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Abstract—Following rising demands in positioning with GPS,
low-cost receivers are becoming widely available; but their energy
demands are still too high. For energy efficient GPS sensing in
delay-tolerant applications, the possibility of offloading a few
milliseconds of raw signal samples and leveraging the greater
processing power of the cloud for obtaining a position fix is
being actively investigated. In an attempt to reduce the energy
cost of this data offloading operation, we propose Sparse-GPS1:
a new computing framework for GPS acquisition via sparse
approximation. Within the framework, GPS signals can be effi-
ciently compressed by random ensembles. The sparse acquisition
information, pertaining to the visible satellites that are embedded
within these limited measurements, can subsequently be recovered
by our proposed representation dictionary. By extensive empirical
evaluations, we demonstrate the acquisition quality and energy
gains of Sparse-GPS. We show that it is twice as energy efficient
than offloading uncompressed data, and has 5-10 times lower
energy costs than standalone GPS; with a median positioning
accuracy of 40m.

Index Terms—GPS, synchronization, location sensing, energy
efficiency, sparse approximation, compressed sensing

I. INTRODUCTION

Location is an important service in mobile sensing. The
global positioning system (GPS) is the most pervasive tech-
nology that provides this fundamental service. The ubiquity of
GPS has, henceforth, grown beyond billions of smart phones to
embedded devices for enabling many novel outdoor applica-
tions across several domains. GPS receivers have, therefore,
become more versatile in terms of cost, size and weight;
but are still demanding in energy usage. It is an artifact of
the computationally intensive GPS receiving operation, which
accounts for more than 80% of the total energy expenditure of
the sensing platform on which it is coupled [1]–[3].

The high energy profile is a combined effect of two primary
factors. First, the GPS Ephemeris data, which contains the time
and satellite trajectory information, are sent by the satellites at
a very low data rate of 50 bps. As a result, a standalone GPS
receiver needs to be turned on for up to 30 seconds in order to
receive a complete data packet from the satellite. Second, the
task of identifying and tracking the visible satellites, decoding
their navigational information and performing the least-square
calculation involves a significant amount of processing. It gets

1Prasant Misra∗ was a postdoctoral fellow, and Wen Hu† was a visiting
researcher at SICS Swedish ICT in Stockholm during the course of this work.

more intensive due to the weak GPS signal strengths (about
20 dB below the noise level); and Doppler frequency shifts
(≈ 4.2 kHz) caused by the satellite motion (and receiver move-
ment on the ground) [4]. As a consequence, the first factor
makes it difficult to duty-cycle the GPS receiver for saving
energy; while the second necessity introduces the need for a
sophisticated CPU for complicated computations. The existing
state-of-the-art methodology of obtaining a GPS position fix
is, therefore, not suitable for many mobile sensing applications
such as livestock [5] and wildlife monitoring [6]; which need
non-intrusive position tracking support on resource constrained
platforms (such as sensor nodes) for long durations.
Application context and challenges. This paper is motivated
by the need to monitor megabats: flying foxes, a species that is
responsible for the spread of deadly diseases such as Hendra,
Ebola, and SARS-like Coronavirus. For this application, the
existing platform (packaged as a collar) is a custom designed
small, lightweight, battery powered, multi-modal sensing ca-
pable wireless sensor node. It is severely constrained in terms
of available energy resources required for sensing, processing,
storage and communication; and can only harvest limited
energy. It must collect data in a delay-tolerant way; and also be
capable of long-term, unsupervised operation during which it
may not be in contact with the base station for data offloading.
It uses GPS as the primary sensor for location tagging; which
is the best modality for outdoor localization, but leads to faster
energy depletion than non-GPS aided sensing techniques [6].

With respect to delay-tolerant applications [5]–[7], existing
solutions provide coarse-grained GPS activity control. They
consider GPS as a black-box module, and tradeoff the energy
expense in deriving the position fix by adaptively using it
with other sensors [3]. Ramos et al. [8] and Liu et al. [9],
by their recent LEAP and CO-GPS solutions, have shown
that significant energy savings can be achieved by exploiting
the coding nature of the GPS signal, and splitting the post-
processing mechanism into local and cloud computation. Such
a solution offers a two-fold advantage of: (i) significant duty-
cycling of the GPS device, as it only needs to run for a few
milliseconds at a time to collect the most crucial information
from the satellites; and (ii) avoids the need for a powerful local
CPU, by transferring raw data to the cloud and leveraging its
greater processing power to calculate the location. While such
a data acquisition and processing model is well suited for the
target application, the task of offloading data to the base station
(or a cloud server) introduces an additional cost in energy.
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Motivated by the need to limit this expenditure, we propose
Sparse-GPS.
Contribution. Sparse-GPS (or, S-GPS) is based on a mech-
anism to compress and transmit the condensed GPS data to
the offloading device; wherein the coarse information of the
carrier frequency (from Doppler shifts), and time delay of
the satellite signals can be efficiently recovered to determine
the visible satellites. Cross correlation is the conventional
method of obtaining these parameters2; but, given its sparse
information content, we make use of the theoretical results
in sparse approximation to achieve similar performance. The
underlying information theory suggests that a signal can be
recovered by `1-minimization [11], when its representation is
sufficiently sparse with respect to an over-complete dictionary
of base elements. The feasibility of such a mechanism was
first demonstrated by Misra et al. [12] for static ranging sce-
narios with acoustic signals. However, recovering information
from compressed GPS (radio) signal is non-trivial due to its
very weak signal strength, and two-dimensional (time delay,
frequency shift) search mechanism.

In this paper, we overcome these challenges, and make the
following contributions.
• We introduce Sparse-GPS, a new computing framework for
energy efficient GPS acquisition via sparse approximation.
We propose a new dictionary that combines the information
sparsity along all search dimensions, and achieves up to two
order of magnitude better sparse representation than standard
DCT and FFT domains.
• We analyze the dependency of the received signal-to-noise
ratio and satellite acquisition count on data length. We show
that using a data length of 10-20 ms over 2 ms, there is a high
probability of acquiring 50% additional satellites with both the
conventional and S-GPS method.
• We demonstrate the GPS acquisition capability and energy
gains by empirical evaluations on real GPS signals. We show
that S-GPS is twice as energy efficient than offloading uncom-
pressed data, and has 5-10 times lower energy cost than a
standalone GPS; with a median positioning error of 40 m.
In light of our contributions; we elaborate on the design of S-
GPS in Section II, present its evaluation in Section III, survey
related work in Section IV, and summarize our work with
concluding remarks in Section V.

II. THE DESIGN OF S-GPS

A. Motivating Application

To ground our discussion, we consider the application
context of monitoring flying foxes. Wildlife managers are
greatly interested in studying their ecology as flying foxes
are the potential carriers of a number of infectious diseases
that threaten livestock and humans; and are recognized as
agricultural pests that cause damage to fruit crops worth
millions of dollars. In this regard, position tracking is an
important requirement for obtaining their roost camp locations,
and also to understand their movement patterns (of which, little
is known).

2Another approach could be to calculate the cross-correlation result on the
receiver itself, and only offload the resultant coefficient. However, on-board
processing is still expensive as a large fraction (≈ 75%) of the GPS energy
is consumed by this operation [10].

System architecture. The system is composed of three units.
The mobile sensing unit consists of smart collars that are
deployed on flying foxes (typically, attached to the neck of
the bat by trained, expert handlers). They are responsible for
gathering and logging sensed data. The base station unit con-
sists of resourceful gateway nodes that, on one hand, facilitate
offloading of data from the smart collars over a low-power
wireless radio connection; while on the other hand, upload
the same to the central servers over a 2G/3G connection. This
static infrastructure is placed at known bat roost camps, and
can be expanded as newer ones are discovered. The central
storage and control servers form the final system unit where
data is permanently stored, processed, and analyzed.
Platform details. Each smart collar, with a combined weight
of less than 30 g, incorporates a system-on-chip (SoC) with a
GPS module [13]; inertial, acoustic, air pressure and temper-
ature sensors; flash storage, two solar panels, and a 300 mAh
Li-Ion battery. The SoC comprises of a microcontroller core,
and an IEEE 802.15.4 complaint radio transceiver.
Operational goals. Flying foxes are known to travel
into/across remote, inaccessible areas where cellular coverage
may not be available. The mobile sensing platform, therefore,
must operate with high delay tolerance in collecting both
daytime and nighttime position logs and operate over long
periods; until the bats return to the roost camps where the
sensed data can be transfered to the base station. Hence, in this
application, energy is a critical resource and its conservation
is greatly valued.
Road-map. Of all the sensing units on the platform, GPS is
the most energy consuming module. For decreasing the energy
cost of obtaining a position fix, we adopt an approach similar to
Liu et al. [9] where the raw GPS baseband signals are stored
on-board, and the intensive location computation is delayed
to the point in time when the data is uploaded to the central
servers. However, given the resource constraints, our key idea is
to store compressed GPS samples that would translate to lower
offloading cost of energy over the low-power wireless radio
compared to its uncompressed case. In the following section,
we present a crisp overview of the GPS receiving operation
in order to identify unique features that can facilitate efficient
compression.

B. An Overview of GPS Receiving

The 32 GPS satellites continuously transmit CDMA coded
navigational messages at a (low) data rate of 50 bps. This
allows them to share the same carrier frequency of 1.575 GHz,
and yet encode a different pseudo-random noise (PRN) se-
quence. For civilian applications, each satellite uses a unique
sequence of 1023 bits (known as the course/acquisition, or C/A
code) that is transmitted at 1023 kbps. The C/A code, therefore,
repeats every millisecond that results in 20 recurrences for each
data bit sent.

A GPS receiver can calculate (or multilaterate [14]) its
position by computing the travel time of the RF signals
from each (visible) satellite to itself, and combining it with
the respective satellites’ trajectories at the time. Considering
the high (300 m/µs) propagation speed of RF waveforms,
the receiver’s estimate of the time delay must be precise to
the microsecond level. The respective algorithm derives the
millisecond (NMS) and sub-millisecond (subMS) part of the



propagation time differently; wherein the NMS is decoded from
the packet frame (every 6 s), while the subMS is calculated by
correlating the C/A code in the acquisition phase.
GPS acquisition. It is, generally, the start-up mode in the post-
processing chain3 that aims to determine the set of visible
satellites. The presence of any of the 32 satellites can be
detected by identifying their unique 1023 bit C/A code; and is
done by cross-correlating the C/A codes in the received GPS
signal, typically shifted and scaled in time, with each known
(C/A code) reference copy. Since the C/A codes are orthogonal
to each other, any visible satellite will record a detectable spike
in the correlation result. The motion of the satellites, however,
introduces a Doppler shift in the received signal that needs to
be corrected.

In order to minimize the detection anomaly and success-
fully decode the data from a given satellite, the acquisition
algorithm performs a two dimension search on the received
waveform (say, x ∈ Rn); wherein, for each satellite, the
locally generated reference signal copy (say, p ∈ Rn) is cross-
correlated with x. p ensembles combinational values from two
different sweeps:
• over all possible 1023 code shifts τ
• (minimum of) 41 equally spaced frequency bins ωd of width
500 Hz within ±10 kHz of the center frequency ωc.
The sequence r ∈ Rτ×ωd is the cross-correlation of p and x,
and is defined as:

r =

n−1∑
n=0

p[n− τ ]e−jωdnx[n] (1)

p is separately modulated by carriers e−jωdn and shifted in
time. The center frequency of the respective bins in ωd are
given as: [(ωc −∆ω), ..., (ωc + ∆ω)] where, ∆ω is referred
to as the frequency bin width or search step. The maximum
likelihood estimate of (τ , ωd) (say, τ̂ and ω̂d), which represent
the subMS part of the propagation time and Doppler shift, is
obtained by maximizing the function:

(τ̂ , ω̂d) = arg max |r|2 (2)

Road-map. The operation of computing Eq. 2 is expensive,
and demands high memory and energy resources. Considering
the limited energy reserves on our target platform, it is desir-
able to scale down its complexity by a simpler process while
still being capable of precisely estimating (τ̂ , ω̂d) during acqui-
sition. This, coupled with the application-specific requirements
of high delay tolerance and data offloading support, raises the
scope for a new framework.

Fig. 1 shows the correlation outputs, as given by Eq. 2,
for a collected GPS trace. In theory, only one dominant peak
should be observed at the correct (code phase, frequency bin)
combination; whereas, peaks of smaller magnitude may co-
exist due to signal and noise interference. Fig. 1 exactly echoes
this predication, where the most dominant coefficient (or corre-
lation peak) is the only useful information, and is representative
of the signal’s time delay and the Doppler shift. Therefore,
our idea is to exploit the underlying information sparsity in
the signal model to design a simpler acquisition scheme that
supports efficient compression, and later recovery. In the next
section, we discuss the theory of sparse approximation that can
exploit this sparse feature.

3If the existing position lock of satellites are within a second, the receiver
can skip the acquisition process and directly start tracking.

Fig. 1: GPS acquisition by cross-correlation. The information
content is sparse as the value of the code phase (i.e., time
delay) and frequency bin (i.e., Doppler shift) corresponding to
the correlation peak is only useful.

C. An Overview of Sparse Approximation

Motivating insight. One can accurately and efficiently recover
the information of a high dimensional signal (as x) from only a
small number of compressed measurements, when the signal-
of-interest is sufficiently sparse in a certain transform domain
[11], [15].

The sparsifying domain, referred to as a dictionary Ψ ∈
Rn×d, is a collection of parametrized waveforms that express
x as a linear combination of a few significant elements. It is
represented as:

x = Ψs =

d∑
i=1

siψi (3)

where s ∈ Rd is a coefficient vector of x in the Ψ domain,
and ψi is a column of Ψ. If s is sparse, then it is possible
to recover the position and value of its coefficients by a
combinatorial problem; but is intractable. In pursuit of a
polynomial time solution, Donoho [11] showed that, for a large
system of equations, s can still be recovered by the following
`1-minimization problem with high probability.

(`1) : ŝ1 = arg min ‖s‖1 subject to: x = Ψs (4)

It has also been shown that dimensionality reduction by ran-
dom linear projections preserves the `2 distance (i.e., all useful
information) in the projection domain [16]. `1-minimization
can still be used to recover the sparse s from the projected
measurements with an overwhelming probability, even though,
its dimension is significantly reduced. This operation can be
achieved using a random sensing matrix Φ ∈ Rm×n as:

y = Φx = Φ(Ψs) = (ΦΨ)s (5)

where m � n and y ∈ Rm is the measurement vector.
However, for recovery, the columns of (ΦΨ) should be as
independent as possible so that the information regarding each
coefficient of s is contributed by a different direction; and this
is achievable if Φ and Ψ are more incoherent. Ensembles of
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random matrices sampled independently and identically (i.i.d.)
from Gaussian and ±1 Bernoulli distributions are largely
incoherent with any fixed dictionary Ψ, and therefore, permit
computationally tractable recovery of s [11], [15].

D. Details of S-GPS

The critical aspect for casting the GPS acquisition problem
into the general framework of sparse approximation is to
design a sparsifying representation dictionary. In this section,
we explain the architecture of S-GPS (Fig. 2) that supports
the essential design principles to efficiently compress the GPS
signals on the target platform, offload to the base station,
and facilitate GPS acquisition on the control server. The
back-end operation to convert the acquisition measurements
into position coordinates leverages the modified coarse-time
navigation (CTN) technique [8], [9].

1) Design of Representation Dictionary:
Design guidelines. The general criteria for designing a reliable
representation dictionary Ψ requires it to sufficiently sparsify
the signal x. However, the motion of transmitter (satellite)
relative to the receiver introduces Doppler shifts that also need
to be accounted during the GPS acquisition mechanism. This
2D search over the delay-Doppler binned-space introduces an
important design criteria; where, Ψ should be able to preserve
the propagation channel profile and frequency shift informa-
tion while adhering to the basic design guidelines outlined
by the underlying theory. We also improvise an additional
criteria where Ψ should facilitate a faster recovery mechanism
that implicitly derives the code phase and frequency bin
results without reconstructing the original signal. Therefore,
the design complexity is to identify and construct a befitting
representation dictionary that satisfies all of the aforesaid
requirements.
Design intuition. To this end, we were guided by Eq. (1)
where the locally generated reference copy ensembles values
from two different sweeps: a frequency sweep over all possible
carrier frequencies of IF±10 kHz in steps of 500 Hz (resulting
in 41 frequency bins), and a code phase sweep over all 1023
different code phases. This suggests that the received signal x
could be sparsely represented in the 2D delay-Doppler binned-
space if we design a representation dictionary having column
element that enumerate the C/A codes of the ith (where i ∈ {1-
32}) satellite for each possible (codephase, frequency bin)
combination.

Design execution. For realizing this design goal, we adopt a
circular matrix design of Ψb ∈ Rn×1023 for each frequency bin
b. The columns of Ψb correspond to the 1023 different versions
of the C/A code (c1, c2, ..., c1023) with different code phases
multiplied with respective phase points of the center frequency
of bin b. Ψb is of length of n corresponding to the length of
a complete code (i.e., 1 ms sampled at a chosen frequency).

For each satellite i, the coarse acquisition phase provides an
estimate of the (code phase) delay τ and the Doppler shift ωd,
which are integer multiples of the chip duration and frequency
search step, respectively. One chip in the code is roughly
1µs that converts to a delay measurement resolution of about
300 m. Therefore, for obtaining a finer code phase precision,
an oversampling factor λ is introduced into the design of Ψb

such that, for each frequency bin b, Ψb ∈ Rn×(λ×1023).
Design types. Depending on the manner of solving for the
code phase, frequency bin and satellite, the following three
solution categories can be identified. We will evaluate the
quality of three different dictionary designs in next section.
• Multi-channel stacked. The key element in a multi-channel
design (Fig. 3(a)) is to provision for independent channels,
each dedicated to a satellite, that can be processed in parallel.
For each satellite i, the algorithm needs to iterate over b bins,
each with its respective Ψb. This, in fact, bears resemblance
to the native method of GPS acquisition.
• Multi-channel flattened. For each satellite i, the dictionary is
given by Ψi ∈ Rn×(b×λ×1023) (Fig. 3(b)); thereby replacing b
different instances of Ψb with a single flattened matrix Ψi.
• Single-channel flattened. In contrast to the previous two de-
signs, a single-channel design aims to process the information
for all satellites at once (Fig. 3(c)). The dictionary is, therefore,
given by Ψa ∈ Rn×(i×b×λ×1023).

2) Compression, Recovery and Acquisition: We adhere to
the same notation of p ∈ Rn and x ∈ Rn to represent the
transmitted and the received GPS signal vectors corresponding
to 1 ms, for each satellite i.
Compression. On the target platform, the dimensions of x are
significantly reduced by multiplying it with a random sensing
matrix Φ ∈ Rm×n resulting in the measurement vector y ∈ Rm
(m � n) as: y = Φx. m is related to n by the compression
factor α given as: m = α n, where α ∈ [0, 1]. Φ is a binary
sensing matrix with its entries i.i.d. sampled from a balanced
symmetric Bernoulli distribution of ±1. A balanced Φ consists
of ±1 at equal probability, where each row contains equal
number of 1’s and -1’s. Therefore, in each row of Φ, the
sum of the elements is always zero. A balanced Φ provides a
higher probability of detection (at recovery) if the noise in x
is Gaussian [17]. The m samples of y are transferred to the
base station.
Recovery via sparse approximation. The base station uploads
the compressed measurements to a service application on the
control server. It requires the a-priori knowledge of the seed
that generates Φ, and the dictionary Ψ. Ψ ∈ {{b×Ψb},Ψi,Ψa}
provides the representation basis where x can be sparsely
represented by s4 as: x = Ψs. However, due to noise (white
Gaussian) v ∈ Rn present in real data, x may not be exactly

4Note: depending on the choice of Ψ, s provides a different result. For
example: for Ψ ∈ Ψi, s specifies the joint (delay, Doppler) result for the
respective satellite i; while, for Ψ ∈ Ψa, s provides the same pair of estimates
for all 32 satellites.
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Fig. 3: Representation dictionary Ψ designs.

expressed as a sparse superposition of s; and so, x = Ψs + v,
where v is bounded by ‖v‖2 < ε0. The sparse coefficient
vector s is recovered by solving the following `1-minimization
problem for a given tolerance ε via the second-order cone
programming.:

(`1r) : ŝ = arg min ‖s‖`1 s.t: ||ΦΨs− y||2 ≤ ε (6)

(`1r) is a stable and reduced version of `1-minimization. It
is known as Lasso in the statistical literature, and regularizes
highly undetermined linear systems when the desired solution
is sparse. Depending on the choice of Ψ, (`1r) needs to be
solved individually for each satellite, or once for all satellites.

Input: 
Compressed 
measurements

L1
r

L1
r

ψ

Output: 
Indicator vector

PRN code 
generator

Local 
oscillator

90o

ψQ
Ф

Generated once, 
and stored

Fig. 4: Search algorithm of S-GPS.

Acquisition. As explained earlier, Ψ is obtained by the mul-
tiplication of the locally generated code sequences of the
respective satellite(s) and the locally generated carrier signal.
It is important to emphasis that the multiplication by a locally
generated carrier signal produces the phase signal I, and
multiplication with its 90o phase-shifted version generates the
quadrature signal Q. Therefore, Eq. 6 is solved with ΨI (i.e., in-
phase part of Ψ) and ΨQ (i.e., quadrature-phase of Ψ) to obtain

the respective solutions ŝI and ŝQ. Finally, the summation of
the point-wise absolute values of ŝI and ŝQ provide an estimate
of ŝ1 (Fig. 4).

As the C/A code is modulated onto the I part, the correct
match should only be located in the I part of the signal.
However, as the phase of the acquired signal is unknown, the I
part of the signal generated at the satellite may not necessarily
correspond to its recovered version. It is, therefore, important
to search across both the I and Q components of Ψ. The
location of the tallest peak in the coefficient vector ŝ1 (also
referred to as the indicator vector: Fig. 4) provides an estimate
of the propagation delay of the signal from the satellite(s) to
the receiver, and its respective Doppler shift.

E. Analysis of S-GPS

In this section, we analyze different dictionary designs,
and also, the challenges in correctly and reliably identifying
the visible satellites. Since our requirement was to modify the
manner of GPS acquisition, standard black-box methods that
directly output the (code phase, frequency bin) information
were not suitable.
Experimental platform. We conduct this study (and further
evaluations) using a SiGe GN3S v3 USB RF front-end [18].
It consists of two integrated circuits: first, for RF amplifica-
tion, filtering, down conversion, and baseband sampling; and
second, for reading the digital samples (obtained from the first
stage) and sending them in real-time to the PC through the
USB. The sampling frequency, intermediate frequency, and
capture data format of the front-end are user configurable. The
captured GPS data is then post-processed on the PC using a
software-defined implementation of S-GPS.
Data size. As the C/A code repeats every millisecond, 1 ms
of data is enough for acquiring satellites. However, as the
data packets are modulated by the C/A code at 50 bps, there
is a possibility of a bit transition every 20 ms. If this bit
transition occurs in a 1 ms signal sample, there is a high
possibility of failure in acquiring the corresponding satellite
details. Therefore, 2 ms chunk of data is more reliable for
satellite acquisition, and is widely adopted in practice [4], [8]–
[10], [14].

1) Representation Dictionary: The multi-channel stacked
matrix design Ψ ∈ {b × Ψb} breaks down the joint (delay,
Doppler) estimation problem, for each satellite, into b sub-
problems (of smaller dimensions) that need to be solved
independently. The b solutions are, subsequently, accumulated
to identify the position of the strongest coefficient. Such an
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{DCT & FFT}

Fig. 5: Comparison of sparsity levels. The signal-of-interest
has two order of magnitude more sparse representation in
the multi-channel flattened dictionary than the DCT and FFT
domains. Its combined (delay, Doppler) sparsity is also signif-
icantly better than their respective individual levels provided
by the multi-channel stacked dictionary. The figure has been
scaled down by a factor of 16 for clearer depiction.

approach results in b locally optimal solutions that may not
necessarily be the best (global) sparse representation of the
(delay, Doppler) combination for the respective satellite. This
can be justified by Fig. 5(a) where the b stacked dictionaries
are sparse in the representing the code phase delay, but not the
frequency bin.

The multi-channel flattened matrix design Ψ ∈ Ψi is a
combined representation of the (delay, Doppler) sparsity for
each satellite, and facilitates their joint recovery by Eq. 6. The
single-channel flattened matrix design Ψ ∈ Ψa enhances the
idea of jointly recovering all sparse information. It combines
the (delay, Doppler) sparsity of all available GPS satellites
in one compact representation that can be solved at once by
Eq. 6. Although such as design is valid, our results showed
that the `1-minimizer gets biased towards the satellite with
the strongest signal; and hence, under performs in detecting
remaining satellites with weaker signal levels. In terms of
memory resources, Ψa needs 32 times more space than Ψi; and
can easily scale into ten of gigabytes or terabytes depending
on the choice of the oversampling factor λ. In this regard, Ψi

strikes a good tradeoff between sparsity and space complexity.
Therefore, we adopt the multi-channel flattened Ψi design as
the representation dictionary5.

We evaluate the quality of the new dictionary, inherently
based on the foundations of a circular matrix design; and
also, compare it against the popular DCT and FFT domains.
A circular matrix is a special kind of Toeplitz matrix where
each row vector is rotated one element to the right (or left)
relative to the preceding row vector. In this regard, the design
of Ψ for each Ψb bears similarity to the Toeplitz matrix
dictionary proposed by Misra et al. [12]. However, their design
did not consider the effect of motion and Doppler errors; and
hence, sparsely represents x only in the delay space but not
in the Doppler space. Fig. 5 compares the sparsity levels of
x in the different representation dictionaries. The respective
coefficients are sorted by their magnitude that decay like the

5The I and Q components of Ψi are generated once for all satellites, and
stored; rather than repeated re-generations at runtime (Fig. 4).

Fig. 6: GPS acquisition by sparse approximation. The
quality of acquisition is the same as in Fig. 1 for the same
data set.

power law; i.e., the dth largest entry of the reordered s obeys
|s|(d) ≤ Const·d−r for r ≥ 1. The fastest decay characteristic
is observed in the multi-channel flattened dictionary. It offers
the most sparse representation; and hence, will facilitate the
most accurate approximation of the sparse solution with the
smallest number of measurements. Here, it is important to note
that sparsity is a direct outcome of the design of the dictionary.

2) Acquisition Challenges and Mitigation:
Basic performance test. Using 20 sets of raw GPS data
taken from four different locations and time of the day,
we analyze the satellite acquisition performance of S-GPS
against SoftGNSS [14], a commercially available MATLAB
supported software-defined GPS package. The acquired
signals6 were compressed at different configurations of
α; ranging between 0.10-0.30 that translate to 90%-70%
compression, respectively.

For illustration purpose, the acquisition quality of S-GPS
with 70% (i.e., α = 0.30) compressed measurement is shown
in Fig. 6; with the same data set that was used for obtaining
the cross-correlation result shown in Fig. 1. We observe
that both the methods yield the same result (code phase =
515 chips and frequency bin index = 19) for the position
of the tallest spike. Although measurement noise leads to
additional correlation peaks of smaller magnitudes, they are
not important parameters for distance estimation.

A satellite was assumed to be acquired if the metric
P, obtained by dividing the maximum/peak coefficient in
ŝ1 by the noise floor, exceeds a certain threshold T. By
empirical tests, we found that T greater than 5 was a reliable
threshold. On an average, S-GPS was able to correctly view
2-3 satellites in each 2 ms chunk of every data segment, while
the same was 2.5 times more for SoftGNSS. The tally of the
detected satellites was, therefore, considerably lower than the
minimum count required for obtaining a GPS position fix.

6SiGe GN3S v2 front-end configuration: sampling frequency: 8.1838 MHz,
intermediate frequency: 38.4 KHz, data format: 1bit real in short char binary
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(c)

Fig. 7: S-GPS acquisition challenges with 2 ms of data. (a):
Low peak sharpness (i.e., ratio of the first to the second tallest
peak), and high recovery noise (b): Incorrect recovery (c): Low
peak sharpness, but low recovery noise. The correct peak is at
chip location (a)&(b): 4.8e+5 (c): 3.5e+5. Note: K = # data
chunks of length 1 ms; α = compression factor.

We investigate the reasons for the unsatisfactory
performance of S-GPS. We understand that GPS signal
strengths are, generally, very weak; and are in the range of
18-25 dB below the noise level. While the signal is efficiently
captured by a limited number of random measurements and
is recovered by `1-min in the best possible manner, the low
SNR levels (especially below 20 dB) have a significant impact
on the sparse approximation process. The higher measurement
noise contributes to either low peak sharpness (Fig. 7(a))
or inaccurate recovery (Fig. 7(b)), which eventually lead to
failed or erroneous detection. Even for relatively stronger
signals (that are slightly above 20 dB), the metric P may
clearly surpass the detection threshold; but still leaves scope
for further improvement to precisely recover the correct peak
from the vicinity of near similar magnitude peaks (Fig. 7(c)).
Although Fig. 7 shows the observation from α=0.20, similar
outcomes were also logged for α=0.10 and α=0.30.
Improving acquisition reliability. A simple solution to
overcome the satellite detection anomalies is to boost the
magnitude of the correct peak coefficient, which is an
approximate indication of the SNR, with respect to the noise
floor. We, therefore, append a SNR improvement stage to
the S-GPS framework. We calculate the consolidated point
by the accumulation of K coefficient vectors (where each K
corresponds to the recovery result of 1 ms of GPS data), and
summing their intensities.

sc =

K∑
k=1

(ŝ1)k (7)

Satellite i is said to be detected if the metric Pc, obtained
by dividing the maximum coefficient in sc by the noise floor,
exceeds the threshold T. This operation is performed for all i
satellites.

As mentioned before, the navigational data is transmitted
at a rate of 50 bps; and therefore, will result in a possible bit
transition every 20 ms. This method also provides robustness to
the negative effect of transitions in the data bits; as it considers
the accumulated and summed contributions over a longer time-
window rather than analyzing individual 1 ms data segments.

Fig. 8 demonstrates the benefits of this mechanism. For α
= 0.20, K = 2 does not correctly recover the index of the peak
coefficient (Fig. 8(a)); but as K is increased to 6 by combining
the contribution of six 1 ms chunks, the estimation becomes
more accurate (Fig. 8(b)). The problem of the high noise floor,
which is still evident at this stage, is significantly reduced as K
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Fig. 8: Improving acquisition reliability. Consolidating the
coefficient vector points over K operations improves the mag-
nitude of the correct peak coefficient with respect to the noise
floor. For all the cases, the correct peak is at chip location:
4.8e+5.

reaches 10 (Fig. 8(c)). The same observations are also valid for
a higher α of 0.30 and K = 2 (Fig. 8(d)). However, estimation
reliability is attained at K = 6 (Fig. 8(e)) without any significant
improvements with additional contributions (Fig. 8(f)). It is
important to note that K is also indicative of the corresponding
data length to be processed. For example, K = 6 is the
consolidated result obtained by processing 6 data chunks of
1 ms length; or a combined data length of 6 ms.

III. EVALUATION

In this section, we evaluate the quality and limitations of
the S-GPS framework.
Setup. This study uses 20 sets of raw GPS data, collected
using the experimentation platform described in Section II-E. It
offered the flexibility of varying both the GPS signal (between
10-60 s) and sample length with configurable parameters. Also,
as mentioned before, the ground-truth was obtained with
SoftGNSS.

When considering the presented results, it is important to
note the categorical difference of S-GPS from the state-of-
the-art acquisition method; where our aim is to attain similar
performance, but with significantly fewer observations. While
such a requirement may not arise in regular applications, it is a
necessity in our motivating application and other related ones.

S-GPS aims to achieve the best possible energy efficiency
in data offloading and GPS sensing. In this regard, data size
is a key parameter that determines a good tradeoff between
accuracy and energy.

A. Acquisition and Location Performance

Acquisition quality. The purpose of acquisition is to identify
all visible satellites (along with their respective code phase
delay and frequency shifts); since, acquiring more satellites
improves the overall location accuracy. Therefore, as a func-
tional goal, any GPS acquisition algorithm must maximize the
probability of successful satellite acquisitions.
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Fig. 9: Acquisition quality. (a): Benefits of processing longer segments. There is a high probability of acquiring an additional
1.5× satellites by processing 10-20 ms over 2 ms. (b)&(c): Acquisition quality of S-GPS, for different data length {10-20}ms,
at compression factor of {0.10,0.20,0.30}. Note: K = 20 is the consolidated result obtained by processing 20 data chunks of
1 ms length; and therefore, K is also an indicator of the data length.

In this regard, an important question is whether processing
longer data lengths (such as 10/20 ms) promises better acqui-
sition quality than the accepted practice of using 2 ms. The
result for this study, using the state-of-the-art cross-correlation
method, is shown in Fig. 9(a); and it suggests that there
is a 95% probability of detecting 1.5× more satellites by
processing longer data segments. We also observe the same
results with S-GPS as depicted in Fig. 9(b) and Fig. 9(c).

While such a mechanism may not be a good alternative
for on-board acquisitions (as they are more energy consuming
due to greater computational demand and processing time), it
can be more viable if the computation load can be transferred
to the control server. Also, in applications such as tracking
flying foxes, there may not be any previous knowledge about
the visit locations or their approximate perimeters. In such
a scenario, it is difficult to predict the acquisition quality.
Therefore, considering the limited reserves of energy, it may
be a good choice to safeguard against failed acquisitions by
collecting longer data chunks.

With this background, we investigate a reliable data size
measure that optimizes energy and acquisition quality of S-
GPS. Fig. 9(b) & Fig. 9(c) characterizes the tradeoff between
compression factor (α) and accumulated contribution from K
(1 ms) chunks against the number of satellites acquired. The
optimal choice of α and K is important to ascertain the best
acquisition performance that can be achieved with the least
measurements m (refer to Section II-D2), where a smaller m
leads to lower storage and transmission cost.

Fig. 9(b) shows the absolute satellite count with different
α and K; and suggests that their lower values result in
deteriorated performance. α = 0.10 (for any K) is, typically,
not useful as it does not meet the minimum tally of (at least 5)
satellites for obtaining a position fix with the modified CTN
method; while α = 0.20 for (K = 12-20) and α = 0.30
for (K = 10-20) meet this criteria. However, neither of these
parameter choices are able to mirror the ground truth result
of 8 satellites. Fig. 9(c) shows the ratio of the number of
detected satellites using compressed data of length (α× K) ms
to its respective uncompressed K ms case. A ratio of 1 implies
that the performance of the compressed case is similar to its

uncompressed counterpart. However, the results suggest that
the best outcome is only 0.8; and is obtained at α = 0.20 for
(K = 18-20) α = 0.30 for (K = 12-20). This means that S-GPS
detects 1-2 fewer satellite(s) than its ground truth.

The above studies, however, do not make a fair comparison
based on the absolute data length. For example, data com-
pressed with α = 0.20 and K = 20 and α = 0.30 and K = 20
have an absolute length of 4 ms and 6 ms, respectively. There-
fore, they would not derive the same performance indicators as
their uncompressed 20 ms segment. Fig. 10(a) and Fig. 10(b)
make the direct comparison, and express it as a ratio of [(0.20×
K)/4 ms] and [(0.20× K)/6 ms], respectively. Both the results
suggest that there is a 95% probability of detecting 1.2×
more satellites by recording 20 ms and compressing it down to
4 ms/6 ms; rather than simply processing their uncompressed
version of equivalenty data length. This improvement is a
result of information embedding in random ensembles; which
preserves the energy of its respective higher dimension (i.e.,
20 ms) representation, although the absolute data length is
significantly reduced by 70-80%.

Alternately, for acquiring the same number of satellites as
their equivalent uncompressed data lengths, there is a 95%
probability of success by using as low as K = 12 for α = 0.20
and K = 10 for α = 0.30. These parameters translate to a
40-50% savings on the required data size for mirroring the
acquisition quality as the ground truth. Fig. 10(e) shows the
optimal configuration of α and K, as suggested by Fig. 10(a)
and Fig. 10(b), for obtaining a similar acquisition quality as
their uncompressed (base) cases of 4 ms and 6 ms.
Location accuracy. Fig. 10(c) and Fig. 10(d) shows a box-plot
of the overall location accuracy for α = 0.20 and α = 0.30. For
the respective cases, the median error (depicted as a blue ‘o’)
is less than 70 m and 40 m. Although the median error is quite
consistent across all cases, the interquartile range shows some
variations due to the non-uniform tally of acquired satellites
in each configuration and data points. Fig. 10(f) groups the
observations according to the visible satellites count (that vary
from 5-7), and shows the corresponding error in location. As
S-GPS also uses the modified CTN technique for positioning,
a minimum of 5 satellites are required. The accuracy improves
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Fig. 10: Acquisition quality and location accuracy over an absolute data length of 2-4 ms & 3-6 ms.
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Fig. 11: Energy consumption. S-GPS is twice as energy efficient than CO-GPS, and has 5-10 times lower energy costs than a
standalone GPS. S-GPS and CO-GPS consume a few µJ due to their very small sensing cycles; and so, the radio is the major
contributor to the energy cost for cloud-offloading solutions.

from a median error of 70 m to 30 m with the availability of
more satellites. The location accuracy of S-GPS is similar to
LEAP and CO-GPS (< 35-40 m), and also duly satisfies our
application’s requirement.

B. Energy consumption

We provide an estimate of the GPS acquisition cost, in
terms of energy budget, on the target platform for obtaining a
single position fix.
Components evaluated. In our study, we used the approach of
capturing digitized GPS samples; followed by their compres-
sion by random ensembles with its entries i.i.d. sampled from a
balanced symmetric (± 1) Bernoulli distribution. However, as
part of a efficient GPS receiver system, this entire step can be
substituted by a compressed sensing analog front-end (referred
to as: CS-ADC). A CS-ADC can sample sparse signals at sub-
Nyquist rates, and deliver compressed measurements directly.
Many existing hardware prototypes of a CS-ADC have shown
that its power consumption is less than a traditional analog-
to-digital converter [19], [20] as it does not have to sample at

the full (Nyquist) rate. Considering these empirical facts, we
only evaluate the energy costs of the two most power intensive
modules on the platform: (i) u-blox MAX-6 GPS [13] and (ii)
IEEE 802.15.4 complaint radio transceiver that, respectively,
consume 74 mW and 99 mW in full operation mode. Previous
work by Sommer et al. [21] and Afanasyev et al. [22] have
reported that the data goodput of IEEE 802.15.4 complaint
transceivers are between 42 kbps and 93.6 kbps; while the GPS
(coldstart and hotstart) time-to-first-fix is 26 s.

Taking all of the above empirical observations into account,
we show the corresponding energy consumption in Fig. 11.
S-GPS is able to achieve a competing level of acquisition
performance at K = 12 for α = 0.20 and K = 10 for α =
0.30 over its respective uncompressed case of sensing 4 ms and
6 ms of raw data. S-GPS is 1.8 times (at K = 12 for α = 0.20)
and 2 times (at K = 10 for α) more energy efficient than CO-
GPS, which is based on a simple sense and offload paradigm.
In comparison to a standalone GPS module, which performs
all operations on the platform itself without optimized sensing
and offload cycles; S-GPS saves 5-10 times more energy.



LZ777 S-GPS0

0.2

0.4

0.6

0.8

1
C

om
pr

es
se

d 
/ U

nc
om

pr
es

se
d

Compression Magnitude: LZ77 vs. S-GPS

Fig. 12: Compressibility performance. LZ77 vs. S-GPS.

Road-map. Based on the results of acquisition quality, location
accuracy and energy cost, a compression factor of 0.30 and
K=10 (i.e., a combined data length of 10 ms) is a reliable
configuration for S-GPS.

C. Compression Performance

Fig. 12 compares the compression quality of S-GPS against
the popular LZ77-based algorithm ‘gzip’. The result shows
that raw GPS signals are not much compressible (< 10%)
using traditional methods such as LZ77 (since they appear
like random noise by design); while the same signals can be
compressed by 70% with S-GPS. Besides, the LZ77 lossless
nature of compression makes it nonrobust to information loss
(packet drops) during data transmission that are common in
low-power sensor networks. On the other hand, the S-GPS
would offer a graceful performance degradation under similar
circumstances as it can still recover the results, but with larger
errors; and has the same performance as compressing with a
smaller α.

IV. RELATED WORK

Location sensing, by itself, is a rich area of research; and
performing it with GPS is an active topic of investigation.
S-GPS draws on prior work in multiple areas; mainly public
infrastructure based outdoor mobile sensing, signal synchro-
nization, cloud offloading based GPS, and sparse approxima-
tion.

The use of public infrastructure (such as GPS [23], A-
GPS [24], WiFi access points [25], FM radio stations [26],
Cellular towers, etc.,) is an appealing direction as it relaxes
the need to deploy systems (such as wireless sensor nodes
[27] and other embedded platforms [28]) for localization
assistance, and can cater to a wider range of outdoor (real-
time and delay-tolerant [7]) applications. The mobile receivers
simply needs to synchronize their operation with the respective
infrastructure system counterpart. Although the problem of
signal synchronization applies to many of the above wireless
technologies, synchronizing with GPS satellites is processing-
intensive and energy consuming; due to its nature of operation
(i.e., two-dimension search using cross-correlation) and very
low (−20 dB) SNR [4]. WiFi and Cellular systems operate
at much higher levels of SNR than GPS; and hence, the

receivers can synchronize with relatively low overhead by
merely detecting an increase in received power [29].

Several techniques have been proposed to address the prob-
lem of energy consumption in GPS receiving. Many of these
solutions are designed with a focus on real-time applications,
and also consider GPS as a potential black-box. They tradeoff
energy expense by adaptively using it with other sensors [3],
turning it on when significant motion is detected [2], or by
combining location requests from multiple applications with
a single GPS reading [30]. Although these solutions can also
be used for delay-tolerant applications, they do not improvise
on the time-flexible nature to optimize the de facto GPS post-
processing chain and/or aggressively duty-cycle.

In pursuit of a mechanism to reduce the active GPS time,
LEAP [8] and CO-GPS [9] solutions combine these benefits
for applications of delay-tolerant nature. LEAP performs GPS
acquisition on the receiver locally, and transfers the resulting
information to the cloud. The location is computed on the
cloud server with the CTN technique, wherein the preliminary
acquisition results are combined with a known location of a
nearby object (e.g., the cell tower in case of a phone). As
this solution cannot be used for embedded platforms without
cellular connection (for providing landmarks) and limited
computation resources (for performing acquisition); CO-GPS
transfers the required raw signal samples for acquisition to
the cloud, and uses its vast computing resources to guess
candidate landmarks and maintain the ephemeris database for
positioning. S-GPS adopts the sample-and-process approach of
CO-GPS, but reduces the energy cost of data offloading.

S-GPS, based on the theory of sparse approximation, takes
advantage of information sparsity in the GPS acquisition
process. The information is efficiently embedded without much
loss (which serves the purpose of storage and transmission),
and is subsequently recovered from an underdetermined system
by `1-minimization. Sparsity aware solutions offer an efficient
sampling strategy; and so, are an active field of applied
research in resource constrained sensor networks [12], [31].
Although S-GPS falls into the category of sparse approxima-
tion based range-finders as previously investigated by Misra et
al. [12], the scope of our problem is completely different. We
design a new dictionary and related suite of signal processing
techniques for GPS acquisition that estimate the propagation
delay from the satellites to the receiver; while compensating
for Doppler effect and very low SNR levels. QuickSync [10]
belongs to the class of real-time solutions, which aim to reduce
the GPS synchronization time on the receiver itself by sparse
Fourier transform. Therefore, there are fundamental differences
in theory and application scope; although, the idea of sparsity
is central to both S-GPS and QuickSync.

V. CONCLUSION

For delay-tolerant applications, offloading GPS processing
to the cloud is possible. S-GPS is a GPS sensing approach that
is aimed to limit the associated energy costs in this transfer
operation. The sparse representation based GPS acquisition
technique can efficiently capture and embed information in
a lower dimensional space (by random ensembles); and sub-
sequently, recover it from an underdetermined system. Such
an approach has several merits. It provides a simple dimen-
sionality reduction mechanism to condense the dataset. As the
data compressibility is proportional to its information level,



sparse (information) signals can be compressed significantly.
It requires transferring and processing a significantly smaller
datasets to obtain accuracies comparable to the state-of-the-art
detection technique. At the local device end, the simplicity of
this operation translates into appreciable energy savings. By
empirical evaluations, we showed that S-GPS is 2 times more
energy efficient than offloading uncompressed data, and has
5-10 times lower energy costs than a standalone GPS; with a
median positioning accuracy of 40 m.

S-GPS would further benefit by mechanisms to enhance
the received SNR; which was, by far, the most daunting
task in realizing this solution. The initial success of S-GPS
has motivated us to explore efficient hardware designs for
compression on the target platform. In addition, we are also
focusing on techniques to optimize the energy expenditure and
execution time on the server side.
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