMU interfaces to
CAN. The ACC interfaces to Serial. By using a CAN
to Serial converter we limit any customisation of the
COTS hardware to incorporating a second serial
interface onto the chosen platform.
The Celoxica RC200Eix was used as the base platform
for the prototype. It incorporates a Virtex2 FPGA
(XC2V1000)x, two banks of 2 Mbyte ZBT RAM,
Video I/O, serial interfaces and a TFT display.

Figure 3: FPGA system

Sabre

Video
Controller

DMU

Affine
Transform

ACC

RS232

RS232

Video

RAM1 RAM2

SRAM SRAM

VideoIn

Memory

VideoVideoOut

8. FPGA System

We exploit the flexibility of FPGAs to rapidly develop
and integrate the various system components using the
Celoxica DK Design Suitexi for C based design and
synthesis. The FPGA system contains the sensor
interface drivers, the sensor fusion algorithm, video
manipulation and user display code. The main
architectural components are shown as a schematic in
Figure 3 and as code in Figure 4. A platform support
libraryxii (PSL) provides ready-coded components for
implementation of controllers and data transfer to the
board peripherals such as RS232/ video.
For implementation of the main Kalman Filter
computation and to control program flow including
parts of the Graphical User Interface (GUI) we use the
“Sabre” soft-core processor. All other components are
implemented directly in the FPGA. In particular the
real-time video transformation has intensive processing
requirements beyond the capabilities of typical
embedded micro and DSP devices.

Figure 4: FPGA system code

void main (void)
{
 …

 // Run everything

 par{ // Run Hardware Components
 SabreRun(&MyBus); // 32-bit Processor
 RAMRun(RAM1); // RAM Framebuffer
 RAMRun(RAM2); // RAM Framebuffer
 VideoInRun (VideoIn); // Video Input
Stream
 VideoOutRun(VideoOut);// Video Output
Stream

 seq{
 par{ // Enables on Startup

 RAMEnable(RAM1);
 RAMEnable(RAM2);
 VideoInEnable (VideoIn);
 VideoOutEnable(VideoOut);
 }
 // main control loop
seq{
 WaitForSabre(); // Wait for Kalman Result
 par{
 // Capture Video
 VideoInProcess VideoIn);
 //Affine Transform and Output Video
VideoOutProcess(VideoOut);
 }
 }
 }
 }
}

9. Video Transformation

Video processing consists of two routines described
using Handel-Cxiii, an ANSI-C superset optimized for
hardware design in Programmable Logic.
VideoInProcess() makes use of the RC200 library
routines to take data from the relevant video input
device and write successive frames of data to RAM.
VideoOutProcess() computes the Affine transformation
of coordinates on the RAM framebuffer, copying the
relevant pixels to output to the video display. The
video processing makes use of both RC200 RAMS in a
double-buffering scheme. The routine for the rotation
transform is given in Figure 5. This is a five-stage
pipeline which, once loaded, computes the rotated
output location (OutX,OutY), of each input pixel
(InX,InY) on each clock cycle. The transforms operate
on 16-bit precision fixed point values with sine and
cosine angles stored in a 1024-element lookup table.

OutX = InX.cos(theta) - InY.sin(theta)
OutY = InY.cos(theta) + InX.sin(theta)

Figure 5: Affine Transformation C code

static macro proc
RotateCoordinates(theta,InX,InY,OutX,OutY)
{
 …

par{
 // Pipeline step 1
 GenerateSine(theta,Sin);
 GenerateCos(theta,Cos);

 //Pipeline step 2
 mapX = InX - CentreOfRotation[0];
 mapY = InY - CentreOfRotation[1];
 temp[0] = Int2fixed(mapX);
 temp[1] = Int2fixed(mapY);

 // Pipeline step 3

 FixedMult(temp[1], -Sin, temp[2]);
 FixedMult(temp[0], Cos, temp[3]);

 FixedMult(temp[0], Sin, temp[4]);
 FixedMult(temp[1], Cos, temp[5]);

 //Pipeline step 4
 mapXback = fixed2Int(temp[2]+temp[3]);
 mapYback = fixed2Int(temp[4]+temp[5]);

 //Pipeline step 5
 OutX = mapXback + CentreOfRotation[0];
 OutY = mapYback + CentreOfRotation[1];
 }
}

10. Sabre Processor

Sabre is a 32-bit RISC, designed in Handel-C, and
programmed into the FPGA as a soft-core. It has a
Harvard architecturexiv, with expandable data and
program memories, limited only by the availability of
FPGA embedded block ram. On the VirtexII 1000,
there are 80 BlockRams, giving us up to 8kbyte program
memory, for instructions and stack, and 64kbyte of data
memory for constants. The Sabre is connected via 32-
bit buses to each of these memories. Peripherals are
simply connected via another 32-bit bus into the
processor memory space (see Figures 6 and 7) where the
Sabre acts as the bus master. The peripherals are
designed to be as “smart” as possible, reducing the
workload for the processor and making best use of the
parallel processing capabilities of the FPGA. For
example, the SabreBusControlRun peripheral simply
consists of a set of twelve memory-mapped registers
including roll, pitch and yaw values and status flags that
are used directly by the FPGA video transformation
block. Similarly the SabreBusExpansionPort
peripherals connect to the IMU and ACC devices via
serial communications blocks.
In this application the serial communications blocks,
Sabre processor core, peripherals and board interface
support were compiled to a device optimized EDIF
netlist using the DK Design Suite. Xilinx place and
route tools generated the FPGA configuration file. The
Sabre program code was written in C and compiled to
the Sabre Instruction Set Architecture. Since the Sabre
machine code resides entirely within BlockRam
memory of the FPGA, it is a simple process to merge
the BlockRam initialisation into the FPGA configuration
file. This technique eliminated the need for full
hardware recompilation following changes to the Sabre
software during development. We could thus rapidly
prototype functionality in C software and later partition

and re-partition functionality into C for hardware to
improve performance and reduce processor load.
Note that, as a result of the dynamic range of the
Kalman filter, it was necessary to use floating-point
values for all intermediate stages. The version of Sabre
used here has no floating-point co-processor. We
therefore emulated IEEE floating point operations using
the “Softfloat” libraryxv.
Softfloat is widely used amongst RISC processors with
no native floating point support, such as low power
ARMs and PowerPCs.

Figure 6: Sabre Processor System Architecture

Sabre Core

Program
Memory

Data
Memory

32 32 32
LEDs

Switches

Touchscreen

GUI

RS232 - DMU

RS232 - ACC

Control

Figure 7: Sabre Processor System C code

void SabreRun (BusPtr)
{
 …

 par{

 /* Core components */

 SabreRun (BusPtr, DATA_MEMORY,
PROGRAM_MEMORY);
 SabreBusRun (BusPtr);
 SabreBusMemoryRun (BusPtr,
BUS_BASE_ADDRESS);

 /* User defined Peripherals */

 //LEDs
 SabreBusLEDsRun (BusPtr,
LEDS_BASE_ADDRESS);
 //Switches
 SabreBusSwitchesRun (BusPtr,
SWITCHES_BASE_ADDRESS);
 // TouchScreen
 SabreBusTouchScreenRun (BusPtr,
TSCREEN_BASE_ADDRESS);
 // Graphical Output to Screen

 SabreGuiRun (BusPtr,
LINE_BASE_ADDRESS, …);
 // AMU Interface
 SabreRS232DMURun (BusPtr,
SERIAL1_BASE_ADDRESS);
 // DMU Interface
 SabreRS232ACCRun (BusPtr,
SERIAL2_BASE_ADDRESS);
 // Registers for Affine Transform
 SabreControlRun (BusPtr,
ANGLES_BASE_ADDRESS);

 }

11. Testing and Results

Sets of static and dynamic tests were performed to
calculate the response and accuracy of the system. In
these tests, the system was calibrated first and then
misalignments of a few degrees were introduced in roll,
pitch and yaw to the boresighted sensor. The correction
system was then started and data was collected for 300
seconds. The residuals, the difference between the true
accelerometer measurement and the expected
acceleration measurement, were used to help tune the
Kalman Filter by selecting a good measurement noise
value. For the static tests the value could be set very
low, about .003 to .01 m/s, since the only noise was the
noise of the instruments. This value had to be increased
to .015 or higher when the vehicle was moving because
of the addition of the vehicle vibration. Figure 8 shows
the X-axes residuals and it’s 3-sigma value plotted
together for a static run and a moving run. The static
run shows the residuals well within the 3-sigma values
while the moving tests show that the residuals do exceed
the 3-sigma values. Since the residuals should only
exceed the 3-sigma value about once every 100 samples,
the Filter noise was increased.

11. 1. Static Testing

The instruments were calibrated using a level test
platform. The absolute misalignments were measured
directly using a laser attached to the boresighted sensor.
Note that static roll and yaw tests are more difficult to
perform than the pitch tests since the platform must be
oriented and use gravity to generate components of
acceleration in the ACC and DMU accelerometers.
Table 1 demonstrates that the resulting alignment
estimates were very accurate in all three axes.

Table 1: Results from Static (Top) & Dynamic (Bottom) Tests

Figure 8: X Axis residuals from Static (Top) and Dynamic (Bottom)
Tests.

11.2. Dynamic Testing

The dynamic tests consisted of placing the test
equipment in a standard private passenger vehicle,
calibrating the ACC and IMU, misaligning the ACC-
Camera system and then running during car motion.
Sample results are given in Figure 9.
Note that it is difficult to run precisely the same test
profile using a moving vehicle, however the results for
two driving tests are shown in Table 1. It can be seen
that there is very close agreement between the tests with
a high confidence level result.

Figure 9: Sample results from dynamic test

12 Conclusion

Results of the static and the dynamic tests demonstrate
that using inexpensive accelerometers mounted on (or
during assembly of) a sensor and an Inertial
Measurement Unit (IMU) fixed to the vehicle can be
used to compute the misalignment of the sensor to the
IMU and thus vehicle. The overall accuracy is
dependent on the accuracy of the inertial instruments,
mounting accuracy of the instruments, noise present at
the sensors and time allowed for the filter to compute
the misalignment angles. It is clear that a software
based sensor fusion approach to sensor alignment for
vehicle applications meets typical automotive industry
requirements. In some cases the model predications and
test results exceeded the requirements by an order of
magnitude with a 3-sigma or 99% confidence.
The use of a COTS FPGA board and C based design
and synthesis greatly simplified and accelerated the task
of creating and verifying a real-time proof of concept
system. By abstracting the core design from the details
of the platform, the system is highly portable across
different platforms and lends itself well to product
migration. We note that optimization of the
performance (clock-speed, program size etc) was not a
design goal in this exercise and there are many obvious
enhancements. For example, a full fixed-point analysis
and conversion of the Sensor Fusion Algorithm from
float to fixed-point calculations is possible. The
boresighted sensor system presented here provides the

basis for developing a range of dynamic real-time sensor
fusion systems. Future implementations will
demonstrate self-aligning and self-referencing methods
for dynamic alignment of multiple sensors; the fusion of
data from the vehicle into the system for additional
improvements; and alignment for other sensor features
such as headlights. The fusion engine presented here
provides self-boresighting functionality for individual
sensors, but it can readily be extended to fuse data from
multiple sensors together (eg. lidar and video) to
provide low-cost situational awareness systems for
automotive use. It is proposed these implementations
and tests be seriously considered by the automotive
industry, as we believe these will aide in the reduction
of future system costs, shorten development time to
market, facilitate and consolidate the improvement of
the next generation of features for the automotive
industry.

13. References

i www.f-22raptor.com/af_avionics.php
ii http://www.baesystems.com/
iii Medius Inc, Sensor Fusion Algorithm, http://www.medius.com/
iv G. Welch et al, An Introduction to the Kalman Filter,
http://www.cs.uuc.edu/~{welch,gb}
v Affine Transform,
http://en.wikipedia.org/wiki/Affine_transformation
vi BAE SYSTEMS, DMU Datasheet, MC1978, issue 5 ,Mar04.
vii Analogue Devices ADXL202EB-232a Datasheet, 8/4/99 RevC.
viii http://www.siliconsensing.com/
ix http://www.celoxica.com/products/boards/rc203.asp
x www.xilinx.com
xi http://www.celoxica.com/products/tools/dk.asp
xii http://www.celoxica.com/methodology/pal.asp
xiii
http://web.comlab.ox.ac.uk/oucl/work/christian.peter/overview_handel
c.html
xiv Harvard Architecture,
http://en.wikipedia.org/wiki/Harvard_architecture
xv Softfloat library,
http://www.cs.berkeley.edu/~jhansen/arithmetic/softfloat.htm

	Main Page
	DF'05
	Front Matter
	Table of Contents
	Author Index

	DATE'05

