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1. Introduction

How well does the Solow growth model (Solow, 1956) fit time series data?
Surprisingly little has been said about this question. The vast majority of
empirical investigations of the Solow model is based on cross-country re-
gressions, most notably the literature following Mankiw et al. (1992). To
evaluate the Solow model using cross-country data is associated with a host
of problems related to missing variable bias, endogeneity and and strong as-
sumptions about independence between the level of technology, the savings
rate and the population growth rate (for a great overview, see Durlauf and
Quah (1999) and Durlauf et al. (2005)). Furthermore, these cross-country
studies often impose the strong assumption that the economies are in the
steady state predicted by the Solow model to obtain a linear model that
can be estimated. One problem with this assumption is that the regres-
sion equation is almost identical to an equation that can be derived from
an accounting identity using only an assumption of constant factor shares
and a constant capital-output ratio, whereby the Solow regression equation
becomes tautological (see Felipe and McCombie (2005)). As researchers be-
came aware of the problems associated with testing and estimating the Solow
model using cross-country data, growth regressions in the style of Mankiw
et al. (1992) has come out of fashion, although there are recent examples
such as Brock and Taylor (2010).

To avoid the problem with unobserved heterogeneity, Islam (1995) suc-
cesfully apply a panel-data approach. Unfortunately this approach does not
take cointegration between the variables into account. This problem can
in turn be solved by performing time-series analysis as I will show in this
article.

I aim to answer the question in the first paragraph by developing a general
time-series framework based on the Solow model, and then applying it to
yearly time-series data for the seven G7 countries and Denmark, Norway and
Sweden. This framework allows for unit roots in the population growth rate
and the savigns rate. The goal is first and foremost to test if the restrictions
implied by the Solow model can be said to hold. In other words, the goal is
to test if the Solow model delivers a reasonable description of the data. If
this turns out to the be the case, a second goal is then to obtain the estimates
of the model parameters and compare them to a priori assumptions.

To my knowledge, only one other article investigates the Solow growth
model using time-series data, namely Kalaitzidakis and Korniotis (2000).
Unfortunately, there are some problems with the authors’ analysis. First of
all, they interpret the steady state relationship between output per capita,
the savings rate and the population growth rate as a cointegrating relation,
but this ignores the transitional dynamics inherent in the Solow model.
Second of all, they forget to include a time trend term in the equation,
probably because it is also (rightfully) dropped in the cross-section analysis
by Mankiw et al. (1992). The framework developed in the present article
takes the transitional dynamics of the Solow model into account, although
an approximation around the steady state is necessary to linearise the model.

In the empirical part of the article, I use data from the Penn World
Table (Heston et al., 2009). This database contains yearly observations of
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the relevant variables from 1950 to 2007 for most modern economies, thus
delivering a reasonable number of observations on a long enough time period
to study economic growth.

2. A short introduction to cointegration

Since a substantial part of the empirical investigation of this article relates
to unit-root econometrics, a very short and loose introduction to unit-root
processes and the related concept of stationarity is presented here. For
an informal introduction to the area, see Hendry and Juselius (2000) and
Hendry and Juselius (2001). A more formal treatment of cointegration and
the CVAR model is given in Juselius (2006) and a formal treatment is given
in Johansen (1995).

A time series is said to be stationary if it follows a process whose mean
and variance are constant over time. A simple example of such a process is
the first-order autoregressive process

ut = ρut−1 + εt, ρ ∈ (0, 1), εt ∼ i.i.N(0, σ2
ε).(1)

The notation εt ∼ i.i.N(0, σ2
ε) means that the εt’s are independent and

normally distributed with mean zero and variance σ2
e . In other words the

εt’s follow a white noise process, and they can be interpreted as shocks to
the process of ut. The process can be rewritten by repeated substitution as

ut =

∞∑
i=0

ρiεt−i,

that is, a sum of all previous εt’s. The important thing to note is that the
term ρit−i converges to zero when i→∞ since ρ ∈ (0, 1) and thus the mean
and variance of ut is asymptotically well defined and constant. The process
for ut is therefore asymptotically stationary. For simplicity, this is often
simply called stationary and it has the symbol ut ∼ I(0). A variable that
is stationary if it is differenced once is written I(1) and is called integrated
of order one, or simply integrated. When ρ = 1 the process is no longer
stationary, because then

ut =

∞∑
i=0

εt−i,

meaning that all previous shocks to the system has permanent effects on ut,
even asymptotically, and ut is said to have the stochastic trend

∑∞
i=0 εt−i.

The generalisation of a univariate autoregressive process to multiple vari-
ables is a vector autoregressive (VAR) process in which all variables in the
model are allowed to depend on the lagged variables of itself and the and
the other variables. The VAR model with k lags (denoted VAR(k)) can be
written on the so-called Error-Correction-Form as

∆xt = Πxt−1 +

k−1∑
i=1

Γi∆xt−i + ΦDt + εt,(2)

where xt is a vector of variables, Dt is a vector of deterministic components,
the εt are independent and normally distributed shocks with zero mean and
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identical covariance matrices. The characteristic polynomial related to the
VAR is

C(q) = (1− q)I −Πq −
k−1∑
i=1

Γi(1− q),(3)

and it is a general result that when one or more of the roots of the character-
istic polynomial are 1, i.e. there are unit roots, the system is non-stationary.
For example, the roots of the characteristic polynomial related to the process
in equation (1) is ρ, and we just saw that when ρ = 1, ut was non-stationary.
If some of the variables in a VAR share the same stochastic trends and it
is possible to find a linear combination that eliminates this trend such that
the combination is stationary, the variables are said to cointegrate. Note
that a stationary variable cointegrates with itself.

When estimating VAR models involving non-stationary variables the usual
ordinary least squares (OLS) estimator provides inconsistent estimates and
completely unrelated variables can be falsely shown to be highly related, a
problem known as spurious regression. A useful general theory of so-called
cointegrated VAR (CVAR) models that provides tests for cointegration and
procedures to consistently estimate the parameters of the model and their
standard errors is developed by Søren Johansen and it is presented in Jo-
hansen (1995). The parameters of the CVAR are estimated by the Full
Maximum Likelihood estimator.

Unit root tests of the savings rate and the population growth rate often
reveal these variables to approximately follow unit root processes, see for
example Jones (1995) and Kalaitzidakis and Korniotis (2000). In this article,
I extend the Solow model to allow for the savings rate and the population
growth rate to be arbitrarily close to unit root processes. I formulate a
VAR model in the growth rate of per capita output, the savings rate and
the population growth rate based upon the theoretical model. This kind of
structural CVAR model is explained in Møller (2008). I extend the model,
adding greater flexibility and allow for more than one lag in the VAR. I then
derive the conditions that must be satisfied for there to be cointegration
between the variables. This provides a general framework for testing and
estimating the Solow model using time series data.

In the next section, I present the generalised version of the Solow model in
continuous time. I show the model has a stable non-trivial steady state when
the differential equations describing the evolutions of the savings rate and the
population growth rate are both stable. I then eliminate the unobservable
variables from the model to form a model in the growth rate of per capita
output, the savings rate and the growth rate of population.

3. The theory model

The Solow model describes a closed economy without government spend-
ing in the long run. The textbook version of the model, as found in e.g.
Acemoglu (2009), assumes the savings rate and population growth rate to
be constant. I formulate a Solow model in continuous time with time-varying
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savings rate, s(t), and population growth rate, n(t). The rates will be gov-
erned by differential equations that corresponds to continuous time ana-
logues of autoregressive processes akin to equation (1).

Total output, Y (t) is given by the Cobb-Douglas production function

Y (t) = K(t)λ(A(t)L(t))µ, λ, µ ∈ (0, 1), Y (t),K(t), L(t) > 0,(4)

where K(t) is aggregate capital input, L(t) is the total labour input and A(t)
is the labour-augmenting technological progress. The stock of technology
grows with the constant rate g, i.e.

Ȧ(t) = gA(t).(5)

The fundamental law of motion describes the evolution of capital in the
equilibrium by

K̇(t) = s(t)Y (t)− δK(t), δ ∈ (0, 1),(6)

where s(t) is the fraction of output that goes to savings and thus investment,
since the economy is closed. The parameter δ is the depreciation rate of
capital.

The total labour input grows with the rate n(t)

L̇(t) = n(t)L(t).(7)

In the long run, the growth rate of total labour input equals the growth rate
of the population. I now turn to specify the evolution of the savings rate
and the population growth rate.

The savings rate is given by the first-order linear ordinary differential
equation

ṡ(t) = s̄− (1− ρs)s(t), s̄ > 0, ρs ∈ (0, 1).(8)

This equation says that the savings rate will converge to its long-run equi-
librium value. To see this more formally, let the symbol f∗ denote the
non-trivial steady state value of a function of time, f(t) in case it is unique
and note that ṡ = 0 implies s∗ = s̄/(1− ρs). For a given differentiable func-
tion, f(t), let gf (t) ≡ ∂f(t)/∂t denote the growth rate of f(t). The growth
rate of s(t) is given by

gs(t) = s̄/s− (1− ρs) = −(1− ρs)(1− s∗/s(t)).
Whenever the savings rate is below (above) the steady state value, the sav-
ings rate will increase (decrease). The convergence rate will decrease over
time, as s(t) gets close to its steady state, i.e. as s∗/s(t) gets close to 1. In-
dependently of this, a value of ρs closer to 1, means a lower convergence rate.
Two different economies can therefore have the same steady state savings
rate but different convergence rates. Imagine two different economies, econ-
omy A and economy B, with the same steady state savings rate s∗A = s∗B. If
economy A has a more rigid savings system, the savings rate in economy B
will converge with a slower rate towards the steady state than in economy
B, such that ρs,A > ρs,B. Since the steady state savings rates are equal in
the two economies, the constant term must be different, i.e. s̄A < s̄B. Thus,
an economy with a very slow convergence rate and a steady state savings
rate will tend to have a very low value of s̄. If an economy has a very slow
convergence rate, no matter how far s(t) is from its steady state, i.e. if ρs is
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close to 1, any shock to the savings rate will take a long time to be corrected,
whereby the savings rate will appear non-stationary. Note that when ρs = 1
either s∗ = s̄ = 0 or there is no steady state. When s̄ 6= 0 and ρs = 1, the
differential equation is unstable, and since the savings rate is bounded, this
case can be ruled out.

The population growth rate is modelled analogously by

ṅ(t) = n̄− (1− ρn)n(t), n̄ > 0, ρn ∈ (0, 1).(9)

The model consists of equation (4)–(9). I will now show that it has a
unique, local, asymptotically stable, non-trivial steady state. This is not
only a desirable property in a theoretical sense, but also allow for a point
to approximate an equation around later. Combining equation (4) and (6)
yields

gK(t) = z(t)− δ(10)

where z(t) ≡ s(t)Y (t)/K(t) = s(t)K(t)λ−1(A(t)L(t))µ. Define a balanced
growth path by gK(t) = g∗K where g∗K is a constant. In the balanced growth
path equation (10) implies g∗K = z(t) − δ ⇒ gz(t) = 0. The growth rate of
z(t), gz(t) is given by

gz(z) = gs(t)− (1− λ)gK(t) + µ(g + n(t)).

Inserting equation (10) and rearranging gives

ż(t) = (gs(t)− (1− λ)(z(t)− δ) + µ(g + n(t)))z(t)(11)

A steady state of the system is given by (ż(t), ṡ(t), ṅ(t)) = (0, 0, 0). Equation
(8) implies s∗ = s̄/(1−ρs) > 0 and equation (9) implies n∗ = n̄/(1−ρn) > 0.
According to equation (11) there are two steady state values of z(t), namely
the trivial z(t) = 0 and the non-trivial z(t) = z∗ = µ/(1−λ)(g+n∗)+δ (using
g∗s = 0). The non-trivial steady state is thus given by (z(t), s(t), n(t)) =
(z∗, s∗, n∗).

The three differential equations (11), (8) and (9) characterize the dynam-
ical system. The Jacobian, J , is given by

J =

(∂ż/∂z)∗ (∂ż/∂s)∗ (∂ż/∂n)∗

(∂ṡ/∂z)∗ (∂ṡ/∂s)∗ (∂ṡ/∂n)∗

(∂ṅ/∂z)∗ (∂ṅ/∂s)∗ (∂ṅ/∂n)∗


=

−(1− λ)δ − µ(g + n̄
1−ρn ) 0 µδ + µ2

1−λ(g + n̄
1−ρn )

0 −(1− ρs) 0
0 0 −(1− ρn)

 ,

where (∂f/∂g)∗ denotes the partial derivative of f with respect to g evalu-
ated at the steady state. The eigenvalues of J are −(1−λ)δ−µ(g+ n̄/(1−
ρn)), −(1 − ρs) and −(1 − ρn) and since they are all negative, the steady
state is asymptotically stable.

4. The related VAR and CVAR models

It is convenient to exclude the variables A(t), K(t) and L(t) from the
system, since A(t) is unobservable and estimates of K(t) are rare. The goal
is therefore now to obtain a linear discrete time version of the model in the
three variables gY , st, nt and then to formulate it as a VAR model. I first
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derive an equation relating gY to st, nt and the parameters. This equation
describes the transitional dynamics of the economy. To obtain a linear
equation, I approximate it around the steady state. I then approximate the
continuous functions with their discrete time counterparts.

4.1. A linear discrete time version of the theory model. Note first
that equation (4), (6), (7) and (5) implies

gY (t) = λgK(t) + µ(g + n(t)).(12)

For this equation to be linear in s(t), I will now derive a linear approximation
of gK(t) around the steady state.

Since z(t) = s(t)Y (t)/K(t) and in the steady state z(t) = z∗ and s(t) =
s∗, the term Y (t)/K(t) must be constant in the steady state. Let us denote
the steady state value of this term by (Y/K)∗. We can then write

(Y/K)∗ = z∗/s∗ = ((µ/(1− λ))(g + n∗) + δ)/s∗(13)

Note that when there are constant returns to scale (CRS), λ + µ = 1, we
get (Y/K)∗ = (g + n∗ + δ)/s∗ completely analogous to the textbook Solow
model found in e.g. Acemoglu (2009), the only difference being the terms s∗

and n∗ that now reflects the steady state values of the differential equations
in (8) and (9). Using this we can approximate z(t) around the steady state
allowing s(t) to vary by writing z(t) = s(t)(Y/K)∗. In effect, using equation
(13), an approximation of equation (10) is given by

gK(t) = s(t)((µ/(1− λ))(g + n∗) + δ)/s∗ − δ.(14)

Inserting this equation into equation (12) yields

gY (t) = θs(t)− λδ + µ(g + n(t)),(15)

where θ ≡ λ((µ/(1 − λ))(g + n∗) + δ)/s∗. The data on output in the Penn
World Tables are measured in per capita terms. To account for this note
that gY − n(t) is the growth rate of per capita output. Equation (15) can
then be written as

gY/L(t) = θs(t)− (1− µ)n(t)− λδ + µg.(16)

Equation (8), (9) and (16) constitute a linear model in the three observable
variables. The discrete time stochastic model (or the “empirical model”) is
then given by

gY/L,t = θst − (1− µ)nt − λδ + µg + εg, εg ∼ i.i.N(0, σ2
g)(17)

st = s̄+ ρsst−1 + εs,t, εs ∼ i.i.N(0, σ2
g)(18)

nt = n̄+ ρnnt−1 + εn,t, εn ∼ i.i.N(0, σ2
g).(19)

4.2. The VAR model. The empirical model consists of equation (17), (18)
and (19). It can be written as a VAR(1) on the Error-Correction-Form,
equation (2), with xt = (gY/L,t, st, nt)

′,

Π =

−1 θρs −(1− µ)ρn
0 −(1− ρs) 0
0 0 −(1− ρn)

 ,Φ =

θs̄− (1− µ)n̄+ µg − λδ
s̄
n̄

 ,

the scalar Dt = 1 and empty Γi matrices for i = 1, . . . , k−1. When all three
variables are stationary, the Solow model should therefore be estimated using
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the VAR model, equation (2), with restrictions on the Π and Φ matrices
corresponding to the expressions above. There are eight coordinates with
combinations of the ten parameters, λ, µ, ρs, ρn, n̄, n

∗, s̄, s∗, g, δ (remember
the definition of θ above). In accordance with Mankiw et al. (1992) and
Kalaitzidakis and Korniotis (2000), I will assume g+δ to be known, in which
case the remaining parameters can be identified. It is possible to impose a
restriction like λ+µ = 1 on the system, even though it corresponds to a non-
linear combination of coordinates of Π, by using the results from Boswijk
and Doornik (2004), which are implemented in PcGive.

In the next section, I show that when the savings rate and/or the popu-
lation growth rate are non-stationary, they will cointegrate with the growth
rate of per capita output. I show how these cointegrating relations look, and
what restrictions should be imposed on the system.

4.3. The CVAR model. The matrix Π has reduced rank when the savings
rate or the population growth rate is integrated. When either variable is
integrated, they turn out to cointegrate with the growth rate of per capita
output.

A matrix has reduced rank when its determinant is zero. The determinant
of Π is −(1− ρs)(1− ρn). The characteristic polynomial, equation (3), is

C(q) = −(1− qρs)(1− qρn)

with the roots q = ρ−1
s and ρ−1

s . The rank of Π is r when there are p − r
unit roots, where p is the dimension of x. Thus ρs 6= 1∧ρn 6= 1 if and only if
Π has full rank. In other words, when st and nt are both I(0), all variables
in the model are I(0), since also gyt will be I(0). In that case, we have three
stable cointegrating relations in the system, namely the trivial case where
all of the variables cointegrate with themselves, and we can estimate the
model using the OLS estimator. Furthermore, it appears from the roots of
the characteristic polynomial that (ρs 6= 1, ρn 6= 1) ⇔ r = 3, (ρs = 1, ρn =
0) ∨ (ρs = 0, ρn = 1)⇔ r = 2 and (ρs = 1, ρn = 1)⇔ r = 1. The rank of Π
is at least 1. When some of the variables cointegrates, r < p, it is possible to
decompose Π into two p× r matrices of rank r, α and β, such that αβ′ = Π.
The β matrix contains the cointegrating relations and the α matrix the
loadings. This decomposition is unique up to a chosen normalisation, i.e.
for any matrix of full rank, Q, we can renormalize the decomposition into
α̃ ≡ αQ and β̃ ≡ Q−1β′ such that αβ′ = αQQ−1β′ = α̃β̃′. One way to
decompose Π into α and β is is to let α be a basis for the column space of
Π and let β = (α(α′α)−1)′Π. A convenient renormalization matrix, Q, is
given by Q = (R[1, r; p + 1, p + r])−1 where R is the reduced row echelon
form of (β′ | Ir) and X[m1,m2;n1, n2] denotes the submatrix of a matrix X
consisting of rows m1 to m2 and columns n1 to n2 of X.

Furthermore, when Π has reduced rank, we can decompose the determin-
istic term, Φ into a part related to the cointegrating relations, η, i.e. a part
in the span of α, and a residual part, γ, i.e. a part not in the span of α, such
that Φ = αη+γ. Let the m× (m−n) matrix of full column rank A⊥ denote
the orthogonal complement of an m × n matrix A of full column rank, i.e.
a matrix satisfying A′⊥A = 0. For a given matrix A, A⊥ is not unique: it is
possible to write A⊥ = ΛV where Λ is a particular orthogonal complement of
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A and V is an arbitrary, square, non-singular matrix. A simple choice of A⊥
is the null space of A′. Using the identity I = α(β′α)−1β′+β⊥(α′⊥β⊥)−1α′⊥,
it is possible to write η = α(β′α)−1β′Φ and γ = β⊥(α′⊥β⊥)−1α′⊥Φ.

Using these procedures, the α, β, η and γ matrices can be found in each
of the three cases of cointegration. In the first case, the savings rate is
integrated, st ∼ I(1), and

α =

−1 −(1− µ)ρn
0 0
0 −(1− ρn)

 , β′ =

(
1 −θ 0
0 0 1

)
,

η =

(
n̄(1− µ)(1− ρn)−1 + λδ − µg)

−(1− ρn)−1n

)
and γ =

θs̄s̄
0

 .

It appears from the β′ matrix that this case yields two cointegrating rela-
tions: the growth rate of per capita output and the savings rate is cointe-
grated and positively related, gY/L− θst ∼ I(0), and the population growth
rate is cointegrated with itself, nt ∼ I(0).

In the second case the population growth rate is integrated, nt ∼ I(1)
and

α =

−1 θρs
0 −(1− ρs)
0 0

 , β′ =

(
1 0 1− µ
0 1 0

)
,

η =

(
−s̄θ(1− ρs)−1 + λδ − µg)

−(1− ρ̄s)−1s

)
and γ =

−(1− µ)n̄
0
n̄

 .

What can be seen here is that there is again two cointegrating relations: one
between gY/L and nt in which they are negatively related, gY/L+(1−µ)nt ∼
I(0), and one in which nt cointegrates with itself, nt ∼ I(0).

Finally, in the third case the savings rate and the population growth rate
are both integrated, st, nt ∼ I(1), and

α =

−1
0
0

 , β′ =
(
1 −θ 1− µ

)
, η = λδ − µg and γ =

θs− (1− µ)n
s
n

 .

In this case there is only one cointegrating relation, namely gY/L−θst+(1−
µ)nt ∼ I(0).

In all three cointegration cases γ is not empty, meaning that the determin-
istic term is not restricted to the cointegrating relations (i.e. the span of α).
In the empirical part of the article, I have chosen to model the deterministic
term simply as an unrestricted constant.

In the next section I extend the empirical model by allowing for more than
one lag in the VAR and by allowing the growth rate of per capita output to
depend on its own lagged values.

5. The generalised VAR and CVAR models

The full empirical model extends the above in two ways. First of all, I
allow for more than one lag in the VAR(k), i.e. k ≥ 1. Second of all, I
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allow for lagged growth rates in per capita output to be a determinant of
the present growth rate (this does not change the conclusions derived above
about stability and does not enter into the expression for θ). The reason for
doing this is to capture the possible effect of business cycles on the growth
rate of output. The results in this section are analogous to those from the
previous section, but they are more general. The full empirical model is
given by the following equations

g̃Y/L,t = θst − (1− µ)nt + µg − λδ +
k∑
i=1

ρg,ig̃Y/L,t−i + εg, εg ∼ i.i.N(0, σ2
g),

st = s̄+

k∑
i=1

ρs,ist−i + εs, εg ∼ i.i.N(0, σ2
s),

nt = n̄+
k∑
i=1

ρn,int−i + εs, εg ∼ i.i.N(0, σ2
s).

The model implies the following matrices of the Error-Correction-Model
formulation of the VAR, equation (2),

Π =

−(1− ρ̄g) θρ̌s −(1− µ)ρ̌n
0 −(1− ρ̌s) 0
0 0 −(1− ρ̌n)

 ,

where ρ̌g ≡
∑k

i=1 ρg,i, ρ̌s ≡
∑k

i=1 ρs,i and ρ̌n ≡
∑k

i=1 ρn,i,

Γi =

−
∑k

j=i+1 ρg,j −θ
∑k

j=i+1 ρs,j −(1− µ)
∑k

j=i+1 ρn,j

0 −(1−
∑k

j=i+1 ρs,j) 0

0 0 −(1−
∑k

j=i+1 ρn,j)


for i = 1, . . . , k and the deterministic component

Φ =

θs̄− (1− µ)n̄+ µg − λδ
s̄
n̄

 ,

with Dt = 1. The determinant of Π is −(1 − ρ̌g)(1 − ρ̌s)(1 − ρ̌n) and the
characteristic polynomial, equation (3), is

C(q) =

(
k∑
i=1

((i− 1)q − (i− 2))qρg,i − 1

)
(

k∑
i=1

((i− 1)q − (i− 2))qρs,i − 1

)(
k∑
i=1

((i− 1)q − (i− 2))qρn,i − 1

)
,

which can be seen by inspection to have unit roots exactly for ρ̄g = 1,
ρ̄s = 1 and ρ̄n = 1, analogous to the simpler model. Assuming ρ̄g ∈ (0, 1),
not at odds with the data, we get again three cases of cointegration: (ρ̄s 6=
1, ρ̄n 6= 1) ⇔ r = 3, (ρ̄s = 1, ρ̄n 6= 1) ∨ (ρ̄s 6= 1, ρ̄n = 1) ⇔ r = 2 and
(ρ̄s = 1, ρ̄n = 1)⇔ r = 1.

When st, nt ∼ I(0), i.e. ρ̌s, ρ̌n ∈ (0, 1) the rank of Π is r = 3 and the
model should be estimated using the restricted Π and Γi matrices above
(the Γi matrices are common to all the four cases).
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When Π has reduced rank, r < p, using the procedures described in
section 4.3 yields the following matrices of the CVAR. When st ∼ I(1) and
nt ∼ I(0) the rank is r = 2 and the matrices are

α =

−(1− ρ̌g) −(1− µ)ρ̌n
0 0
0 −(1− ρ̌n)

 , β′ =

(
1 − θ

1−ρ̌g 0

0 0 1

)
,

η =

(
n̄(1−µ)

(1−ρg)(1−ρn) +
s̄θρg

(1−ρg)2
+ λδ−µg

1−ρg
− n̄

1−ρ̌n

)
and γ =

 θs̄
1−ρ̌g
s̄
0

 .

Compared with the simpler model, the term 1 − ρg now appears in the
cointegrating relation as well as in the first coordinate of the α matrix. The
fact that gY/L is now allowed to depend on its own lagged values means that
the cointegrating relation between gY/L and st needs more of a counter-
reaction in the savings rate to keep the relation stationary. Note that the
summed coefficients of the lagged variables, ρ̌s and ρ̌n enter in the same way
as their simpler counterparts ρs and ρn. The same is true for ρ̌g although it
can not be seen here, since I did not include the lagged value of gY/L in the
simple model. The η matrix looks the same as before, except now ρ̌g enter
and there is an extra term related to s̄. When st ∼ I(0) and nt ∼ I(1) the
rank is r = 2 and the matrices are

α =

−(1− ρ̌g) θρ̌s
0 −(1− ρ̌s)
0 0

 , β′ =

(
1 0 1−µ

1−ρ̌g
0 1 0

)
,

η =

(
− n̄(1−µ)ρg

(1−ρg)2
− θs̄

(1−ρg)(1−ρs) + λδ−µg
1−ρg

− s̄
1−ρ̌s

)
and γ =

− 1−µ
1−ρ̌g
0
n̄

 .

Again the matrices correspond to those from the simpler model, and the
same general comments can be said as above. Finally when st ∼ I(1) and
nt ∼ I(1) the rank is r = 1 and the matrices becomes

α =

−(1− ρ̌g)
0
0

 , β′ =
(

1 − θ
1−ρ̌g

1−µ
1−ρ̌g

)
,

η =
(
n̄(1− µ)ρ̌g − θs̄ρ̌g + λδ−µg

1−ρ̌g

)
and γ =

λs−(1−µ)n
1−ρ̌g
s̄
n̄

 .

I have now developed a complete statistical framework to estimate and
test the Solow model using time series data. To sum up, the framework
covers four different cases:

Case 1: Stationarity. Corresponds to a restricted VAR (see p. 10).
Case 2: st ∼ I(1). Corresponds to a restricted CVAR (see p. 11).
Case 3: nt ∼ I(1). Corresponds to a restricted CVAR (see p. 11).
Case 3: st, nt ∼ I(1). Corresponds to a restricted CVAR (see p. 11).
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6. Data

I use data from the Penn World Tables Version 6.3 the newest version of
the data set (Heston et al., 2009). For a description of the data and methods
used to generate this dataset, see Summers and Heston (1991). The data set
includes time series data on the three variables for a wide range of countries
for the years 1951 to 2007 (1971–2007 for Germany). As a first step of
applying the model, I have restricted the analysis to include the seven G7
countries: Canada, France, Germany, Italy, Japan, the United Kingdom
and the United States of America and furthermore Denmark, Norway and
Sweden. The inclusion of the G7 countries allow me to compare the results
with those of Kalaitzidakis and Korniotis (2000), although they used the
first public version of the dataset covering the shorter period 1950–1988.

For the growth rate of per capita output, I use the variable grgdpch since
the Penn World Table authors recommends it. The savings rate is the
investment share of real GDP, the variable ki divided by 100. The population
growth rate is calculated on the basis of the population variable POP.

7. Estimation

7.1. Applying the model. I will now explain all the steps in estimating
the model using the data for USA. In accordance with the methodological
guidelines in Juselius (2006), I first fit a general unrestricted VAR model
in order to determine the number of cointegrating relations, i.e. the rank
of Π. Using CATS in RATS version 2 (Dennis et al., 2005), I perform the
automated lag length determination procedure, with a maximum of five lags,
indicating a lag length of k = 4 or k = 2. For each extra lag included in the
model, nine more variables are introduced (if I could restrict the Γ matrices,
this would instead be five). Therefore, a lag length of four corresponds to
18 more variables in the model, compared to a lag length of two. Since
this is a lot of variables compared to the number of observations, I choose a
lag length of two. I then perform a residual analysis, testing for normality
and autocorrelation (see Dennis (2006) page 176–177 for details). There are
no problems with neither autocorrelation or non-normality. Had there been
problems, I would look for large residuals defined by having a t value larger
than three, and deal with them by including a break or some kind of dummy.
I then consider the recursively calculated fluctuation test of the eigenvalues
to check for volatility in the model. This test reveals no problems with
non-constancy of the eigenvalues.

Having now a well-specified unrestricted VAR(2) model, I perform the
rank test. This test is a series of trace tests of which the first tests if all
roots are unit roots, i.e. r = 0. If this hypothesis is not rejected, the rank
test indicates a rank of r = 0. If it is rejected, one proceeds to test if all
roots, but one, are unit roots, i.e. r = 1, and so on. Using the data for USA,
the Bartlett-corrected p-value for the hypothesis of r = 0 is 0%, for r = 1
it is 57% and for r = 2 it is 65% (see Table 1). This points towards a rank
of r = 1. I then calculate the recursive trace test with the standard values
in CATS. The plots indicates two cointegrating relations, i.e. r = 2. Thus
the correct rank of Π could be either one or two. Although the estimates



TIME-SERIES ANALYSIS OF THE SOLOW GROWTH MODEL 13

are only relevant under the correct choice of rank, I estimate the model in
all four cases.

Before turning to estimate the model under all the four cases derived in
section 5, consider the following. When the model is estimated under full
rank, it returns estimates for ρ̌s and ρ̌n as well as s̄ and n̄. Therefore, it is
possible to find s∗ and n∗. Using these and assuming the size of g and δ,
it is possible to find λ from the estimates of Π1,2, Π2,2, Π1,3 and Π3,3. If
st ∼ I(1) then ρs = 1 and the steady state value s∗ is undefined. Therefore,
when the assumption st ∼ I(1) is imposed, it is not directly possible to
recover λ from θ, because if s∗ really does not exist, the expression for
θ on page 7 is no longer valid. Keep in mind, that imposing st ∼ I(1) is
simply a way of finding out how to impose restrictions on the matrices under
reduced rank. It is true, that if st really do follow a random walk, it has
no steady state. However, the interpretation here is that st is so persistent,
that assuming st ∼ I(1) is more appropriate, statistically, than assuming
st ∼ I(0). Therefore, when st ∼ I(1), I use the estimate of s∗ calculated
under the assumption of full rank. The same considerations applies to nt
and n∗.

I use PcGive version 13.1 to estimate the model under the four different
cases with the following procedure. Starting with Case 1, I estimate the VAR
model imposing Π2,1 = Π2,3 = Π3,1 = Π3,2 = 0. It is not, to my knowledge,
possible to restrict the Γi matrices at the same time as the Π matrix, at
least not under the more complex restrictions that will be imposed later, so
these are the only restrictions put on the system. The regression yields the
following estimated Π and Φ matrices

Π =

−0.785 −0.319 −1.942
0 −0.074 0
0 0 −0.072

 ,Φ =

0.110
0.018
0.001

 ,

where coordinates with t-values larger than 2 are marked in bold typeface
(t-values for Φ are not available). The restrictions are accepted with a p-
value of 22%. To derive an implied estimate of λ one needs to assume
something about g and δ. In accordance with Mankiw et al. (1992), I assume
g+δ = 0.05. The estimates imply ρ̌g = 0.21, ρ̌s = 0.93, ρ̌n = 0.93, s∗ = 0.24,
n∗ = 0.01, µ = −1.09 and λ = 0.73. The estimate of µ = −1.09 is contrary
to the a priori assumption of µ ∈ (0, 1). It should be noted though, that
for all the estimates that are derived from the coordinates of Π and Φ, and
do not appear directly, it is unknown whether they are significant or not.
For example, it is known that the estimate of −(1 − ρ̌g) is significant, but
it is not known if the estimate of ρ̌g is significant. It is possible to find
the t-values of all the derived estimates, but since the calculations will be
rather involved in some cases, I have not done this. Thus, the estimate of
µ = −1.09 might as well be insignificant, in which case it would not count as
heavily against the Solow model. In any case, the rank tests above indicated
a reduced rank, and thus the estimate of the full rank model are irrelevant.

The model predicts a long-run savings rate of 24% and a long-run pop-
ulation growth rate of 1%, which is quite reasonable. The average savings
rate is 23% and the average population growth rate is 1%, which indicates
that the rates are not very far from their steady state values.
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Table 1. Rank tests

Rank CAN DEN FRA GER ITA JAP NOR SWE UK USA

Trace test p-value (percent)
r = 2 58 41 36 31 84 61 56 23 44 65
r = 1 2 57 0 29 29 55 11 20 41 57
r = 0 0 1 0 19 10 0 3 5 15 0

Recursive trace test indication
- 1/2/3 2 2/3 2 1 2 - 3 2

Most importantly, the estimates indicates that both st and nt are very
persistent since both ρ̌s and ρ̌n are close to one. This makes sense given the
indication of a reduced rank.

Continuing to Case 2, I estimate the model under the assumption of
st ∼ I(1), i.e. ρ̌s = 1. I impose a rank of 2 on Π = αβ′ and impose the
restrictions α2,1 = α2,2 = α3,1 = β′1,3 = β2,1 = β2,2 = 0 and β1,1 = β2,3 = 1.
The regression gives the following estimates

α =

−0.785 −1.942
0 0
0 −0.072

 , β′ =

(
1 0.238 0
0 0 1

)
,Φ =

0.081
0.001
0.001

 ,

implying ρ̌g = 0.21, ρ̌n = 0.93, n∗ = 0.01, µ = −1.09 and λ = 0.64, where
I have assumed s∗ = 0.24 which was the estimate of s∗ from before. The
restrictions are accepted with a p-value of 16%.

Estimating Case 3, nt ∼ I(1), i.e. ρ̌n = 1, I impose a rank of r = 2 and
α2,1 = α3,1 = α3,2 = β1,2 = β2,1 = β2,3 = 0 and β1,1 = β2,2 = 1. The
estimates are

α =

−0.785 0.320
0 −0.075
0 0

 , β′ =

(
1 0 2.582
0 1 0

)
,Φ =

0.112
0.018
0.000

 ,

implying ρ̌g = 0.21, ρ̌s = 0.93, s∗ = 0.24, µ = −1.03 and λ = 0.74, where
I have assumed n∗ = 0.01. The restrictions are accepted with a p-value of
6%.

Finally I estimate the model in Case 3, st, nt ∼ I(1), i.e. ρ̌s = ρ̌n = 1. I
impose a rank of r = 1, α2 = α3 = 0 and β1 = 1. The estimates are

α =

−0.7850
0

 , β′ =
(
1 0.238 2.582

)
,Φ =

0.082
0.001
0.000

 ,

implying ρ̌g = 0.21, µ = −1.03 and λ = 0.73, where I have assumed s∗ = 0.24
and n∗ = 0.01. The restrictions are accepted with a p-value of 7%.

All in all the restrictions implied by the Solow model are accepted in all
four cases, and the estimates are very robust towards the choice of rank for
the USA.

Most commonly, the aggregate production function is assumed to have
CRS. In this case, it means that λ + µ = 1. I also estimate the model
imposing this extra restriction. Besides the restrictions on the α and β
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Table 2. Estimates without the CRS restriction, µ+ λ R 1

I(1) p ρ̌g ρ̌s ρ̌n s∗ n∗ µ λ

Canada st 2% 0.28 0.88 0.01 -0.03 0.99
Denmark 46% 0.25 0.94 0.89 0.32 0.00 1.87 3.03
France st 6% 0.23 0.73 0.01 3.12 0.23
Germany st, nt 21% 0.22 0.03 0.99
Italy st, nt 20% 0.51 3.14 0.32
Japan nt 9% 0.28 0.91 0.37 2.73 3.01
Norway st 54% 0.26 0.93 0.00 0.75 -0.89
Sweden st, nt 2% 0.32 -0.12 1.13
UK st 11% 0.32 0.87 0.00 0.78 -4.04
USA st 16% 0.21 0.93 0.01 -1.09 0.64

matrices described above, I impose the following restrictions. In case 1, I
impose Π1,2 = −Π1,3(0.05 + n∗)/(s∗(Π3,3 + 1))(Π2,2 + 1), in case 2 I im-
pose β1,2 = α1,2(0.05 + n∗)/(s∗(α3,2 + 1)α1,1), in case 3 I impose α1,2 =
β1,3α1,1(α2,2+1)(0.05+n∗)/s∗ and in case 4 I impose β2 = −β3(0.05+n∗)/s∗.
I use the values of s∗ and n∗ implied by the estimates from case 1 without
the assumption of CRS. Using these extra restrictions I estimate the model
again for each of the four cases.

In case 1 the restrictions are not accepted with a p-value of 1%. The
implied estimates are ρ̌g = 0.27, ρ̌s = 1.01, ρ̌n = 0.92, µ = 0.94 and
λ = 0.06. In case 2 the restrictions are not accepted with a p-value of 1%.
The implied estimates are ρ̌g = 0.27, ρ̌n = 0.92, µ = 0.98 and λ = 0.02. In
case 3 the restrictions are not accepted with a p-value of 0%. The implied
estimates are ρ̌g = 0.26, ρ̌s = 1.01, µ = 0.90 and λ = 0.10. Finally, in case
4 the restrictions are also not accepted with a p-value of 0%. The implied
estimates are ρ̌g = 3.84, µ = 0.96 and λ = 0.04. The fact that the relative
size of λ and µ now changes and that p-values is low, is a sign that the
model has a poor fit with the data. It can be concluded, that the problem is
related to the size of µ which does not conform to the a priori assumption.
Note also the unreasonably high estimate of ρ̌g in case 4, indicating that this
parameter had to be “adjusted” a lot for the system to conform to CRS.

All the estimates for the ten countries can be found in Table 4 in the
appendix.

As was explained earlier, the rank tests indicated a rank of one or two.
Since the results are nicer given a rank of two, and since the p-value is
highest when st is the integrated variable, I regard the result from case 2
as the estimates most likely to be correct. The estimates from case 2 are
therefore chosen to be presented in Table 2 and 3, representing the no-CRS
and CRS case, respectively.

7.2. Results. Performing the procedure explained in the previous subsec-
tion for each of the ten countries, I end up with the results in Table 2 and 3.
Both the no-CRS and the CRS restrictions are generally accepted, and the
estimates generally have the correct sign. Three out of ten estimates of µ
and one out of ten estimates of λ are negative without the CRS restriction
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Table 3. Estimates with the CRS restriction, µ+ λ = 1

Country I(1) p ρ̌g ρ̌s ρ̌n µ λ

Canada st 0% 0.33 0.87 1.17 -0.17
Denmark 60% 0.25 0.95 0.89 1.94 -0.94
France st 0% 0.52 0.71 0.46 0.54
Germany st, nt 32% 2.29 -0.22 1.21
Italy st, nt 2% 1.65 0.58 0.43
Japan nt 15% 0.29 0.91 2.63 -1.63
Norway st 68% 0.26 0.93 0.70 0.26
Sweden st, nt 3% 2.20 0.59 0.41
UK st 18% 0.32 0.86 0.85 0.15
USA st 1% 0.27 0.92 0.98 0.02

and vice versa with the CRS restriction. The average estimate of λ and µ
without the CRS restriction is 0.54 and 1.12, respectively.

However, the estimates of λ and µ are often outside the a priori assump-
tion of λ, µ ∈ (0, 1). This contrasts with Kalaitzidakis and Korniotis (2000)
who get only estimates satisfying this assumption (given an assumption of
CRS).

8. Conclusion

I generalised the Solow model by allowing the savings rate and the pop-
ulation growth rate to vary over time and showed that the model is stable.
I then derived three equations in the growth rate of per capita output, the
savings rate and the population growth rate. These three equations where
then formulated as a VAR model on Error-Correction-Form. I showed under
which conditions the system of variables cointegrates, and derived the im-
plied restrictions on the CVAR model under each condition. I then estimated
the model using data for the seven G7 countries and Denmark, Norway and
Sweden. The restrictions on the VAR and the cointegrating relations in
the CVAR implied by the Solow model were generally statistically accepted,
although the estimates of the parameters of the Cobb-Douglas production
function where not generally between zero and one, and did not sum to one.
Overall, the Solow model does seem to describe the data reasonably well.

Future research could focus on obtaining t-values for the implied esti-
mates, estimate the model for all the countries in the Penn World Table,
perform robustness checks with regards to the assumption of g + δ = 0.05,
calculate the trace correlations (which can be loosely considered analogous
to the R2 from cross-section regressions) and estimate the model using the
growth rate of the labour force instead of the growth rate of population. It
could also be interesting to see how robust the results are towards the choice
of per capita output growth rate series.
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Appendix A. Complete estimation results

Table 4. Complete estimation results

Without CRS restriction, µ+ λ R 1 With CRS restriction, µ+ λ = 1

I(1) p ρ̌g ρ̌s ρ̌n s∗ n∗ µ λ p ρ̌g ρ̌s ρ̌n µ λ

Canada

2% 0.28 1.00 0.88 0.28 0.01 -0.03 0.99 0% 0.31 1.19 0.87 0.78 0.22

st 2% 0.28 0.88 0.01 -0.03 0.99 0% 0.33 0.87 1.17 -0.17

nt 0% 0.28 0.94 0.27 -0.23 0.96 0% 1.00 1.07 0.60 0.40

st, nt 91% 0.28 -0.23 0.97 0% 0.12 1.01 -0.01
Denmark

46% 0.25 0.94 0.89 0.32 0.00 1.87 3.03 60% 0.25 0.95 0.89 1.94 -0.94

st 55% 0.25 0.89 0.00 1.86 968.24 66% 0.27 0.89 1.57 -0.57
nt 9% 0.25 0.93 0.30 2.28 5.09 14% 0.26 0.92 2.19 -1.19

st, nt 40% 0.25 2.28 7.55 43% 2.10 1.66 -0.66

France

1% 0.23 0.91 0.73 0.28 0.01 3.12 0.00 0% 0.43 0.86 0.73 1.32 -0.32

st 6% 0.23 0.73 0.01 3.12 0.23 0% 0.52 0.71 0.46 0.54
nt 0% 0.23 0.89 0.28 3.23 -0.11 0% 1.00 0.92 1.34 -0.34

st, nt 0% 0.23 3.23 0.39 0% -1.04 0.65 0.35

Germany

11% 0.22 0.85 0.73 0.26 0.00 -1.09 -0.15 4% 0.43 0.84 0.77 1.50 -0.50

st 20% 0.22 0.75 0.00 -0.97 2.04 28% 0.17 0.77 -0.64 1.63

nt 1% 0.22 0.85 0.25 0.03 0.90 3% 0.18 0.87 0.13 0.86
st, nt 21% 0.22 0.03 0.99 32% 2.29 -0.22 1.21

Italy

2% 0.51 0.87 0.96 0.32 0.00 3.28 -2.43 2% 0.61 0.81 0.96 2.34 -1.34

st 0% 0.51 0.97 0.00 3.27 -0.13 0% 0.78 0.97 0.63 0.37

nt 1% 0.51 0.87 0.32 3.14 -2.59 1% 0.61 0.82 2.25 -1.26
st, nt 20% 0.51 3.14 0.32 2% 1.65 0.58 0.43

Japan

12% 0.28 0.92 0.97 0.37 0.00 2.63 2.93 20% 0.29 0.91 0.97 2.58 -1.58

st 1% 0.28 0.97 0.00 2.63 -2.29 0% 0.39 0.96 1.50 -0.50
nt 9% 0.28 0.91 0.37 2.73 3.01 15% 0.29 0.91 2.63 -1.63
st, nt 5% 0.28 2.73 -7.78 2% -0.31 1.50 -0.50

Norway

29% 0.26 0.92 0.92 0.33 0.00 0.71 24.90 41% 0.26 0.92 0.92 0.95 0.05

st 54% 0.26 0.93 0.00 0.75 -0.89 68% 0.26 0.93 0.70 0.26

nt 15% 0.26 0.93 0.33 1.21 -1.33 23% 0.26 0.93 0.92 0.08

st, nt 29% 0.26 1.21 0.03 45% 1.85 0.72 0.28
Sweden

0% 0.32 0.88 0.83 0.25 0.00 -0.40 0.73 0% 0.34 0.93 0.84 1.03 -0.03

st 2% 0.32 0.84 0.00 -0.39 -0.01 2% 0.33 0.84 0.66 0.34
nt 0% 0.32 0.90 0.25 -0.11 0.89 0% 0.31 0.94 0.89 0.11

st, nt 2% 0.32 -0.12 1.13 3% 2.20 0.59 0.41
United Kingdom

2% 0.32 0.93 0.87 0.24 0.00 0.78 2.02 3% 0.31 0.94 0.87 1.19 -0.19

st 11% 0.32 0.87 0.00 0.78 -4.04 18% 0.32 0.86 0.85 0.15
nt 4% 0.32 0.92 0.22 0.76 1.82 0% 1.00 0.93 1.46 -0.46

st, nt 18% 0.32 0.76 -0.75 33% 1.87 0.84 0.16

United States of America

22% 0.21 0.93 0.93 0.24 0.01 -1.09 0.73 1% 0.27 1.01 0.92 0.94 0.06

st 16% 0.21 0.93 0.01 -1.09 0.64 1% 0.27 0.92 0.98 0.02

nt 6% 0.21 0.93 0.24 -1.03 0.74 0% 0.26 1.01 0.90 0.10
st, nt 7% 0.21 -1.03 0.73 0% 3.84 0.96 0.04
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