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Abstract 
 
We present a system for the boresighting of sensors 
using inertial measurement devices as the basis for 
developing a range of dynamic real-time sensor fusion 
applications. The proof of concept utilizes a COTS 
FPGA platform for sensor fusion and real-time 
correction of a misaligned video sensor. We exploit a 
custom-designed 32-bit soft processor core and C-based 
design & synthesis for rapid, platform-neutral 
development. Kalman filter and sensor fusion 
techniques established in advanced aviation systems are 
applied to automotive vehicles with results exceeding 
typical industry requirements for sensor alignment. 
Results of the static and the dynamic tests demonstrate 
that using inexpensive accelerometers mounted on (or 
during assembly of) a sensor and an Inertial 
Measurement Unit (IMU) fixed to a vehicle can be used 
to compute the misalignment of the sensor to the IMU 
and thus vehicle.  In some cases the model predications 
and test results exceeded the requirements by an order 
of magnitude with a 3-sigma or 99% confidence. 
 

1. Automotive Sensor Fusion 
 
Next generation automotive systems and Advanced 
drive assistance systems (ADAS) such as Lane 
Departure Warning, Collision Avoidance, Blind Spot 
Detection or Adaptive Cruise Control require the 
overlay or “fusion” of data from sensors such as video, 
radar, laser, global positioning systems and inertial 
measurement devices. Techniques for sensor fusion, 
namely the incorporation of disparate and 
complementary sensor data in order to enhance 
accuracy, are well established in advanced aviation 
systemsi. Indeed, as automotive systems incorporate 
ever more advanced sensor electronics, manufacturers 
will look to new approaches to system design 
incorporating reconfigurable devices for rapid 
development and deployment. As with the application 
example discussed here, sensor fusion in defense and 
aerospace systems may provide some solutions. 

 
 
 
2. Boresighting 
 
It is critical for these next generation applications that 
the sensors used are accurately aligned and continuously 
realigned to each other and the vehicle.  Without 
alignment the information from one sensor cannot be 
effectively combined with that from a different sensor. 
The current state of the art is to use costly mechanical 
and optical methods, such as autocollimators and laser 
boresight tools during vehicle production.  Moreover, 
these alignments must be repeated if a sensor is 
disturbed (e.g. through typical ‘car park’ bumps) or 
subsequently repaired/ replaced after production in order 
to ensure that safety critical systems are reporting 
accurately.  It is therefore highly desirable to align or 
“boresight” sensors dynamically through digital 
computation rather than mechanical means.  We present 
the development of a system for this purpose below. 
 
3. Application overview 
 
In order to boresight a sensor we use a combination of 
two other sensor systems: 

• A 6 degree-of-freedom (6-DOF) inertial 
measurement unit (IMU), such as that from 
BAE Systemsii, consisting of 3 gyroscopes and 
accelerometers, fixed to the vehicle and; 

• A two-axis accelerometer (ACC) fixed to the 
sensor to be boresighted. 

 
Fixed to the vehicle the IMU defines the moving 
platform reference frame.  It can sense angular rate 
changes and linear accelerations relative to the principal 
axes of the vehicle (x,y,z).  The ACC is fixed to the 
sensor to be aligned and defines the sensor axes 
(x’,y’,z’).  As the vehicle accelerates, the common 
acceleration vector will be sensed by both the IMU and 
the ACC (Figure 1).  
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Figure 1: Sensor and vehicle reference frames 
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Any differences in acceleration components along the 
sensor axes are a result of the misalignment between the 
two and individual instrument errors.  We exploit these 
differences to computationally boresight the sensor. 
We calculate sensor misalignment as roll, pitch, and 
yaw values using a “Sensor Fusion Algorithm”iii 
incorporating a Kalman Filteriv.  The Kalman Filter also 
generates a statistical confidence level in the 
misalignment values.  For the purpose of visualization 
we chose to boresight a video camera as the misaligned 
sensor, however the method extends to the alignment of 
any meaningful directional sensor type (e.g. radar, 
lidar). The misalignment angles are input to an “Affine 
Transform”v to calculate and display a realigned version 
of the video input in real-time. 
 
Figure 2: System Architecture. 
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4. Sensors 
 
The system incorporates a 6-DOF IMU (DMU) from 
BAE SYSTEMSvi and dual-axis ACC from Analog 
Devices (ADXL202EB-232A)vii.  These sensors use 
Micro-Electrical-Mechanical Systems (MEMS) 
technology.  The DMU incorporates vibrating 
gyroscopesviii.  The principle of operation is based on 
the Coriolis effect whereby, on rotation, secondary 
vibrations are induced in a vibrating element orthogonal 
to the original direction of vibration.  The rate of 
angular turn can be detected by measuring these 
vibrations. The vibrating element in the IMU used 
consists of a ring resonator micro-machined from 

silicon.  This creates a robust gyroscope able to 
withstand extreme shock and vibration. 
The accelerometers in both IMU and ACC determine 
acceleration through changes in the capacitance between 
independent fixed plates and central plates attached to a 
moving mass 
 

5. Sensor Fusion Algorithm 
 
After data reconstruction and subsequent data fusion, 
the data is passed through a Kalman Filter that tracks the 
sampled data and provides a confidence level of the 
tracking quality.  The resultant values from this 
combined sensor fusion algorithm are roll, pitch and 
yaw of the boresighted sensor with respect to the IMU 
axes, with associated covariance values, that give an 
indication of the error in predicted output. 
 
6. Affine Transformations 
 
In order to boresight and stabilize the image from the 
video sensor we take the roll, pitch and yaw values 
directly from the sensor fusion algorithm.  These 
movement values are then used in co-ordinate 
transforms for correcting the video picture.  These 
transforms preserve parallel lines and are known as 
Affine transformations: 
 
  r’ = Ar + B , 
 
where A is the coordinate rotation matrix for angle θ 
about the z axis 
 

A =  (cosθ  -sinθ) 
        (sinθ    cosθ)                                 
 

and B is the linear transformation vector for corrections 
bx  and by in x and y respectively 
 

B =  (bx  0) 
(0 by)               

 

7. System Architecture 
 
We use a COTS (Commercial off the Shelf) platform to 
demonstrate rapid integration and development of the 
proof of concept prototype. The system is illustrated in 
Figure 2 and consists of the IMU and ACC sensors plus 
video camera to be aligned.  The IMU interfaces to 
CAN.  The ACC interfaces to Serial.  By using a CAN 
to Serial converter we limit any customisation of the 
COTS hardware to incorporating a second serial 
interface onto the chosen platform. 
The Celoxica RC200Eix was used as the base platform 
for the prototype.  It incorporates a Virtex2 FPGA 
(XC2V1000 )x, two banks of 2 Mbyte ZBT RAM,  
Video I/O, serial interfaces and a TFT display. 



 
Figure 3: FPGA system 
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8. FPGA System 
 
We exploit the flexibility of FPGAs to rapidly develop 
and integrate the various system components using the 
Celoxica DK Design Suitexi for C based design and 
synthesis.  The FPGA system contains the sensor 
interface drivers, the sensor fusion algorithm, video 
manipulation and user display code. The main 
architectural components are shown as a schematic in 
Figure 3 and as code in Figure 4.  A platform support 
libraryxii (PSL) provides ready-coded components for 
implementation of controllers and data transfer to the 
board peripherals such as RS232/ video. 
For implementation of the main Kalman Filter 
computation and to control program flow including 
parts of the Graphical User Interface (GUI) we use the 
“Sabre” soft-core processor.  All other components are 
implemented directly in the FPGA.  In particular the 
real-time video transformation has intensive processing 
requirements beyond the capabilities of typical 
embedded micro and DSP devices. 
 
Figure 4: FPGA system code  

void main (void) 
{ 
    … 
 
    // Run everything 
   
   par{ // Run Hardware Components 
      SabreRun(&MyBus); // 32-bit Processor 
      RAMRun(RAM1);     // RAM Framebuffer  
      RAMRun(RAM2);     // RAM Framebuffer 
      VideoInRun (VideoIn); // Video Input 
Stream 
      VideoOutRun(VideoOut);// Video Output 
Stream 
 
 seq{ 
      par{ // Enables on Startup 

                 RAMEnable(RAM1); 
                 RAMEnable(RAM2); 
                 VideoInEnable (VideoIn); 
                 VideoOutEnable(VideoOut); 
  } 
         // main control loop 
seq{ 
     WaitForSabre(); // Wait for Kalman Result 
     par{             
         // Capture Video 
         VideoInProcess VideoIn); 
         //Affine Transform and Output Video 
VideoOutProcess(VideoOut);                              
               } 
  } 
    } 
 } 
} 

 
9. Video Transformation 
 
Video processing consists of two routines described 
using Handel-Cxiii, an ANSI-C superset optimized for 
hardware design in Programmable Logic. 
VideoInProcess() makes use of the RC200 library 
routines to take data from the relevant video input 
device and write successive frames of data to RAM. 
VideoOutProcess() computes the Affine transformation 
of coordinates on the RAM framebuffer, copying the 
relevant pixels to output to the video display.  The 
video processing makes use of both RC200 RAMS in a 
double-buffering scheme.  The routine for the rotation 
transform is given in Figure 5.  This is a five-stage 
pipeline which, once loaded, computes the rotated 
output location (OutX,OutY), of each input pixel 
(InX,InY) on each clock cycle.  The transforms operate 
on 16-bit precision fixed point values with sine and 
cosine angles stored in a 1024-element lookup table. 

 
OutX = InX.cos(theta) - InY.sin(theta) 
OutY = InY.cos(theta) + InX.sin(theta) 
 
 
Figure 5: Affine Transformation C code 

static macro proc 
RotateCoordinates(theta,InX,InY,OutX,OutY) 
{ 
   … 

par{  
 // Pipeline step 1 
 GenerateSine(theta,Sin); 
 GenerateCos(theta,Cos); 
 
 //Pipeline step 2 
 mapX = InX - CentreOfRotation[0];  
 mapY = InY - CentreOfRotation[1];  
 temp[0] = Int2fixed(mapX); 
 temp[1] = Int2fixed(mapY);   
 
 // Pipeline step 3 



 FixedMult(temp[1], -Sin, temp[2]);   
 FixedMult(temp[0], Cos, temp[3]);   

 FixedMult(temp[0], Sin, temp[4]);   
 FixedMult(temp[1], Cos, temp[5]); 
   
         //Pipeline step 4 
 mapXback = fixed2Int(temp[2]+temp[3]); 
 mapYback = fixed2Int(temp[4]+temp[5]); 
   
         //Pipeline step 5 
 OutX = mapXback + CentreOfRotation[0]; 
 OutY = mapYback + CentreOfRotation[1]; 
 } 
} 

 
10. Sabre Processor 
 
Sabre is a 32-bit RISC, designed in Handel-C, and 
programmed into the FPGA as a soft-core. It has a 
Harvard architecturexiv, with expandable data and 
program memories, limited only by the availability of 
FPGA embedded block ram.  On the VirtexII 1000, 
there are 80 BlockRams, giving us up to 8kbyte program 
memory, for instructions and stack, and 64kbyte of data 
memory for constants.  The Sabre is connected via 32-
bit buses to each of these memories.  Peripherals are 
simply connected via another 32-bit bus into the 
processor memory space (see Figures 6 and 7) where the 
Sabre acts as the bus master.  The peripherals are 
designed to be as “smart” as possible, reducing the 
workload for the processor and making best use of the 
parallel processing capabilities of the FPGA.  For 
example, the SabreBusControlRun peripheral simply 
consists of a set of twelve memory-mapped registers 
including roll, pitch and yaw values and status flags that 
are used directly by the FPGA video transformation 
block.  Similarly the SabreBusExpansionPort 
peripherals connect to the IMU and ACC devices via 
serial communications blocks. 
In this application the serial communications blocks, 
Sabre processor core, peripherals and board interface 
support were compiled to a device optimized EDIF 
netlist using the DK Design Suite.  Xilinx place and 
route tools generated the FPGA configuration file.  The 
Sabre program code was written in C and compiled to 
the Sabre Instruction Set Architecture.  Since the Sabre 
machine code resides entirely within BlockRam 
memory of the FPGA, it is a simple process to merge 
the BlockRam initialisation into the FPGA configuration 
file.  This technique eliminated the need for full 
hardware recompilation following changes to the Sabre 
software during development.  We could thus rapidly 
prototype functionality in C software and later partition 

and re-partition functionality into C for hardware to 
improve performance and reduce processor load. 
Note that, as a result of the dynamic range of the 
Kalman filter, it was necessary to use floating-point 
values for all intermediate stages.  The version of Sabre 
used here has no floating-point co-processor.  We 
therefore emulated IEEE floating point operations using 
the “Softfloat” libraryxv.   
Softfloat is widely used amongst RISC processors with 
no native floating point support, such as low power 
ARMs and PowerPCs. 
 
 
Figure 6: Sabre Processor System Architecture 
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Figure 7: Sabre Processor System C code 
 
void SabreRun (BusPtr) 
{ 
   … 
 
   par{ 
 
    /* Core components */ 
 
    SabreRun           (BusPtr, DATA_MEMORY, 
PROGRAM_MEMORY); 
    SabreBusRun        (BusPtr); 
    SabreBusMemoryRun  (BusPtr, 
BUS_BASE_ADDRESS); 
     
    /* User defined Peripherals */ 
 
  //LEDs 
    SabreBusLEDsRun        (BusPtr, 
LEDS_BASE_ADDRESS); 
    //Switches 
    SabreBusSwitchesRun    (BusPtr, 
SWITCHES_BASE_ADDRESS); 
    // TouchScreen 
    SabreBusTouchScreenRun (BusPtr, 
TSCREEN_BASE_ADDRESS); 
    // Graphical Output to Screen 



    SabreGuiRun            (BusPtr, 
LINE_BASE_ADDRESS, …); 
    // AMU Interface 
  SabreRS232DMURun       (BusPtr, 
SERIAL1_BASE_ADDRESS);  
    // DMU Interface 
  SabreRS232ACCRun       (BusPtr, 
SERIAL2_BASE_ADDRESS); 
    // Registers for Affine Transform 
  SabreControlRun        (BusPtr, 
ANGLES_BASE_ADDRESS); 
   
   } 

 
11. Testing and Results 
 
Sets of static and dynamic tests were performed to 
calculate the response and accuracy of the system.  In 
these tests, the system was calibrated first and then 
misalignments of a few degrees were introduced in roll, 
pitch and yaw to the boresighted sensor.  The correction 
system was then started and data was collected for 300 
seconds.  The residuals, the difference between the true 
accelerometer measurement and the expected 
acceleration measurement, were used to help tune the 
Kalman Filter by selecting a good measurement noise 
value.  For the static tests the value could be set very 
low, about .003 to .01 m/s, since the only noise was the 
noise of the instruments.  This value had to be increased 
to .015 or higher when the vehicle was moving because 
of the addition of the vehicle vibration.  Figure 8 shows 
the X-axes residuals and it’s 3-sigma value plotted 
together for a static run and a moving run.  The static 
run shows the residuals well within the 3-sigma values 
while the moving tests show that the residuals do exceed 
the 3-sigma values.  Since the residuals should only 
exceed the 3-sigma value about once every 100 samples, 
the Filter noise was increased. 
 
11. 1. Static Testing 
 
The instruments were calibrated using a level test 
platform. The absolute misalignments were measured 
directly using a laser attached to the boresighted sensor. 
Note that static roll and yaw tests are more difficult to 
perform than the pitch tests since the platform must be 
oriented and use gravity to generate components of 
acceleration in the ACC and DMU accelerometers.  
Table 1 demonstrates that the resulting alignment 
estimates were very accurate in all three axes. 
 
 
 
 
 
 
 
 

Table 1: Results from Static (Top) & Dynamic (Bottom) Tests 
 

 
 

 
 
 
Figure 8: X Axis residuals from Static (Top) and Dynamic (Bottom) 
Tests. 
 

 

 
 
11.2. Dynamic Testing 
 
The dynamic tests consisted of placing the test 
equipment in a standard private passenger vehicle, 
calibrating the ACC and IMU, misaligning the ACC-
Camera system and then running during car motion.  
Sample results are given in Figure 9. 
Note that it is difficult to run precisely the same test 
profile using a moving vehicle, however the results for 
two driving tests are shown in Table 1. It can be seen 
that there is very close agreement between the tests with 
a high confidence level result. 
 



Figure 9: Sample results from dynamic test 
 

 
 

 
 
12 Conclusion 

Results of the static and the dynamic tests demonstrate 
that using inexpensive accelerometers mounted on (or 
during assembly of) a sensor and an Inertial 
Measurement Unit (IMU) fixed to the vehicle can be 
used to compute the misalignment of the sensor to the 
IMU and thus vehicle.  The overall accuracy is 
dependent on the accuracy of the inertial instruments, 
mounting accuracy of the instruments, noise present at 
the sensors and time allowed for the filter to compute 
the misalignment angles.  It is clear that a software 
based sensor fusion approach to sensor alignment for 
vehicle applications meets typical automotive industry 
requirements.  In some cases the model predications and 
test results exceeded the requirements by an order of 
magnitude with a 3-sigma or 99% confidence.            
The use of a COTS FPGA board and C based design 
and synthesis greatly simplified and accelerated the task 
of creating and verifying a real-time proof of concept 
system.  By abstracting the core design from the details 
of the platform, the system is highly portable across 
different platforms and lends itself well to product 
migration.  We note that optimization of the 
performance (clock-speed, program size etc) was not a 
design goal in this exercise and there are many obvious 
enhancements.  For example, a full fixed-point analysis 
and conversion of the Sensor Fusion Algorithm from 
float to fixed-point calculations is possible.  The 
boresighted sensor system presented here provides the 

basis for developing a range of dynamic real-time sensor 
fusion systems.  Future implementations will 
demonstrate self-aligning and self-referencing methods 
for dynamic alignment of multiple sensors; the fusion of 
data from the vehicle into the system for additional 
improvements; and alignment for other sensor features 
such as headlights.  The fusion engine presented here 
provides self-boresighting functionality for individual 
sensors, but it can readily be extended to fuse data from 
multiple sensors together (eg. lidar and video) to 
provide low-cost situational awareness systems for 
automotive use.  It is proposed these implementations 
and tests be seriously considered by the automotive 
industry, as we believe these will aide in the reduction 
of future system costs, shorten development time to 
market, facilitate and consolidate the improvement of 
the next generation of features for the automotive 
industry. 
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