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Abstract—We consider the problem of diluting common ran-
domness from correlated observations by separated agents. This
problem creates a new framework to study statistical privacy,
in which a legitimate party, Alice, has access to a random
variable X , whereas an attacker, Bob, has access to a random
variable Y dependent on X drawn from a joint distribution pX,Y .
Alice’s goal is to produce a non-trivial function of her available
information that is uncorrelated with (has small correlation with)
any function that Bob can produce based on his available infor-
mation. This problem naturally admits a minimax formulation
where Alice plays first and Bob follows her. We define dilution
coefficient as the smallest value of correlation achieved by the
best strategy available to Alice, and characterize it in terms of the
minimum principal inertia components of the joint probability
distribution pX,Y . We then explicitly find the optimal function
that Alice must choose to achieve this limit. We also establish a
connection between differential privacy and dilution coefficient
and show that if Y is ε-differentially private from X , then dilution
coefficient can be upper bounded in terms of ε. Finally, we extend
to the setting where Alice and Bob have access to i.i.d. copies
of (Xi, Yi), i = 1, . . . , n and show that the dilution coefficient
vanishes exponentially with n. In other words, Alice can achieve
better privacy as the number of her observations grows.

Index Terms—Statistical Privacy; Differential Privacy; Estima-
tion; Principal Inertia Components.

I. INTRODUCTION

We consider the setting where a legitimate party, Alice, has
an observation of a random variable X , whereas an attacker,
Bob, has access to a random variable Y dependent on X drawn
from a joint distribution pX,Y . Alice’s goal is to produce a
function f(X) (non-trivial) that is uncorrelated with (has small
correlation with) any function g(Y ) that Bob can produce.
We call this general setup the correlation dilution problem,
formally defined below.

Definition 1 (Correlation Dilution). Let X and Y be
discrete random variables over finite support sets X and Y ,
respectively. Let

CX , {f : X → R : E[f(X)] = 0, E[f(X)2] = 1}

and

CY , {g : Y → R : E[g(Y )] = 0, E[g(Y )2] = 1}

denote the set of normalized mean zero functions of X and
Y . Alice and Bob choose functions f ∈ CX and g ∈ CY ,
respectively. Alice aims to minimize correlation between f
and g, while Bob aims to maximize it.1 We define dilution
coefficient as

δ(X;Y ) = min
f∈CX

max
g∈CY

E[f(X)g(Y )],

where δ(X;Y ) shows the extent to which Alice can decrease
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1This situation naturally creates a Stackelberg minimax game where Alice
is the leader (plays first) and Bob is the follower.

the correlation of her function with (worst-case) Bob’s func-
tion.

We say that full correlation dilution between Alice and Bob
is possible if δ(X;Y ) = 0. In other words, full correlation
dilution is achieved if Alice can find a function f ∈ CX that is
uncorrelated with any function g ∈ CY that Bob can produce.

The correlation dilution problem, that we define, is a new
framework to study statistical privacy (see [1] and references
therein for a review of statistical privacy) that appears in a
variety of security systems. Here, X plays the role of the secret
information, Y is the information that leaks to an adversary
or eavesdropper, and we wish to identify which functions of
the secret information the adversary cannot determine reliably.
Consider, for example, a password-restricted web service (e.g.
email, online banking), where the user is asked to design a
security question in case his or her password is forgotten.
This situation is very common as studies have shown (see
e.g. [2], [3]) that most users have at least one account for
which they have forgotten their password, having to potentially
resort to a security question. Choosing a pair of security
question and its answer differs from selecting a password
in that the selected secret string is usually a direct function
of your personal information. Consequently, an attacker may
have partial knowledge of the user’s personal information
(e.g. social network observations) which, in turn, could be
correlated to the answer of certain security questions. The
problem is then reduced to choosing a function of the personal
data that bears little relation to any function that an attacker
may compute from the data at his disposal.

In choosing a security question, we seek to find a function f
of the personal data X that would still be hard to guess even
if the adversary has gathered correlated side information Y
from multiple sources. This example naturally motivates the
questions studied in this paper: What is the optimal choice
of function f (security question)? What is the fundamental
limit of minimum correlation achievable? How does this fun-
damental value change as the amount of information available
to both Alice and Bob grows? In particular, does the security
risk increase as more observations of X and Y are available?

In this paper, we answer these questions by analyzing the
principal inertia components ( [4], [5]) of the joint distribution
pX,Y . In mathematical probability, the study of principal
inertia components dates back to Hirschfeld [6], Gebelein [7],
Sarmanov [8] and Rényi [9], and similar analysis have also
recurrently appeared in the information theory and applied
probability literature (see [6]–[13]). We present the formal
definition of principal inertia components in the next section.

We prove that dilution coefficient, δ(X;Y ), can be ex-
pressed in terms of the minimum principal inertia component
of pX,Y . We then characterize the dilution coefficient when
Alice and Bob observe the sequences Xn , (X1, . . . , Xn) and
Y n , (Y1, . . . , Yn), respectively, where (Xi, Yi) are i.i.d. for
i = 1, . . . , n with joint distribution pX,Y . We show that, even
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though the mutual information between Xn and Y n grows
with n (i.e., limn→∞ I(Xn;Y n) = limn→∞ nI(X;Y ) = ∞
if X and Y are not independent), the value of δ(Xn;Y n)
vanishes exponentially with n and, in particular, δ(Xn;Y n) =
δ(X;Y )n. This demonstrates that if δ(X;Y ) < 1, which we
prove is equivalent to X not being deterministic mapping of
Y , full correlation dilution becomes possible as n grows large.

Our results imply that, in general, mutual information
I(X;Y ) does not characterize the extent to which Alice can
hide her data from Bob when the data to be hidden is of Alice’s
choosing. The intuition behind this result is that if Alice has
access to more observations Xn, then she can better exploit the
properties of the distribution pXn,Y n in order to determine her
function f(Xn). This supports the results of [14], showing the
relevance of principal inertia components rather than mutual
information in the context of secrecy. We also explicitly show
how the optimal function f can be constructed in terms of
the principal inertia components decomposition, explained
in the next section. Finally, we show a connection between
differential privacy and our measure δ(X;Y ), proving that if
Y is a differentially private mapping of X , then δ(X;Y ) is
small. This establishes the relevance of differential privacy in
the context of correlation dilution.

One line of work in the literature concerns with the oppo-
site problem of correlation dilution, i.e., extracting common
randomness from correlated observations. In particular, Wyner
[15] studied the problem of simulating a joint distribution from
shared randomness while Gács and Körner [16] studied the
problem of extracting common randomness from correlated
observations. Non-Interactive correlation distillation, a setup in
which separated agents have to each output a uniform random
bit which agree with high probability, is studied in [10], [17]
and a generalization of it is recently studied in [18].

The rest of the paper is organized as follows. In Section II,
we present the notation and definitions used in this paper. In
Section III, we formally define correlation dilution problem
and characterize its fundamental limits. In Section IV, we
establish a connection between differential privacy and our
measure of dilution δ(X;Y ). In Section V, we characterize
correlation dilution of independent copies of (Xi, Yi) for
i = 1, . . . , n as well as the optimal choice of functions, which
leads to concluding remarks in Section VI.

II. PRELIMINARIES

In this section, we define the principal inertia components
and present the notations used in this paper.
A. Notation

Throughput the paper, X and Y denote discrete random
variables with joint distribution pX,Y , where pX,Y (x, y) =
PX,Y [X = x, Y = y]. The support of X and Y are finite sets
X = {1, . . . , |X |} and Y = {1, . . . , |Y|}, respectively. The
joint distribution matrix P is a |X |×|Y| matrix with the (i, j)-
th entry equal to pX,Y (i, j). We denote by pX (respectively,
pY ) the vector with i-th entry equal to pX(i) (respectively,
pY (i)). For any vector v,

√
v is a vector with i-th entry equal

to
√
vi. We define the Q matrix QXY , a |X |×|Y| matrix with

the (i, j)-th entry equal to pX,Y (i,j)√
pX(i)pY (j)

.2

2We suppose that pX and pY are positive over their support set.

Let S and T be two finite sets. For two functions f1 : S →
R and f2 : T → R, we define f = f1⊗ f2 as f : (S, T )→ R,
where f(s, t) = f1(s)f2(t) for any s ∈ S and t ∈ T .3 We
show the transpose of vector v and matrix Q by v′ and Q′,
respectively. We denote the vector (X1, . . . , Xn) by Xn. For
a given matrix Q, let Singular(Q) denote the set of singular
values of Q.

B. Principal Inertia Components

The term “principal inertia” is borrowed from the corre-
spondence analysis literature [4] and is used in recent works
[5], [13]. Principal intertia components of the joint distribution
of two random variables was studied in many works such as
[6]–[13]. Next, we define the principal inertia components for
the discrete setting considered here.

Definition 2. We call the singular value decomposition
QXY = UΣV ′ the principal inertia decomposition of X
and Y , where Σ is a diagonal matrix with σ1, . . . , σr on the
diagonal and r = min{|X |, |Y|}. The values σ2

i , i = 1, . . . , r,
are called the principal inertia components of X and Y . In
particular, the second largest singular value is called maximal
correlation between X and Y denoted by ρm(X;Y ) = σ2,
where ρm(X;Y ) in turn, is given by

ρm(X;Y ) , sup{E[f(X)g(Y )] : f ∈ CX , g ∈ CY }.

We denote the columns of matrices U and V by u1, . . . ,u|X |
and v1, . . . ,v|Y|.

III. CORRELATION DILUTION

A. Problem Statement

We now return to the setting presented in the introduction.
Consider the scenario where Alice wishes to choose a function
f(X) of her observation X that is uncorrelated with (has small
correlation with) any function g(Y ) that Bob can produce from
his observation Y . This problem can be formulated as follows:

Alice: X → f ∈ CX , Bob: Y → g ∈ CY
Objective: min

f∈CX
max
g∈CY

E[f(X)g(Y )].

Note that we formulate the worst-case behavior of Bob,
meaning that he acts in an adversarial manner in order to
maximize the correlation after Alice chooses her function. We
denote the optimal functions by

f∗ ∈ argminf∈CX max
g∈CY

E[f(X)g(Y )],

and
g∗ ∈ argmaxg∈CY E[f∗(X)g(Y )].

B. Characterization of Correlation Dilution

Definition 3. The dilution coefficient between X and Y is
defined as

δ(X;Y ) = min
f∈CX

max
g∈CY

E[f(X)g(Y ))]. (1)

Next, we will characterize this quantity.

3In other words, if we treat functions f1 and f2 as vectors in R|S| and
R|T |, respectively, then f = f1 ⊗ f2 is the Kronecker product of these two
vectors.



Theorem 1. For random variables X and Y with joint
distribution pX,Y , let the singular values of the corresponding
QXY matrix be σ1 = 1 ≥ σ2 ≥ · · · ≥ σr. We have that

δ(X;Y ) =

{
σr, if |X | ≤ |Y|,
0, otherwise.

(2)

Proof: The proof is straightforward. We will present a
proof based on singular value decomposition of the matrix
QXY . This will help us to explicitly characterize the functions
that achieve the dilution coefficient. Let X = {1, . . . , |X |}
and Y = {1, . . . , |Y|}. We consider the following basis for
functions from X and Y to R. For any i ∈ X let φi : X → R,
where4

φi(x) = 1{x = i} 1√
pX(i)

.

For any j ∈ Y let ψj : Y → R, where

ψj(y) = 1{y = j} 1√
pY (j)

.

The choice of basis is for convenience as it will simplify
the analysis. We can write f ∈ CX and g ∈ CY in terms
of aforementioned basis as f =

∑
i aiφi : X → R, and

g =
∑
i biψi : Y → R, where ai = f(i)

√
pX(i) and

bi = g(i)
√
pY (i).

By definition of the basis, the expectation and variance con-
straints f ∈ CX and g ∈ CY translate into a ⊥ √pX ,
‖a‖2 = 1, b ⊥ √pY , and ‖b‖2 = 1. Therefore, δ(X;Y )
becomes

δ(X;Y ) = min
a

max
b

a′QXY b.

Now let QXY = UΣV T be the singular value decomposition
of QXY , and let r = min{|X |, |Y|}. Since U and V are
unitary matrices that span the column and row space of
QXY , respectively, we can further write a =

∑
i ciui and

b =
∑
i divi. Since

√
pX and

√
pY are left and right singular

vectors of QXY corresponding to the largest singular value 1,
the constraints (a ⊥ √pX , ||a|| = 1, b ⊥ √pY , and ||b|| = 1)
translate into ||c|| = ||d|| = 1 and c1 = d1 = 0. We have that

max
b

a′QXY b = max
d

r∑
i=2

σicidi =

√√√√ r∑
i=2

(ciσi)2,

where we used Cauchy-Schwartz inequality to obtain the last
equality and maximum is achieved for di = ciσi√∑r

i=2(ciσi)2
,

i = 2, . . . , n. Thus, the optimization problem simplifies to

min
c

√√√√ r∑
i=2

(ciσi)2,

where c1 = 0 and ||c|| = 1. The solution to this optimization
problem is obtained by choosing c2, . . . , c|X | such that c|X | =
1 and c2 = . . . ,= c|X |−1 = 0.
Remark 1.
• Using the data processing inequality for principal inertia

components (see [5], [19]), if X ′ → X → Y form a

4The indicator function 1{x = i} is one if x = i and zero otherwise.

Markov chain and |X ′| ≥ |X |, then δ(X ′;Y ) ≤ δ(X;Y ).
• Alice chooses function f such that c|X | = 1. This

means that a = u|X | and consequently f∗(i) =
u|X|(i)√
pX(i)

.

Similarly, we have that g∗(i) =
v|Y|(i)√
pY (i)

.

• If the minimum singular value σr of QXY is zero, then
δ(X;Y ) = 0. This implies that Alice can achieve full
correlation dilution, i.e., she can choose a function that
is uncorrelated with any function that Bob can choose.

• In addition, if the size of the support set of X is larger
than Y , then Alice can also achieve full correlation
dilution. Intuitively, this is due to Alice having more
degrees of freedom than Bob in the choice of function,
and this asymmetry allows her to achieve full dilution.

• If the minimum singular value of QXY matrix is not
unique, then the functions f∗ and g∗ are not unique. We
have many choices for a and the corresponding f∗. In
particular, a ∈ span{uj : σj = σr}. In the rest of paper,
we assume that f∗ and g∗ correspond to the smallest
singular value, i.e., a = ur and b = vr.

IV. CONNECTION TO DIFFERENTIAL PRIVACY

We first define differential privacy and then study the con-
nection between differential privacy and correlation dilution.
More specifically, we investigate the following question: if X
and Y are differentially private, then is it correct that δ(X;Y )
is small? We show that the answer to this question is yes
when a strong definition of differential privacy is used, and we
establish a bound on δ(X;Y ) when X and Y are differentially
private. Differential privacy [20] is defined as follows:

Definition 4. For a given ε, Y is ε−differentially private
from X if supj∈Y,i,i′∈X

pY |X(j|i)
pY |X(j|i′) ≤ eε, where we assume

the random variables are discrete with finite support5.

For a thorough explanation of differential privacy and its
applications see [21]. The connection between differential
privacy and other measures of privacy is studied in [22], [23].
Next, we show that if Y is differentially private from X , then
δ(X;Y ) can be bounded from above.

Theorem 2. If Y is ε−differentially private from X , then for
k−th singular value of matrix QXY , we have

σk ≤
1√
k − 1

(eε − 1)
√
eε. (3)

In particular, we have δ(X;Y ) ≤ 1√
|X |−1

(eε − 1)
√
eε.

Proof: For any i, i′ ∈ X and j ∈ Y , we have pY |X(j|i) ≤
eεpY |X(j|i′). We multiply both sides with pX(i′) and take the
summation over all i′ ∈ X to obtain

pY |X(j|i) ≤ eεpY (j) for any i ∈ X , j ∈ Y. (4)

We arbitrarily choose i0 ∈ X and consider the matrix Q̃

5The original definition of differential privacy is that
supj∈Y,i∼i′∈X

pY |X (j|i)
pY |X (j|i′) ≤ eε , where i ∼ i′ denotes that i and

i′ are neighbors. The notion of neighboring can have multiple definitions as
described in [20]. The definition presented here is local differential privacy.



defined as

Q̃(i, j) =

√
pX(i)√
pY (j)

pY |X(j|i0).

Note that since Q̃(i,j)

Q̃(i0,j)
=

√
pX(i)√
pX(i0)

, all rows of the matrix Q̃ are

a multiplicative of its i0−th row, which results in rank(Q̃) = 1.
On the other hand, since∑
i∈X

∑
j∈Y

√
pX(i)Q̃(i, j)

√
pY (j) =

∑
i∈X

∑
j∈Y

pY |X(j|i0)pX(i) = 1,

the largest singular value of matrix Q̃ is one and the rest of
singular values are zero. Next, we bound the Frobenius norm
of the difference between Q and Q̃.

||QXY − Q̃||2F =
∑

i∈X , j∈Y

(
QXY (i, j)− Q̃(i, j)

)2
=

∑
i∈X , j∈Y

pX(i)pY |X(j|i)
(
pY |X(j|i)
pY (j)

)(
pY |X(j|i0)

pY |X(j|i)
− 1

)2

≤
∑

i∈X , j∈Y
pX(i)pY |X(j|i)eε (eε − 1)

2
= eε (eε − 1)

2
,

where we used the definition of differential privacy and (4) to
obtain the last inequality. Using Hoffman-Wielandt inequality
(see e.g. [24], Corollary 7.3.5) and the previous relation, we
obtain

r∑
i=2

σ2
i ≤ eε (eε − 1)

2
.

For k−th singular value, we have
∑r
i=2 σ

2
i ≥ (k − 1)σ2

k.
We combine the two previous relations to obtain σk ≤

1√
k−1 (eε − 1)

√
eε. In particular, by Theorem 1, δ(X;Y ) =

σr ≤ 1√
|X |−1

(eε − 1)
√
eε. This completes the proof.

V. CORRELATION DILUTION WITH MULTIPLE
OBSERVATIONS

A. Problem Statement
Suppose Alice and Bob observe Xn and Y n, respectively

and {(Xi, Yi)}ni=1 are independent. The formulation of corre-
lation dilution becomes

Alice: Xn → f ∈ CXn , Bob: Y n → g ∈ CY n

Objective: min
f

max
g

E[f(Xn)g(Y n)].

B. Characterization of Correlation Dilution with Multiple
Observations
Proposition 1. Let (X1, Y1) and (X2, Y2) be two independent
random variables distributed drawn form pX1,Y1 and pX2,Y2 .
We have

δ(X1, X2;Y1, Y2) = δ(X1;Y1)δ(X2;Y2). (5)

Furthermore, if we let f∗1 , f∗2 , and f∗ denote Alice’s optimal
choice of functions for random variables (X1, Y1), (X2, Y2),
and (X1X2, Y1Y2). Similarly, if we let g∗1 , g∗2 , and g∗ denote
Bob’s optimal choice of functions. We have f∗ = f∗1 ⊗f∗2 and
g∗ = g∗1 ⊗ g∗2 .

Proof: If either δ(X1;Y1) = 0 or δ(X2;Y2) = 0, the
result follows directly. Now assume that both δ(X1;Y1) > 0

and δ(X2;Y2) > 0. We will use tensorization of principal
inertia components (see e.g. [19]):
Let (X1, Y2) and (X2, Y2) be independent random variables
distributed drawn from pX1,Y1

and pX2,Y2
, respectively. Let

QX1Y1
, QX2Y2

, and QX2Y 2 denote the Q matrix of random
variable (X1, Y1), (X2, Y2), and (X1X2, Y1Y2). We have
QX2Y 2 = QX1Y1

⊗QX2Y2
and its set of singular values is

{σ(1)
i σ

(2)
i : σ

(1)
i ∈ Singular(QX1Y1), σ

(2)
i ∈ Singular(QX2Y2)}.

Using Theorem 1 and tensorization, we obtain

δ(X1, X2;Y1, Y2) = δ(X1;Y1)δ(X2;Y2),

f∗ = f∗1 ⊗ f∗2 and g∗ = g∗1 ⊗ g∗2 , which completes the proof.

Corollary 1. Let (X1, Y1), . . . , (Xn, Yn) be n i.i.d random
variables distributed drawn from pX,Y . We have

δ(Xn;Y n) = δ(X;Y )n ≤ σnr , (6)

with equality if δ(X;Y ) > 0. Moreover, if (Xi, Yi) are
independent random variables distributed as pXiYi

for i =
1, . . . , n, then we obtain

δ(Xn;Y n) =

n∏
i=1

δ(Xi;Yi). (7)

Proof: The proof follows by induction on n and using
Theorem 1.
Remark 2. If δr < 1, we have that limn→∞ δ(Xn, Y n) =
limn→∞ δnr = 0. Therefore, as n goes to infinity, Alice can
achieve full dilution exponentially fast, meaning that she can
choose a function that is uncorrelated with any function that
Bob can choose. This may appear counter-intuitive at first,
since a natural worry about security arises when the number of
observations increases. Since the Mutual information between
Xn and Y n is higher than between X and Y , achieving
privacy with (Xn, Y n) seems to be harder than with (X,Y ).
However, we have δ(Xn, Y n) ≤ δ(X;Y ), meaning that Alice
can dilute better when both Alice and Bob have n i.i.d. copies.
The intuition behind this observation is that if Alice has
more observations, then she can better exploit the inherent
uncertainty of Xn given an observation of Y n. In other words,
even though I(Xn;Y n) grows, H(Xn|Y n) also grows, and
Alice can find a mapping of Xn such that f(Xn) cannot be
reliably inferred from Y n.

Next, we find a necessary and sufficient condition under
which δ(X;Y ) < 1 holds.

Lemma 1. For a given pX,Y , δ(X;Y ) < 1 if and only if X
is not a deterministic function of Y .

Proof: Let X = z(Y ). Thus, letting g(Y ) = f(z(Y )) we
have δ(X;Y ) = minf E[f(X)f(z(Y ))] = 1. We now show
the opposite direction. Suppose that δ(X;Y ) = 1. We show
that either X or Y is a function of the other one. Suppose
without loss of generality |X | ≤ |Y|. Since σ1 = 1, the
equality δ(X;Y ) = 1 shows that all singular values of QXY
are one. Therefore, all eigenvalues of QXYQ′XY are one.
Matrix QXYQ′XY is symmetric, which shows that QXYQ′XY
is equal to identity matrix. Next, we show that there exists



no j ∈ Y such that pXY (i, j) > 0 and pXY (i′, j) > 0 for
i 6= i′ ∈ X . Assume the contrary and consider the entry at
(i, i′) of QXYQ′XY , which must be zero. We have that

[QXYQ
′
XY ]i,i′ =

∑
y∈Y

pXY (i, y)pXY (i′, y)

pY (y)
√
pX(i)pX(i′)

≥ pXY (i, j)pXY (i′, j)

pY (j)
√
pX(i)pX(i′)

> 0,

which is a contradiction. The fact that there exist no j ∈ Y
such that pX,Y (i, j) > 0 and pX,Y (i′, j) > 0 for i 6= i′ ∈
X guarantees that for any j, there exist only one i with
pX,Y (i, j) > 0. This establishes that random variable X is
a deterministic function of random variable Y .
Example 1 (Discretion versus misinformation).
• Misinformation: Let X = (X1, X2) and Y = (Y1, Y2).

For i = 1, 2, assume that X1, X2 are i.i.d. uniform ran-
dom variables over {0, 1}, and Yi is the result of passing
Xi through a binary symmetric channel with cross-over
probability p < 1

2 . We have δ(X;Y ) = (1− 2p)2 and

f∗(00) = f∗(11) = 1, f∗(01) = f∗(10) = −1,

g∗(00) = g∗(11) = 1, g∗(01) = g∗(10) = −1.

• Discretion: Let X = (X1, X2) and Y = (Y1, Y2). For
i = 1, 2, assume now that Xi has an i.i.d. uniform
distribution over {0, 1} and Yi is the result of passing Xi

through a binary erasure channel with error probability
p < 1

2 . We have δ(X;Y ) = (1− p) and

f∗(00) = f∗(11) = 1, f∗(01) = f∗(10) = −1,

g∗(00) = g∗(11) =
1

1− p
, g∗(01) = g∗(10) = − 1

1− p
,

g∗(0e) = g∗(e0) = g∗(1e) = g∗(e1) = 0.

Note that (1−2p)2 < (1−p) (for p ≤ 1
2 ). This shows that

BSC better dilute Alice’s function, comparing to BEC.
• In general, for n-fold product of the BSC and BEC with
Xi uniformly distributed, the function f∗ is the parity bit,
i.e., we have that f∗(x1, . . . , xn) = (−1)

∑n
i=1 xi .

Remark 3. The formulation of the correlation distillation
problem studied in [10], [16], [17] is as follows:

Alice: Xn → f ∈ CXn , Bob: Y n → g ∈ CY n

Objective: max
f,g

E[f(Xn)g(Y n)],

where, in contrast with correlation dilution problem, both Al-
ice and Bob intend to maximize correlation without interaction
with each other. The answer to this problem also relates to
principal inertia components, and in particular, to the maximal
correlation ρm(X;Y ).

VI. CONCLUSION

We considered a setting where a legitimate party, Alice, has
an observation of random variable X , whereas an attacker,
Bob, has access to a random variable Y dependent on X
drawn from a joint distribution pX,Y . Alice’s goal is to
produce a function of her data that is uncorrelated with (has
small correlation with) any function that Bob can produce.
We defined dilution coefficient, denoted by δ(X;Y ), as the

fundamental minimum correlation that Alice can achieve. We
characterized dilution coefficient in terms of the minimum
principal inertia component of pXY and we explicitly found
the optimal function to achieve it. We then established that
if Y is ε-differentially private from X , then δ(X;Y ) can be
bounded in terms of ε. Finally, we considered the case where
Alice and Bob have access to i.i.d. copies of {(Xi, Yi)}ni=1,
and showed that δ(Xn;Y n) = δ(X;Y )n → 0 (if X is not a
deterministic function of Y , then δ(X;Y ) < 1). This implies
as n grows, dilution coefficient vanishes exponentially and
Alice can achieve full correlation dilution.
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