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ABSTRACT 

 
The encoding process of image vector quantization (VQ) is 
very heavy due to it performing a lot of k-dimensional 
Euclidean distance computations. In order to speed up VQ 
encoding, it is most important to avoid unnecessary exact 
Euclidean distance computations as many as possible by 
using features of a vector to estimate how large it is first so as 
to reject most of unlikely codewords. The mean, the variance, 
L2 norm and partial sum of a vector have been proposed as 
effective features in previous works for fast VQ encoding. 

Recently, in the previous work [6], three features of the 
mean, the variance and L2 norm are used together to derive 
an EEENNS search method, which is very search efficient 
but still has obvious computational redundancy. This paper 
aims at modifying the results of EEENNS method further by 
introducing another feature of partial sum to replace L2 norm 
feature so as to reduce more search space. Mathematical 
analysis and experimental results confirmed that the 
proposed method is more search efficient compared to [6].  
 
 

1. INTRODUCTION 
 
Vector quantization (VQ) [1] is a classical method for image 
compression. Conventionally, VQ uses a look-up table 
(called codebook) principle by template matching so as to 
find the closest item (winner) to an input image block in the 
whole table according to a certain distortion measurement 
(usually Euclidean distance for simplicity). Then, VQ only 
transmits winner index instead of winner itself to reduce the 
amount of image data because a codeword index uses much 
less bits than a codeword. Since the exact same table 
(codebook) is pre-stored at the receiver, an image can be 
decoded easily via sequentially pasting codewords that are 
retrieved at the receiver by using the received winner indexes. 
Therefore, VQ has a very heavy encoding process due to a 
lot of k-dimensional (k-D) Euclidean distance computations 
for matching and a very simple decoding process. For 
practical applications, one of the primary limitations to VQ 
encoding is its computational complexity. 

There have been many fast search algorithms developed 
for VQ encoding already. Concerning about using lower 
dimensional feature to make an estimation so as to avoid 
exact Euclidean distance computation for obviously unlikely 
codewords, the most straightforward and most famous 
features are the statistical features of a vector (c.f. a 
k-dimensional vector can also be viewed as a k-element 
sample set), which are the mean or the sum [2], the variance 
[3] and L2 norm [4]. Based on these three conventional 
statistical features, several fast VQ encoding methods [5], [6] 
have been proposed by using a combination among them. 

However, there are still computational redundancies in them.  
This paper proposes to use partial sum [7], [8], [9] as an 

additional feature to enhance the results in previous works 
[2]-[6] and then uses state-of-the art EEENNS method in [6] 
as a benchmark for performance comparison. Experimental 
results confirmed that the computational cost of the proposed 
method can be reduced to a great extent for typical standard 
images compared to the EEENNS method in the previous 
work [6] with full search (FS) as a relative baseline.  

Conventionally, an N×N image to be encoded by VQ 
method is firstly divided into a series of non-overlapping 
smaller n×n image blocks. Then VQ encoding is executed 
block by block sequentially. 

For an image block encoded by VQ, the real distortion is a 
difference vector as defined below 

 
(1) 

 
where x=[x1, x2, … , xk]T is the current input image block, 
yi=[yi,1 , yi,2, … , yi,k]T is the ith codeword in the codebook 
Y={yi| i=1,2, … , Nc}, the superscript “T” is a transpose 
operation, k (k=n×n) is the vector dimension and Nc is the 
codebook size. 

For simplicity, the real distortion Di is usually measured 
by squared Euclidean distance as 
 

(2) 
 

where d(. , .) is a function for computing Euclidean distance, 
|| . ||2 means L2 norm of a vector and j represents the jth 
dimension of a vector. 

When Euclidean distance is used as the final distortion 
measurement, the winner can be determined directly by 
 

(3) 
 

where the best-matched codeword yw is called as the winner 
and its subscript “w” is the winner index. Then the index 
“w” instead of yw is transmitted to the decoder for realizing 
data compression. This is full search (FS) over the codebook 
Y={yi| i=1,2, … , Nc}. FS method can achieve the best 
PSNR for a fixed codebook but it is computationally very 
heavy due to Nc times Euclidean distance computations. 
 

2. RELATED PREVIOUS WORK 
 
For a k-dimensional image vector, its most popular statistical 
features are the mean or the sum (equivalent to its L1 norm), 
the variance and L2 norm. In other words, a vector can be 
approximately described by its features from the statistics 
point of view. Therefore, in order to measure how different 2 
vectors are with just a little computational cost instead of an 
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immediate heavy Euclidean distance computation, the 
difference between the corresponding features can be used 
first to estimate Euclidean distance. Because VQ encoding 
only needs to find out the minimum Euclidean distance so as 
to determine a sole winner yw rather than all Euclidean 
distances from the input x to all codewords yi, it allows to 
introduce an estimation for Euclidean distance, which must 
be less or equal to Euclidean distance. Therefore, if this 
estimation is sufficiently large, it can guarantee that the 
corresponding Euclidean distance will surely be larger than 
the current minimum Euclidean distance as well. Then, a 
rejection to the current codeword yi is permitted so that the 
exact Euclidean distance computation can be completely 
avoided to reduce computational burden. 

Suppose the “so far” minimum Euclidean distance is dmin, 
the previous work [2] proposed a codeword rejection rule by 
using the mean information as 
 

(4) 
 

where             is the mean of an input image block x 
and                 means the same for yi. If Eq.4 holds, 
then reject yi safely. This is the famous ENNS (i.e. 
equal-average nearest neighbor search) method. Eq.4 needs 
one extra memory to store Myi for each yi and one “±”, one 
“×” (Eq.4 practically tests                 instead when 
       is stored as a whole) and one “Cmp” (comparison) 
operation for a rejection test.  

To improve [2], the previous work [3] further proposed a 
codeword rejection rule by using the variance information as 

 
(5) 

 
where                  is the variance of input x and 
                  means the same for yi . If Eq.5 holds, 
then reject yi safely. This is the famous EENNS (i.e. 
equal-average equal-variance NNS) method. Eq.5 needs one 
extra memory to store Vyi for each yi and one “±”, one “×” 
and one “Cmp” operation for a rejection test.  

To improve [3], the previous work [5] proposed another 
codeword rejection rule by using both the mean and the 
variance information simultaneously as 
 

(6) 
 

If Eq.6 holds, then reject yi safely. Eq.6 is more powerful 
than Eq.4 or Eq.5. In practice, Eq.6 tests 
by using Eq.4 first in order to avoid a possible overhead of 
computation, which means to avoid computing 
because a lot of codewords can be easily rejected by this first 
test. This is IEENNS (i.e. improved equal-average equal 
-variance NNS) method. Eq.6 needs two extra memories to 
store Myi and Vyi for yi and three “±”, two “×” and one 
“Cmp” operations for a complete rejection test.  

Independently, the previous work [4] proposed a 
codeword rejection rule (i.e. Algorithm II in [4]) by using L2 
norm information as 

 
(7) 

 
where             and              are L2 norm of 
the vector x and yi, respectively. If Eq.7 holds, then reject yi 
safely. Eq.7 needs one extra memory to store     for each 
yi and one “±”, one “×” and one “Cmp” operations for a 
rejection test.  

In order to reduce search space more efficiently, the 
previous work [6] recently proposed to combine Eq.4, Eq.5 
and Eq.7 to derive an EEENNS (i.e. equal-average equal- 
variance equal-norm NNS) method. But [6] ignored to use 
Eq.6, which is more powerful than Eq.4 and Eq.5. 
  Furthermore, it is easy to prove that the mean, the variance 
and L2 norm of x have a relation like 
by expanding each of three features according to their 
definitions. For vector yi, it is                       . 
Therefore, only two among these three statistical features are 
independent. It can be predicted that not all of three rejection 
tests given in Eq.4, Eq.5 and Eq.7 are necessary but two 
rejection tests are sufficient.  

In addition to 1-dimensional statistical features of a vector, 
a 2-dimensional feature named as partial sum, which is 
constructed by dividing a vector in half, is proposed in the 
previous work [7], [8], [9] to represent a k-dimensional 
vector in a finer way. Partial sum of x and yi is defined as  
 
 

(8) 
 

Then the previous work [8] proposed a core codeword 
rejection rule by using partial sum information as 
 

(9) 
 

If Eq.9 holds, then reject yi safely. To use Eq.9 directly, it 
needs two extra memories to store         for each yi and  
three “±”, two “×” and one “Cmp” operations for a rejection 
test when         is stored as a whole.  
 

3. PROPOSED METHOD 
 
First, in order to more effectively use both the mean and the 
variance information, IEENNS method given in Eq.6 instead 
of EENNS method given in Eq.5 should be adopted after the 
rejection test by Eq.4 completed. In this case, it can be 
proved that the rejection test by Eq.7 that is based on L2 
norm information becomes totally redundant. A relation can 
be derived as (Appendix) 
 

(10) 
 

Mathematically, Eq.10 concludes that IEENNS method of 
Eq.6 is definitely more powerful than L2-norm method of 
Eq.7. In other words, Eq.6 can cover Eq.7 completely or it is 
unnecessary at all to use Eq.7 for rejection test again after 
Eq.6 is carried out.   
  Second, in order to insert an effective rejection test after 
IEENNS method completed, instead of L2 norm method 
used in [6], partial sum method using Eq.9 is suggested for 
further rejection test because Eq.9 is not completely covered 
by Eq.6. Eq.9 is independent. 
  Because the mean and the sum have a fixed relation of 
“1/k”, how to efficiently combine Eq.6 and Eq.9 becomes 
important from the computation point of view. Let                     

, Eq.9 changes to   
 

(11) 
 

Obviously,                           are true. 
Because ENNS rejection test by Eq.4 is used first and Mx, 
Myi are already stored, this implies that not two but only one 
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partial sum is independent and needs to be stored again. 
Suppose only the first     is stored for each yi. As a result, 
Eq.11 becomes   
 

(12) 
 

Because Eq.12 is always performed after Eq.4, the value 
of          must already be available at this moment. 
After        is computed,                  just needs 
once “±” operation. As a result, Eq.12 also needs the exact 
same three “±”, two “×” and one “Cmp” operations for a 
rejection test as Eq.9 but Eq.12 can save one extra memory 
compared to Eq.9.  

In summary, a rejection test sequence in this paper is 
suggested as: (1) to use ENNS method of Eq.4, (2) to use 
IEENNS method of Eq.6 and (3) to use the enhanced partial 
sum method of Eq.12. In total, three extra memories are 
necessary for off-line storing the mean, the variance and the 
first partial sum for each codeword yi.  

In contrast, concerning memory requirement, EEENNS 
method in the previous work [6] suggested to just store two 
features of the mean and L2 norm off-line for each codeword 
yi and then on-line computing its variance by using the 
relation                   when it is necessary. This 
way can indeed save one memory for storing    but it will 
introduce too much extra on-line computational cost. In fact, 
to obtain the value of    , it needs one “±”, two “×” and one 
square root operation (Sqrt) for each codeword yi that is to be 
tested. This part of on-line computational cost is extremely 
heavy. Therefore, for fast VQ encoding, it is very profitable 
to off-line compute the value of    and to use one more 
memory to store it. Furthermore, if one memory must be 
saved depending on a practical requirement, it is     but 
not    should be computed on-line for each candidate yi 
because in EEENNS method, Eq.5 using variance is always 
executed before Eq.7 using L2 norm. If a rejection test by 
Eq.5 is successful, it becomes unnecessary to compute 
anymore so as to avoid on-line computation for it. 

Concerning computational cost, because the input x is 
unknown before VQ encoding, all of its features must be 
computed on-line. Because L2 norm feature of input x is not 
used in this paper, it can further save (k−1) times “±”, k times 
“×” and one “Sqrt” for total on-line computations.  
 

4. EXPERIMENTAL RESULTS 
 
Simulation experiments with MATLAB are conducted. Four 
typical 8-bit, 512×512 standard images (Lena, F-16, Pepper 
and Baboon) that have very different details are used to test 
the effectiveness of the proposed search method. The most 
common 4×4 image block size is chosen by taking an 
appropriate trade-off into account between the compression 
ratio and image quality in PSNR. Codebooks of size 128, 
256 and 512 are used that have been generated with Lena 
image as a training set by Kohonen’s self-organizing map 
(SOM) combing with perceptual property of human vision 
system. EEENNS method in [6] is used as the benchmark 
for a comparison of search efficiency.  

Concerning memory requirement, EEENNS method 
needs two extra memories but this work needs three extra 
memories for storing off-line constructed features of a vector. 
Because the encoding time of VQ depends on programmer’s 
skills and computer performance strongly, it fluctuates in 
different implementation environments obviously. Therefore, 

the computational complexity instead of encoding time is 
adopted in this paper for performance comparison in order to 
achieve an invariant evaluation that has nothing to do with 
the executing environment. Concerning computational cost, 
it is evaluated by two kinds of assessments.  

The first assessment is how many codewords are still 
remained after finishing each rejection test in a winner search 
process. In other words, it actually assesses how small the 
search space can be reduced from the whole codebook after 
each rejection test. A smaller reduced search space is better. 

This reduced search space is the key issue to search 
efficiency for fast VQ encoding methods. Numbers of the 
remaining codewords in the reduced search spaces per input 
vector are summarized in Table 1. 

From Table 1, it is obvious that this work can reduce 
much more search space than EEENNS method because the 
rejection test by Eq.6 is certainly more powerful than the 
rejection tests by separately using the mean or the variance in 
[6]. In addition, Eq.12 provides a new rejection test to reduce 
even more search space.  

On the other hand, because EEENNS method is a 3-step 
rejection method using 1-dimensional features only but this 
work is a 3-step rejection method using either 1-dimensional 
or 2-dimensional features, they need very different 
computational overhead for each rejection test. In order to 
have a complete assessment about the overall computational 
cost used in both methods, the second assessment is how 
many additions (Add), multiplications (Mul), comparisons 
(Cmp) and square root (Sqrt) operations are used totally. The 
results are summarized in Table 2. 

From Table 2, it is clear that this work can reduce total 
computational cost obviously compared to the latest 
EEENNS method [6]. This is because this work can achieve 
a much smaller reduced search space than EEENNS method 
to guarantee less Euclidean distance computations in it. 
Regarding the number of “Sqrt” operations, because FS 
method only uses squared min Euclidean distance d2

min for 
comparison, it does not need any “Sqrt” operation. Because 
EEENNS method needs to on-line construct two features of 
the variance and L2 norm for the input x firstly, it needs twice 
“Sqrt” operations; Then, EEENNS method needs to 
compute dmin in order to obtain a baseline for comparison by 
once “Sqrt” operation and a number of “Sqrt” operations 
during a search progress for updating dmin; Finally, because 
the variance of codeword is not stored off-line and must be 
computed on-line by using                     , it also 
needs “Sqrt” operations. Thus, EEENNS method uses a lot 
of “Sqrt” operations as demonstrated in Table 2. In contrast, 
this work only needs to use once “Sqrt” operation for on-line 
computing the variance of the input x because the baseline 
for all comparisons in this work is d2

min other than dmin.  
 

5. CONCLUSION 
 
In this paper, three contributions are made. First, Eq.10 is 
mathematically proved to show the latest EEENNS method 
has computational redundancy due to adopting the third 
feature L2 norm of a vector for rejection test. In fact, 
IEENNS method is more powerful than EEENNS method. 
Second, concerning on-line computing the variance for 
candidate codeword in a search process so as to save one 
memory, it certainly introduces heavy extra computational 
burden. Because the purpose is the encoding speed, it is 
suggested to use one memory to store the variance for each 
codeword off-line. Third, in order to enhance IEENNS 
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method further, another 2-dimensional feature of partial sum 
is integrated, which is rather effective for reducing more 
search space. The simulation experiments confirmed that this 
work is more search-efficient than EEENNS method.  
 
 

APPENDIX 
 
Base on the basic inequality a2+b2≥2ab, 
and                   , the deduction below holds, 
which completes the proof of Eq.10. 
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Table 1 Comparison of the remained Euclidean distance computations per input vector after each rejection test 
Codebook=128 Codebook=256 Codebook=512 Reduced space 

Method Lena F-16 Pepper Baboon Lena F-16 Pepper Baboon Lena F-16 Pepper Baboon
FS Test 128 128 128 128 256 256 256 256 512 512 512 512 

By mean  8.75 7.41 9.73 25.51 16.27 14.17 18.58 49.60 29.81 27.40 35.83 98.29 
By variance  4.64 4.57 4.91 19.96 7.82 7.91 8.79 37.92 13.31 13.89 16.39 72.05 

EEENNS 
method 

By L2 norm  4.50 4.39 4.75 19.08 7.61 7.62 8.54 36.24 12.97 13.38 15.93 68.87 
By Eq.4 8.75 7.41 9.73 25.51 16.27 14.17 18.58 49.60 29.81 27.40 35.83 98.29 
By Eq.6  3.83 3.61 3.90 15.89 6.45 6.24 6.95 30.09 10.93 10.76 12.84 55.57 

This work 

By Eq.12  3.08 2.64 3.06 12.55 5.02 4.35 5.31 23.53 8.15 7.34 9.45 43.81 
 

Table 2 Comparison of the total computational cost per input vector in terms of arithmetical operations 
Codebook=128 Codebook=256 Codebook=512 Total cost 

Method Lena F-16 Pepper Baboon Lena F-16 Pepper Baboon Lena F-16 Pepper Baboon 
Add 3968 3968 3968 3968 7936 7936 7936 7936 15872 15872 15872 15872 
Mul 2048 2048 2048 2048 4096 4096 4096 4096 8192 8192 8192 8192 
Cmp 128 128 128 128 256 256 256 256 512 512 512 512 

FS 
 

Sqrt 0 0 0 0 0 0 0 0 0 0 0 0 
Add 258.15 251.83 268.45 773.40 375.80 372.01 411.10 1388.8 580.01 588.91 689.78 2564.5 
Mul 140.28 134.93 146.14 407.39 205.99 200.67 225.30 291.75 319.53 320.12 378.66 1351.7 
Cmp 47.28 44.14 50.54 155.17 78.99 75.02 88.35 291.75 134.14 131.73 161.23 556.30 

EEENNS 
method 

Sqrt 13.14 11.36 14.05 30.09 21.13 18.40 23.36 54.72 34.99 32.01 40.90 103.87 
Add 221.33 211.39 224.51 664.54 321.24 310.22 340.73 1190.2 491.89 481.55 564.90 2140.5 
Mul 114.77 107.91 116.74 355.91 171.72 163.44 182.85 644.47 268.25 260.24 309.14 1167.7 
Cmp 26.49 24.26 27.59 76.85 42.19 39.00 45.78 141.31 68.82 65.26 79.96 262.25 

This work 

Sqrt 1 1 1 1 1 1 1 1 1 1 1 1 
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