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We provide necessary and sufficient conditions for the existence of stabilizing solutions for a class of modified algebraic discrete-
time Riccati equations (MAREs) defined on ordered Banach spaces of sequences of linear and bounded operators. These MAREs
arise in the study of linear quadratic (LQ) optimal control problems for infinite-dimensional discrete-time linear systems (DTLSs)
affected simultaneously by multiplicative white noise (MN) andMarkovian jumps (MJs). Unlike most of the previous works, where
the detectability and observability notions are key tools for studying the global solvability ofMAREs, in this paper the conditions of
existence ofmean-square stabilizing solutions are given directly in terms of system parameters.Themethods we have used are based
on the spectral theory of positive operators and the properties of trace class and compact operators. Our results generalise similar
ones obtained for finite-dimensional MAREs associated with stochastic DTLSs without MJs. Also they complete and extend (in the
autonomous case) former investigations concerning the existence of certain global solutions (as minimal, maximal, and stabilizing
solutions) for generalized discrete-time Riccati type equations defined on infinite-dimensional ordered Banach spaces.

1. Introduction

In recent years, the study of optimal control problems associ-
ated with stochastic systems with Markovian regime switch-
ing is of particular interest to researchers due to their var-
ious applications in finance, biology, engineering, and so
forth. Even in the case of linear systems, the optimization
problems become considerably hard, when we are in infinite
dimensions and/or the Markovian process has infinite state
space (see, e.g., [1–5] and the references therein). As we know
from the LQ optimal control theory of DTLSs with MN and
MJs (see, e.g., [5–7]), the design of the optimal control is
closely related to the existence of a stabilizing solution (SS)
for an associated generalized discrete-time Riccati equation
(GDTRE). In this paper, we investigate the solution proper-
ties for a class of MAREs of control associated with auto-
nomous infinite-dimensional DTLSs with MN and infinite
MJs.TheseMAREs are time-invariant versions of the infinite-
dimensional GDTREs studied in [8]. For a detailed treatment
of finite-dimensional GDTREs, the reader can consult [6, 7]
and the references therein. The problem of existence of SSs

for infinite-dimensional GDTREs associated with stabilizable
DTLSs with infiniteMJs was investigated in [3, 5, 9, 10] under
either stochastic detectability or observability hypotheses.
In [8], a set of necessary and sufficient conditions for the
existence of SSs is expressed in terms of feasibility of some
linear matrix inequalities (LMIs) system.

The general theory of GDTREs applies to ourMAREs but
new special results are strongly expected in the autonomous
case. For example, in finite dimensions it is proved (see [11])
that necessary and sufficient conditions for the existence of
stabilizing solutions forMAREs can be given directly in terms
of system parameters. They consist in verifying whether the
stochastic system is stabilizable and 𝜆 = 1 is not an unobserv-
able eigenvalue for a pair of associated operators. Although it
is not always possible to give an infinite-dimensional version
of a finite-dimensional result (as an example, we recall the
researches proving that Hautus Lemma does not work in
infinite dimensions [12, 13]), in this paper we have tried to
do this for Theorem 12 from [11].

The approach we propose is based on operator theory
tools and the properties of positive operators and their
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adjoints. Using the results from [8], we prove that conditions
similar to those in [11] are necessary for the existence of SSs
for infinite-dimensional MAREs (seeTheorem 10). To obtain
sufficient conditions, we extend the class of eigenvalues 𝜆 that
must not be unobservable to the set [1,∞) and we impose
additional constraints for the coefficients of the DTLSs with
MN and MJs (see Theorems 11 and 13). When being applied
to finite-dimensional DTLSswithMN, our results recover the
ones in [11]. However, Corollary 14 seems to be new for finite-
dimensional DTLSs with finite Markovian jumps. As we
have shown in Example 1, it provides necessary and sufficient
conditions for the existence of SSs forMAREs associated with
DTLSs with MJs which are neither stochastically observable
nor stochastically detectable. In this case, the results like those
from [2, 5, 10] do not work, while a LMIs approach would
lead to a large number of operations for systems of large
dimensions.

The paper is organized as follows. In Section 2, we intro-
duce some basic notation and terminology and we formulate
the problem. Section 3 briefly reminds us about certain
properties of nuclear (trace class) and compact operators and
extends to a more general framework, the well-known result:
“the dual space of trace-class operators space is isomorphic
to the set of bounded operators.” Also, we define the notions
of maximal and stabilizing solution for aMARE and we show
how to apply the results from [8] to the MAREs discussed in
this paper. In Section 4, we obtain the main results. We first
introduce the notion of unobservable eigenvalue for a pair of
operators, by using spectral properties of positive operators.
Then, we provide necessary and sufficient conditions for the
existence of stabilizing solutions toMAREs (seeTheorems 10,
11, and 13). To obtain the sufficient conditions fromTheorems
11 and 13, we assume additional hypotheses like compactness
of the coefficients or trace-class membership. Corollary 14
shows that the finite-dimensional results from [11] are direct
consequences of Theorems 10, 11, and 13.

Section 5 is devoted to numerical examples. We study
three examples, which cover the cases of MAREs associated
with finite-dimensional DTLSs with finite MJs and infinite-
dimensional DTLSs with infinite MJs. As mentioned above,
Example 1 shows the advantages of Corollary 14 over previ-
ously published results [2, 5, 10].

Finally, the last section provides conclusions and further
research lines.

2. Notations and Statement of the Problem

Let𝐻, 𝑈, and 𝑉 be real separable Hilbert spaces. We denote
by 𝐿(𝐻,𝑈) the real Banach space of linear and bounded
operators from 𝐻 into 𝑈 and by 𝑆(𝐻) the Banach subspace
of 𝐿(𝐻) := 𝐿(𝐻,𝐻), formed by all self-adjoint operators. As
usual ∗ denotes either the adjoint of a linear and bounded
operator or the dual of a Banach space. We will write ⟨⋅, ⋅⟩
for the inner product and ‖ ⋅ ‖ for norms of elements and
operators, unless otherwise is indicated. An operator 𝐴 ∈

𝐿(𝐻) is called nonnegative and we write 𝐴 ≥ 0, if 𝐴 is self-
adjoint and ⟨𝐴𝑥, 𝑥⟩ ≥ 0 for all 𝑥 ∈ 𝐻.

Let Z be an interval of integers, which may be finite
or infinite. If (𝐵, ‖ ⋅ ‖) is a real Banach space, then 𝑙Z

𝐵
=

{𝑔 = {𝑔(𝑖) ∈ 𝐵}
𝑖∈Z, ‖𝑔‖Z = sup

𝑖∈Z‖𝑔(𝑖)‖ < ∞} is a real
linear space with the usual termwise addition and (real)
scalar multiplication. Moreover, 𝑙Z

𝐵
is a Banach space when

endowed with the norm ‖ ⋅ ‖Z. If 𝐵 is 𝐿(𝑈,𝐻) or 𝑆(𝐻),
then 𝑙Z

𝐵
will be denoted by 𝑙Z

𝐿(𝑈,𝐻)
or 𝑙Z

𝑆(𝐻)
. Let N be the

set of natural numbers and N∗ = N − {0}. We denote
by 𝑙(N, 𝑙Z

𝑆(𝐻)
) the Banach space 𝑙I

𝑙
Z
𝑆(𝐻)

obtained from 𝑙
Z
𝐵

by

replacingZ and 𝐵 by N and 𝑙Z
𝑆(𝐻)

, respectively.
An element 𝑋 ∈ 𝑙Z

𝑆(𝐻)
is said to be nonnegative (we write

𝑋 ⪰ 0) iff 𝑋(𝑖) ≥ 0 for all 𝑖 ∈ Z. The cone KZ
𝐻
of all non-

negative elements of 𝑙Z
𝑆(𝐻)

introduces the following order on
𝑙
Z
𝑆(𝐻)

:

𝑋 ⪰ 𝑌 iff 𝑋 − 𝑌 ∈KZ
𝐻
. (1)

Let 𝐼
𝐻
be the identity operator on 𝐻 and let Φ

𝐻
be the

element {Φ
𝐻
(𝑖) = 𝐼

𝐻
}
𝑖∈Z of 𝑙Z

𝑆(𝐻)
. We say that 𝑋 ∈ 𝑙

Z
𝑆(𝐻)

is
positive and we write 𝑋 ≻≻ 0, if there is 𝛾 > 0 such that 𝑋 ⪰
𝛾Φ

𝐻
. A sequence {𝑋

𝑛
}
𝑛∈N ⊂ 𝑙

Z
𝑆(𝐻)

is called nonnegative if
𝑋
𝑛
∈ KZ

𝐻
for all 𝑛 ∈ N and uniformly positive (we write

𝑋
𝑛
≻≻ 0) if there is 𝛾 > 0 such that𝑋

𝑛
⪰ 𝛾Φ

𝐻
for all 𝑛 ∈ N.

A linear and bounded operator Γ ∈ 𝐿(𝑙Z
𝑆(𝐻)
, 𝑙
Z
𝑆(𝑈)
) is called

positive iff Γ(KZ
𝐻
) ⊂KZ

𝑈
. For 𝐴 ∈ 𝑙Z

𝐿(𝑈,𝐻)
and 𝐵 ∈ 𝑙Z

𝐿(𝐻,𝑈)
, we

define the product 𝐴𝐵 ∈ 𝑙Z
𝐿(𝐻)

by (𝐴𝐵)(𝑖) = 𝐴(𝑖)𝐵(𝑖), 𝑖 ∈Z.
Now let us introduce two special notations on spaces 𝑙Z

𝐵
.

If 𝑃 ∈ 𝑙Z
𝐿(𝐻,𝑈)

, then 𝑃[∗] denotes the element of 𝑙Z
𝐿(𝑈,𝐻)

defined
by 𝑃[∗](𝑖) = 𝑃(𝑖)∗, 𝑖 ∈Z (i.e., the 𝑖th component of 𝑃[∗] is the
adjoint operator of 𝑃(𝑖)). Also, if 𝑃 ∈ 𝑙Z

𝑆(𝐻)
is such that 𝑃(𝑖)−1

exists for all 𝑖 ∈ Z, then 𝑃[−1] = {𝑃(𝑖)−1, 𝑖 ∈ Z}. Note that
𝑃
[−1] may not belong to 𝑙Z

𝑆(𝐻)
.

Let (Ω,F, 𝑃) be a probability space. For any integrable
random variable 𝜉 on (Ω,F, 𝑃), we write 𝐸[𝜉] for its expecta-
tion (mean). We will denote by 𝐿2(Ω,𝐻) the Hilbert space of
all𝐻 valued random variables 𝜉 with the property 𝐸(‖𝜉‖2) <
∞. If 𝜉 and 𝜂 are integrable real valued random variables, we
denote by 𝐸[𝜉 | 𝜂 = 𝑥] the conditional expectation on the
event 𝜂 = 𝑥. We recall that, by definition,

𝐸 [𝜉 | 𝜂 = 𝑥] =
1

𝑃 {𝜂 (𝜔) = 𝑥}
∫𝜒

{𝜂(𝜔)=𝑥}
𝜉 (𝜔) 𝑃 (𝑑𝜔) , (2)

if 𝑃{𝜔/𝜂(𝜔) = 𝑥} > 0, and 𝐸[𝜉 | 𝜂 = 𝑥] = 0 otherwise.
Let {𝜂

𝑡
}
𝑡∈N be a homogeneousMarkov chain on (Ω,F, 𝑃)

with the state spaceZ, the transition probability matrix

𝑃 = {𝑝
𝑖,𝑗
:= 𝑃 (𝜂

𝑡+1 = 𝑗
𝜂𝑡=𝑖
)}
(𝑖,𝑗)∈Z×Z

, 𝑡 ∈ N, (3)

and the property that 𝑃(𝜂
𝑡
= 𝑖) > 0, 𝑡 ∈ N, 𝑖 ∈ Z. The

last condition ensures the nontrivial computation of the
conditional mean 𝐸[𝜉 | 𝜂

𝑡
= 𝑖], 𝜉 ∈ 𝐿2(Ω,𝐻).
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Throughout this paper, we assume that the following
hypotheses hold.

(P1)

(i) 𝑟 ∈ N∗ is fixed, 𝐴
𝑝
∈ 𝑙

Z
𝐿(𝐻)

, 𝐵
𝑝
∈ 𝑙

Z
𝐿(𝑈,𝐻)

, 𝑝 =
0, . . . , 𝑟, and𝑀 ∈ 𝑙

Z
𝑆(𝐻)

, 𝐿 ∈ 𝑙Z
𝐿(𝑈,𝐻)

, and 𝑅 ∈ 𝑙Z
𝑆(𝑈)

are such that

𝑅 ≻≻ 0,

𝑄 = (

𝑀 𝐿

𝐿
[∗]

𝑅
) ⪰ 0.

(4)

(ii) {𝑤
𝑝
(𝑡)}

𝑡∈N, 𝑝 = 1, . . . , 𝑟, are sequences of real
valued, zero mean, square integrable random
variables on (Ω,F, 𝑃) having the properties
that 𝑤(𝑡) = (𝑤1(𝑡), 𝑤2(𝑡), . . . , 𝑤𝑟(𝑡))

𝑇, 𝑡 ∈ N,
is a sequence of independent random vectors,
𝐸[𝑤(𝑡)𝑤(𝑡)

𝑇

] = 𝐼
𝑟
, 𝑛 ∈ N and {𝜂

𝑡
}
𝑡∈N, and

{𝑤(𝑡)}
𝑡∈N are independent. (Here 𝑇 denotes the

transposition.)

Let F
𝑡
and G

𝑡
be the 𝜎-algebras generated by {𝑤1(𝑘),

𝑤2(𝑘), . . . , 𝑤𝑟(𝑘), 0 ≤ 𝑘 ≤ 𝑡} and {𝜂𝑘, 0 ≤ 𝑘 ≤ 𝑡}. We intro-
duce the 𝜎-algebra H

𝑡
, 𝑡 ∈ N defined by H0 = G0 and

H
𝑡
= F

𝑡−1 ∨G𝑡 if 𝑡 ≥ 1.
We consider the stochastic system with MNs and MJs

𝑥 (𝑡 + 1) = [𝐴0 (𝜂𝑡) +
𝑟

∑

𝑝=1
𝑤
𝑝
(𝑡) 𝐴

𝑝
(𝜂
𝑡
)] 𝑥 (𝑡)

+ [𝐵0 (𝜂𝑡) +
𝑟

∑

𝑝=1
𝑤
𝑝
(𝑡) 𝐵

𝑝
(𝜂
𝑡
)] 𝑢 (𝑡) ,

𝑡 ≥ 𝑡0, 𝑡 ∈ N

(5)

𝑥 (𝑡0) = 𝑥 ∈ 𝐻 (6)

denoted (𝐴, 𝐵) and the cost functional

𝐽 (𝑢; 𝑡0, 𝑥, 𝑖) =
∞

∑

𝑡=𝑡0

𝐸 [(⟨𝑀 (𝜂
𝑡
) 𝑥 (𝑡) , 𝑥 (𝑡)⟩

+ 2 ⟨𝐿 (𝜂
𝑡
) 𝑢 (𝑡) , 𝑥 (𝑡)⟩ + ⟨𝑅 (𝜂

𝑡
) 𝑢 (𝑡) , 𝑢 (𝑡)⟩) | 𝜂

𝑡

= 𝑖] .

(7)

An optimal control problem (O) associated with (5) and
(7) consists in minimizing the cost functional 𝐽(𝑢; 𝑡0, 𝑥, 𝑖), 𝑖 ∈
Z, subject to (5), over the setU

𝑡0 ,𝑥
of admissible controls 𝑢 =

{𝑢(𝑡)}
𝑡≥𝑡0 ,𝑛∈N

with the property that 𝑢(𝑡), 𝑡 ≥ 𝑡0, are𝑈-valued,
H
𝑡
-measurable random variables such that

sup
𝑡≥𝑡0

𝐸 [‖𝑢 (𝑡)‖
2𝜂𝑡0=𝑖

] < ∞ (8)

and 𝐽(𝑢; 𝑡0, 𝑥, 𝑖) < ∞ for all 𝑖 ∈Z.

Let E : 𝑙Z
𝑆(𝐻)

→ 𝑙
Z
𝑆(𝐻)

, and

E (𝑋) (𝑖) = ∑
𝑗∈Z

𝑝
𝑖𝑗
𝑋(𝑗) , 𝑖 ∈Z. (9)

Aswe know from [5, 7], (O) has a solution 𝑢opt if the following
modified algebraic Riccati equation (MARE):

𝑋(𝑖) =

𝑟

∑

𝑝=0
𝐴
∗

𝑝
(𝑖)E (𝑋) (𝑖) 𝐴

𝑝
(𝑖) +𝑀 (𝑖)

− [𝐿 (𝑖) +

𝑟

∑

𝑝=0
𝐴
∗

𝑝
(𝑖)E (𝑋) (𝑖) 𝐵

𝑝
(𝑖)]

⋅ [𝑅 (𝑖) +

𝑟

∑

𝑝=0
𝐵
∗

𝑝
(𝑖)E (𝑋) (𝑖) 𝐵

𝑝
(𝑖)]

−1

⋅ [𝐿
∗

(𝑖) +

𝑟

∑

𝑝=0
𝐵
∗

𝑝
(𝑖)E (𝑋) (𝑖) 𝐴

𝑝
(𝑖)] ,

𝑖 ∈Z,

(10)

has a mean-square stabilizing solution (see Definition 8).
Our problem is to provide a set of necessary and sufficient

conditions for the existence of a stabilizing solution forMARE
(10).

3. Preliminary Results

3.1. Sequences of Nuclear and Compact Operators. As in [9],
we denote by 𝑆1(𝐻) the Banach space of all nuclear operators
from 𝑆(𝐻). It is known that 𝑆1(𝐻) is a Banach space when
endowed with the nuclear norm ‖𝑇‖1 = Tr[√𝑇∗𝑇]. Here,
Tr[⋅] is the trace operator. It is well know (see, e.g., [14, 15])
that

‖⋅‖ ≤ ‖⋅‖1 . (11)

For further properties of nuclear operators, the reader is
referred to [9, 14–16]. It is known that the linear subspace
N
𝐻
= {𝑇 ∈ 𝑙

Z
𝑆(𝐻)
, ‖|𝑇|‖1 = ∑𝑖∈Z ‖𝑇(𝑖)‖1 < ∞} of 𝑙

Z
𝑆(𝐻)

is a
Banach space (see [9]) when endowed with the norm ‖| ⋅ |‖1.
An easy computation (see [9]) shows that

‖⋅‖Z ≤ ‖|⋅|‖1 . (12)

In the sequel we sometimes use a special element of N
𝐻
,

defined for any 𝑖 ∈Z and 𝑥 ∈ 𝐻 by

𝑖,𝑥
�̂� (𝑗) = 0 if 𝑗 ̸= 𝑖,

𝑖,𝑥
�̂� (𝑖) = 𝑥 ⊗ 𝑥.

(13)

Here, 𝑥 ⊗ 𝑥 ∈ 𝑆1(𝐻) is defined by 𝑥 ⊗ 𝑥(𝑢) = ⟨𝑢, 𝑥⟩𝑥.
Let C

𝐻
denote the set all compact operators from 𝑆(𝐻).

Then, CZ
𝐻
will be the subset of 𝑙Z

𝑆(𝐻)
formed by sequences of

compact operators; that is, CZ
𝐻
= {𝑋 ∈ 𝑙

Z
𝑆(𝐻)

| 𝑋(𝑖) ∈ C
𝐻
for

all 𝑖 ∈Z}.
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It is well known that 𝑆1(𝐻) is dense inC
𝐻
in the uniform

operator topology (see, e.g., Problem 5.69 from [15]). The
following lemma, whose proof is a simple exercise for the
reader, states that a similar result remains true for finite
sequences of nuclear and compact operators.

Lemma 1. IfZ is finite, thenN
𝐻
is dense inCZ

𝐻
with respect

to ‖ ⋅ ‖Z.

Remark 2. In the case when Z is infinite, the above result is
not true as it is proved by the following counter example. Let
𝐻 = R and letZ = N. Then,CZ

𝐻
= 𝑙

Z
𝑆(R) = 𝑙∞(Z) andN

𝐻
=

𝑙1(Z). Since 𝑙1(Z) is separable and 𝑙∞(Z) is not, it follows that
𝑙1(Z) is not dense in 𝑙∞(Z). Thus,N

𝐻
is not dense inCZ

𝐻
.

Proposition 3. The dual space (N
𝐻
)
∗ of the Banach space

N
𝐻
is isometrically isomorphicwith 𝑙Z

𝑆(𝐻)
.The isomorphism𝜓 :

𝑙
Z
𝑆(𝐻)

→ (N
𝐻
)
∗ is defined by𝜓(𝑌) = 𝜙

𝑌
, where𝜙

𝑌
is the linear

functional:

𝜙
𝑌
(𝑇) = ∑

𝑖∈𝑍

Tr [𝑇 (𝑖) 𝑌 (𝑖)] , 𝑇 ∈N
𝐻
. (14)

Proof. Let 𝑌 ∈ 𝑙Z
𝑆(𝐻)

and 𝑇 ∈ N
𝐻
be arbitrarily chosen. The

following inequalities:
𝜙𝑌 (𝑇)

 ≤ ∑

𝑖∈Z

|Tr [𝑇 (𝑖) 𝑌 (𝑖)]| ≤ ∑
𝑖∈Z

‖𝑇 (𝑖) 𝑌 (𝑖)‖1

≤ ∑

𝑖∈Z

‖𝑌 (𝑖)‖ ‖𝑇 (𝑖)‖1 ≤ ‖𝑌‖Z ∑
𝑖∈Z

‖𝑇 (𝑖)‖1

≤ ‖𝑌‖Z ‖|𝑇|‖1 ,

(15)

show that 𝜙
𝑌
∈ (N

𝐻
)
∗ and
𝜙𝑌
 ≤ ‖𝑌‖Z . (16)

We will prove that 𝑌 → 𝜙
𝑌
is the isometric isomorphism

that maps 𝑙Z
𝑆(𝐻)

into (N
𝐻
)
∗. Let 𝜙 ∈ (N

𝐻
)
∗. For any 𝑖 ∈ Z,

we define 𝑌(𝑖) ∈ 𝑆(𝐻) by

⟨𝑌 (𝑖) 𝑥, 𝑥⟩ = 𝜙 (
𝑖,𝑥
�̂�) , 𝑥 ∈ 𝐻. (17)

Obviously, |⟨𝑌(𝑖)𝑥, 𝑥⟩| ≤ ‖𝜙‖‖|
𝑖,𝑥
�̂� |‖1 = ‖𝜙‖‖𝑥‖

2. Hence
‖𝑌(𝑖)‖ ≤ ‖𝜙‖, 𝑖 ∈ Z. It follows that 𝑌 = {𝑌(𝑖)}

𝑖∈Z ∈ 𝑙
Z
𝑆(𝐻)

and

‖𝑌‖Z ≤
𝜙
 . (18)

On the other hand, a simple computation shows that

⟨𝑌 (𝑖) 𝑥, 𝑥⟩ = ∑

𝑗∈Z

Tr [(
𝑖,𝑥
�̂�) (𝑗) 𝑌 (𝑗)] (19)

and (17) and (14) imply that

𝜙 (
𝑖,𝑥
�̂�) = 𝜙

𝑌
(
𝑖,𝑥
�̂�) (20)

for all 𝑥 ∈ 𝐻, 𝑖 ∈ Z. It is well known that every 𝑋 ∈ 𝑆1(𝐻)
can be written as a sum ∑

𝑛∈N 𝜆𝑛𝑥𝑛 ⊗ 𝑥𝑛, where the series is

‖ ⋅ ‖1-convergent and 𝑥𝑛 ∈ 𝐻, 𝑛 ∈ N [15]. Hence, the element
𝑋
𝑖
∈ 𝑙

Z
𝑆(𝐻)

, defined by 𝑋
𝑖
(𝑖) = 𝑋 and 𝑋

𝑖
(𝑗) = 0, for 𝑗 ̸= 𝑖,

𝑗 ∈ Z, can be written as ∑
𝑛∈N 𝜆𝑛( 𝑖,𝑥𝑛

�̂�) where the series is
‖| ⋅ |‖1-convergent. Then, (20) and the ‖| ⋅ |‖1-continuity of 𝜙
and 𝜙

𝑌
ensure that

𝜙 (𝑋
𝑖
) = 𝜙

𝑌
(𝑋
𝑖
) (21)

for all 𝑋 ∈ 𝑆1(𝐻). Now, for an arbitrary X ∈ N
𝐻
, we define

the sequence 𝑋
𝑛
∈ N

𝐻
, 𝑛 ∈ N, 𝑋

𝑛
(𝑖) := X (𝑖), if |𝑖| ≤ 𝑛,

𝑖 ∈ Z and 𝑋
𝑛
(𝑖) := 0 for |𝑖| ≥ 𝑛, 𝑖 ∈ Z. It is not difficult

to see that 𝑋
𝑛
, 𝑛 ∈ N converges to X in ‖| ⋅ |‖1. From (21),

it follows easily that 𝜙(𝑋
𝑛
) = 𝜙

𝑌
(𝑋
𝑛
) for all 𝑛 ∈ N. Using

again the ‖| ⋅ |‖1-continuity of 𝜙 and 𝜙𝑌, we get 𝜙(X) = 𝜙𝑌(X).
Therefore, 𝜙 = 𝜙

𝑌
and combining (16) and (18), it follows that

‖𝜙
𝑌
‖ = ‖𝑌‖Z. We conclude that the map 𝜓 is an isometric

isomorphism from (N
𝐻
)
∗ to 𝑙Z

𝑆(𝐻)
.The proof is complete.

Remark 4. Adirect consequence of (17) and the above lemma
is the following property of the isomorphism 𝜓.
𝜙 ∈ (N

𝐻
)
∗ is a positive functional (i.e., 𝜙(𝑋) ≥ 0 for any

𝑋 ∈N
𝐻
,𝑋 ≥ 0), if and only if 𝜓−1(𝜙) := 𝑌 ⪰ 0.

3.2. Maximal and Stabilizing Solutions of MARE. In this
section, we recall some definitions and results which we
frequently use in the rest of the paper. To be consistent
with previous publications (see, e.g., [7, 8] and the refer-
ences therein) concerning discrete-time Riccati equations
associated with DTLSs with MN and MJs, we introduce the
following notation. For all𝑋 ∈ 𝑙Z

𝑆(𝐻)
, let

Π1 (𝑋) (𝑖) :=
𝑟

∑

𝑝=0
𝐴
∗

𝑝
(𝑖)E (𝑋) (𝑖) 𝐴

𝑝
(𝑖) ,

Π2 (𝑋) (𝑖) :=
𝑟

∑

𝑝=0
𝐴
∗

𝑝
(𝑖)E (𝑋) (𝑖) 𝐵

𝑝
(𝑖) ,

Π3 (𝑋) (𝑖) :=
𝑟

∑

𝑝=0
𝐵
∗

𝑝
(𝑖)E (𝑋) (𝑖) 𝐵

𝑝
(𝑖) ,

(22)

Π (𝑋) = (

Π1 (𝑋) Π2 (𝑋)

Π2 (𝑋)
[∗]

Π3 (𝑋)
) . (23)

We see that Π1 ∈ 𝐿(𝑙
Z
𝑆(𝐻)
), Π2 ∈ 𝐿(𝑙

Z
𝑆(𝐻)
, 𝑙
Z
𝐿(𝑈,𝐻)

), Π3 ∈ 𝐿(𝑙
Z
𝑆(𝐻)
,

𝑙
Z
𝑆(𝑈)
), and Π ∈ 𝐿(𝑙

Z
𝑆(𝐻)
, 𝑙
Z
𝑆(𝐻×𝑈)

) is a positive operator. Then,
MARE (10) can be equivalently rewritten as

𝑋 =R (𝑋) , (24)

where, for all 𝑋 ∈ DomR = {𝑋 ∈ 𝑙
Z
𝑆(𝐻)

| (𝑅 + Π3𝑋)(𝑖)
is invertible for all 𝑖 ∈Z},

R (𝑋)

= Π1 (𝑋) +𝑀

− (𝐿+Π2 (𝑋)) (𝑅 +Π3 (𝑋))
[−1]
(𝐿 +Π2 (𝑋))

[∗]

.

(25)
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Following [8], we define the dissipation operator

𝐷
Σ

: 𝑙 (N, 𝑙
Z
𝑆(𝐻)
) → 𝑙 (N, 𝑙

Z
𝑆(𝐻)
) ,

𝐷
Σ

(𝑋) (𝑡)

= (

Π1 (𝑋 (𝑡 + 1)) + 𝑀 − 𝑋 (𝑡) 𝐿 + Π2 (𝑋 (𝑡 + 1))

(𝐿 + Π2 (𝑋 (𝑡 + 1)))
[∗]

𝑅 + Π3 (𝑋 (𝑡 + 1))
)

(26)

and the subsets ΓΣ and Γ̃Σ of 𝑙(N, 𝑙Z
𝑆(𝐻)
)

Γ
Σ

= {𝑋∈ 𝑙 (N, 𝑙
Z
𝑆(𝐻)
) | 𝑅 +Π3 (𝑋 (𝑡 + 1))

≻ ≻ 0, 𝐷Σ (𝑋) (𝑡) ⪰ 0, 𝑡 ∈N}

Γ̃
Σ

= {𝑋∈ 𝑙 (N, 𝑙
Z
𝑆(𝐻)
) | 𝐷

Σ

(𝑋) (𝑡) ≻ ≻ 0} .

(27)

Lemma 28 from [8] (which is an operatorial version of the
Schur complement Lemma) ensures that 𝑋 ∈ Γ̃

Σ iff (if and
only if)R(𝑋) − 𝑋 ≻≻ 0.

Definition 5. (a) We say that𝑋 ∈ 𝑙Z
𝑆(𝐻)

is a solution of MARE
(10) if (𝑅 + Π3𝑋)(𝑖) is invertible for all 𝑖 ∈ Z and 𝑋 satisfies
(10).

(b) We say that a solution 𝑋 of MARE (10) is maximal if
𝑋 ⪰ 𝑋(𝑡), 𝑡 ∈ N, for arbitrary {𝑋(𝑡)}

𝑡∈N ∈ Γ
Σ.

Now, for any𝑊 ∈ 𝑙
Z
𝐿(𝐻,𝑈)

, we define

Π
𝑊
(𝑋) =

𝑟

∑

𝑝=0
(𝐴
𝑝
(𝑖) + (𝐵

𝑝
𝑊) (𝑖))

∗

E (𝑋) (𝑖)

⋅ (𝐴
𝑝
(𝑖) + 𝐵

𝑝
𝑊(𝑖)) ,

(28)

𝑄
𝑊
= 𝑀+𝑊

[∗]

𝐿
[∗]

+𝐿𝑊+𝑊
[∗]

𝑅𝑊. (29)

Obviously, Π
𝑊
∈ 𝐿(𝑙

Z
𝑆(𝐻)
) is a positive operator.

As in [8], let 𝑇
𝑊
(𝑡, 𝑡0) = (Π𝑊)

𝑡−𝑡0 , 𝑡 ≥ 𝑡0, 𝑡, 𝑡0 ∈ N, be
the evolution operator defined byΠ

𝑊
. We say that 𝑇

𝑊
(𝑡, 𝑡0), is

exponentially stable iff there are 𝛽 ≥ 1, 𝛼 ∈ (0, 1) such that
𝑇𝑊 (𝑡, 𝑡0)

 ≤ 𝛽𝛼
𝑡−𝑡0 (30)

for all 𝑡 ≥ 𝑡0, 𝑡, 𝑡0 ∈ N or, equivalently, iff 𝜌
Π𝑊
< 1, where 𝜌

Π𝑊

denotes the spectral radius of Π
𝑊
.

In view of Theorem 14 from [8], we have the following.

Definition 6. The linear and positive operatorΠ is stabilizable
if there is 𝑊 ∈ 𝑙

Z
𝐿(𝐻,𝑈)

such that the evolution operator
𝑇
𝑊
(𝑡, 𝑡0), 𝑡 ≥ 𝑡0, 𝑡, 𝑡0 ∈ N, is exponentially stable.

Since (4) and (22) imply that 0 ∈ Γ
Σ, the following

proposition is a direct consequence of Theorem 9 from [8].

Proposition 7. Assume (P1). If there is𝑊 ∈ 𝑙
Z
𝐿(𝐻,𝑈)

such that
𝑇
𝑊
(𝑡, 𝑡0) is exponentially stable, then MARE (10) has a maxi-

mal solution𝑋max which has the property that

𝑅+Π3 (𝑋max) ≻≻ 0. (31)

Theorems 9 and 13 from [8] ensure that, in the time invari-
ant case, the notion of stabilizing solution of MARE (10)
from [8] is equivalent with the one introduced by the follow-
ing.

Definition 8. By a stabilizing solution ofMARE (10), wemean
a solution X ∈ 𝑙

Z
𝑆(𝐻)

with the property that the evolution
operator 𝑇

𝐹
X(𝑡, 𝑡0), 𝑡 ≥ 𝑡0, 𝑡, 𝑡0 ∈ N, where

𝐹
X
= − (𝑅+Π3 (X))

[−1]
(𝐿 +Π2 (X))

[∗]

, (32)

is exponentially stable.

Finally, we recall (see (4.8) in [8]) that mappingR can be
equivalently rewritten as

R (𝑋) = Π
𝑊
(𝑋) +𝑄

𝑊

− (𝐹
𝑋

−𝑊)
[∗]

(𝑅 +Π3 (𝑋))
[−1]
(𝐹
𝑋

−𝑊)

(33)

for all𝑊 ∈ 𝑙
Z
𝐿(𝐻,𝑈)

. We will use later this formula for different
values of𝑊.

4. Main Results

In this section we establish necessary (see Theorem 10) and
sufficient conditions (see Theorems 11 and 13) for the exis-
tence of a stabilizing solution to MARE (10). They are related
to the nonexistence of certain unobservable eigenvalues for
a pair of operators which are defined with the coefficients of
(10). For finite-dimensional MAREs, we recover the results
from [17] (see also [11] for the continuous time case). Unlike
[17], our results apply to stochastic systems with Markovian
jumps.

Assume (P1) and let𝑊 ∈ 𝑙
Z
𝐿(𝐻,𝑈)

and Π
𝑊
, 𝑄
𝑊
be defined

by (28) and (29), respectively. SinceΠ
𝑊
is a positive operator

on 𝑙Z
𝑆(𝐻)

, we know from [18] (see Theorem 3.2.3 therein) that
there is 𝑦∗ ∈ (𝑙Z

𝑆(𝐻)
)
∗ such that 𝑦∗ ≥ 0, 𝑦∗ ̸= 0, and

Π
∗

𝑊
(𝑦
∗

) = 𝜌
Π𝑊
𝑦
∗

, (34)

where 𝜌
Π𝑊

is the spectral radius of Π
𝑊
. Therefore, Π∗

𝑊
has

nonnegative eigenvalues.

Definition 9. We say that 𝜆 ≥ 0 is an unobservable eigenvalue
for the pair (Π∗

𝑊
, 𝑄
𝑊
),𝑊 ∈ 𝑙

Z
𝐿(𝐻,𝑈)

, iff there is an 𝑦∗ ∈ (𝑙Z
𝑆(𝐻)
)
∗

such that 𝑦∗ ≥ 0, 𝑦∗ ̸= 0, and

Π
∗

𝑊
(𝑦
∗

) = 𝜆𝑦
∗

,

𝑦
∗

(𝑄
𝑊
) = 0.

(35)

Otherwise, we will say that 𝜆 is not an unobservable
eigenvalue for the pair (Π∗

𝑊
, 𝑄
𝑊
).

The next theorem gives necessary conditions for the
existence of a stabilizing solution to MARE (10).
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Theorem 10. If the algebraic Riccati equation (10) has a stabi-
lizing solution, then

(a) Π is stabilizable;

(b) 𝜆 = 1 is not an unobservable eigenvalue for the pair
(Π
∗

−𝑅
−1
𝐿
[∗] , 𝑄−𝑅−1𝐿[∗]).

Proof. Statement (a) follows from Definition 8. Let us prove
(b). If (10) has a stabilizing solutionX, then it coincides with
the maximal solution, according to Theorem 13 from [8].
Since 0 ∈ ΓΣ, we deduce that X ≥ 0 (see Definition 5(b)).
UsingTheorem 13 from [8] again, we see that Γ̃Σ ̸= ⌀. A slight
modification of the proof of Theorem 13 from [8] leads us to
the conclusion that, in the time invariant case, Γ̃Σ contains a
constant sequence 𝑋(𝑡) = 𝑋 ∈ 𝑙

Z
𝑆(𝐻)

, 𝑡 ∈ N. For such 𝑋 we
haveR(𝑋) −𝑋 ≻≻ 0 and, consequently, there is a 𝛿 > 0 such
that

R (𝑋) −𝑋 ≥ 𝛿Φ
𝐻
. (36)

Assume by contradiction that (b) is not satisfied. This means
that there is 𝑦∗ ≥ 0, 𝑦∗ ̸= 0, such that

Π
∗

−𝑅
−1
𝐿
[∗] (𝑦

∗

) = 𝑦
∗

,

𝑦
∗

(𝑄
−𝑅
−1
𝐿
[∗]) = 0.

(37)

Using successively (36), (33) (with −𝑅−1𝐿[∗] replacing 𝑊),
and (37), we get

0 ≤ 𝑦∗ (R (𝑋) −𝑋) = 𝑦
∗

(Π
−𝑅
−1
𝐿
[∗] (𝑋) −𝑋

+𝑄
−𝑅
−1
𝐿
[∗] − (𝐹

𝑋

+𝑅
−1
𝐿
[∗]

)
[∗]

(𝑅 +Π3 (𝑋))

⋅ (𝐹
𝑋

+𝑅
−1
𝐿
[∗]

)) = (Π
∗

−𝑅
−1
𝐿
[∗] (𝑦

∗

) − 𝑦
∗

)𝑋

+𝑦
∗

(𝑄
−𝑅
−1
𝐿
[∗]) − 𝑦

∗

[(𝐹
𝑋

+𝑅
−1
𝐿
[∗]

)
𝑇

⋅ (𝑅 +Π3 (𝑋)) (𝐹
𝑋

+𝑅
−1
𝐿
[∗]

)]

= −𝑦
∗

[(𝐹
𝑋

+𝑅
−1
𝐿
[∗]

)
𝑇

(𝑅 +Π3 (𝑋))

⋅ (𝐹
𝑋

+𝑅
−1
𝐿
[∗]

)] ≤ 0.

(38)

Hence 𝑦∗(R(𝑋) − 𝑋) = 0. From (36) and the positiveness of
𝑦
∗, we deduce that

0 = 𝑦∗ (R (𝑋) −𝑋) ≥ 𝑦
∗

(𝛿Φ
𝐻
) ≥ 0. (39)

It follows that 𝑦∗(𝛿Φ
𝐻
) = 0 ⇔ 𝑦

∗

(Φ
𝐻
) = 0. Since

‖𝑦
∗

(𝑋)‖ ≤ ‖𝑋‖‖𝑦
∗

(Φ
𝐻
)‖ for all 𝑋 ∈ 𝑙

Z
𝑆(𝐻)

, it follows easily
that 𝑦∗ = 0. We have obtained a contradiction.Therefore, (b)
holds and 𝜆 = 1 is not an unobservable eigenvalue for the pair
(Π
∗

−𝑅
−1
𝐿
[∗] , 𝑄−𝑅−1𝐿[∗]). The proof is complete.

Now let us introduce a new hypothesis

(P2)

(i) 𝐴
𝑝
(𝑖) ∈ 𝐿(𝐻) and 𝐵

𝑝
(𝑖) ∈ 𝐿(𝑈,𝐻), 𝑝 = 0, . . . , 𝑟,

𝑖 ∈Z, are compact operators.

In the case when Z is finite, we have the following
converse of Theorem 10.

Theorem 11. Assume thatZ is finite and (P1) and (P2) hold. If

(a) Π is stabilizable and

(b) the pair (Π∗
−𝑅
−1
𝐿
[∗] , 𝑄−𝑅−1𝐿[∗]) has not an unobservable

eigenvalue 𝜆 ≥ 1, then the algebraic Riccati equation
(10) has a stabilizing solution.

Proof. FromProposition 7, we know that the algebraic Riccati
equation (10) has a maximal solution 𝑋max. Assume by
contradiction that𝑋max is not stabilizing; that is, 𝑇𝐹𝑋max (𝑡, 𝑡0)
is not exponentially stable.Then, 𝜌

Π
𝐹
𝑋max

≥ 1 and there is𝑦∗ ∈
(𝑙
Z
𝑆(𝐻)
)
∗, 𝑦∗ ≥ 0, 𝑦∗ ̸= 0, such that Π∗

𝐹
𝑋max (𝑦

∗

) = 𝜌
Π
𝐹
𝑋max
𝑦
∗.

Hence, 𝑦∗(Π
𝐹
𝑋max (𝑋)) = 𝜌Π

𝐹
𝑋max
𝑦
∗

(𝑋) for all 𝑋 ∈ 𝑙
Z
𝑆(𝐻)

. For
the sake of simplicity, let us denote 𝜌

Π
𝐹
𝑋max

by 𝜌.
Let us prove that 𝑦∗(N

𝐻
) ̸= {0}. Indeed, if 𝑦∗(N

𝐻
) =

{0}, then 𝑦∗(N
𝐻
) = 0. Since N

𝐻
= CZ

𝐻
, according to

Lemma 1, we deduce that 𝑦∗(CZ
𝐻
) = {0}. On the other hand,

hypothesis (P2) implies thatΠ
𝐹
𝑋max (𝑋) ∈ C

Z
𝐻
for all𝑋 ∈ 𝑙Z

𝑆(𝐻)

and, therefore, 𝜌𝑦∗(𝑋) = 𝑦
∗

(Π
𝐹
𝑋max (𝑋)) = 0 for all 𝑋 ∈

𝑙
Z
𝑆(𝐻)

. Hence, 𝑦∗ = 0 that is a contradiction. It follows that
𝑦
∗

(N
𝐻
) ̸= {0}.

Thus, 𝑦∗|N𝐻 is a nonzero linear functional. Obviously,
|𝑦
∗

(𝑋)| ≤ ‖𝑋‖Z‖𝑦
∗

‖ ≤ ‖|𝑋|‖1‖𝑦
∗

‖, 𝑋 ∈ N
𝐻
, and 𝑦∗|N𝐻 ∈

(N
𝐻
)
∗. Moreover, 𝑦∗|N𝐻 ≥ 0, 𝑦∗|N𝐻 ̸= 0. By Proposition 3,

we know that there is 𝑌 ∈ 𝑙Z
𝑆(𝐻)

, 𝑌 ≥ 0, 𝑌 ̸= 0, such that

𝑦
∗N𝐻

(𝑋) = ∑

𝑖∈𝑍

Tr [𝑋 (𝑖) 𝑌 (𝑖)] (40)

for all 𝑋 ∈ N
𝐻
. Rewriting (33) for𝑊 replaced by 𝐹𝑋max , we

see that the maximal solution 𝑋max of the algebraic Riccati
equation (10) satisfies the following equation:

𝑋max = Π𝐹𝑋max (𝑋max) +𝑄𝐹𝑋max . (41)

Hence, 𝑄
𝐹
𝑋max = −(Π𝐹𝑋max (𝑋max) − 𝑋max). From (P1)(i) and

(29), 𝑄
𝐹
𝑋max ⪰ 0. Using the properties of 𝑦∗, we obtain

0 ≤ 𝑦∗ (𝑄
𝐹
𝑋max ) = −𝑦

∗

(Π
𝐹
𝑋max (𝑋max) −𝑋max)

= − [Π
∗

𝐹
𝑋max (𝑦

∗

) − 𝑦
∗

] (𝑋max)

= − (𝜌 − 1) 𝑦∗ (𝑋max) ≤ 0.

(42)
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It follows that 𝑦∗(𝑄
𝐹
𝑋max ) = 0. An easy computation shows

that
𝑄
𝐹
𝑋max

= 𝑀−𝐿𝑅
[−1]
𝐿
[∗]

+ [𝑅
[−1]
𝐿
[∗]

+𝐹
𝑋max]

[∗]

𝑅 [𝑅
[−1]
𝐿
[∗]

+𝐹
𝑋max] .

(43)

Lemma 28 from [8] (a Schur complement result for sequences
of operators) and (P1)(i) imply that𝑀−𝐿𝑅[−1]𝐿[∗] ⪰ 0. Since

[𝑅
[−1]
𝐿
[∗]

+𝐹
𝑋max]

[∗]

𝑅 [𝑅
[−1]
𝐿
[∗]

+𝐹
𝑋max] ⪰ 0 (44)

and 𝑄
−𝑅
−1
𝐿
[∗] = 𝑀 − 𝐿𝑅

[−1]
𝐿
[∗], it follows easily that

𝑦
∗

(𝑄
−𝑅
−1
𝐿
[∗]) = 0 (45)

and 𝑦∗([𝑅[−1]𝐿[∗] + 𝐹𝑋max]
[∗]

𝑅[𝑅
[−1]
𝐿
[∗]

+ 𝐹
𝑋max]) = 0.

We know that, for any 𝑋 ∈ 𝑆(𝐻) and {𝑒
𝑛
}
𝑛∈N an ortho-

normal basis of𝐻, the increasing sequence𝑋
𝑛
= ∑

∞

𝑛=1(𝑋𝑒𝑛)⊗
(𝑋𝑒

𝑛
) ∈ 𝑆1(𝐻) is weakly convergent to 𝑋. It is not difficult

to see that this property remains valid for each component
𝑋(𝑖) of any 𝑋 ∈ 𝑙

Z
𝑆(𝐻)

. So there is a nonnegative, increasing
sequence 𝑅

𝑛
∈ N

𝐻
, 𝑛 ∈ N which is componentwise weakly

convergent to 𝑅. The positiveness of 𝑦∗ and the inequality
𝑅 ⪰ 𝑅

𝑛
⪰ 0 imply that 𝑦∗([𝑅[−1]𝐿[∗] +𝐹𝑋max]

[∗]

𝑅
𝑛
[𝑅
[−1]
𝐿
[∗]

+

𝐹
𝑋max]) = 0. Since

[𝑅
[−1]
𝐿
[∗]

+𝐹
𝑋max]

[∗]

𝑅
𝑛
[𝑅
[−1]
𝐿
[∗]

+𝐹
𝑋max] ∈N

𝐻
,

(46)

we can apply (40) and we get

∑

𝑖∈Z

Tr [𝑌 (𝑖) ((𝑅[−1]𝐿[∗] + 𝐹𝑋max) (𝑖))
∗

𝑅
𝑛
(𝑖)

⋅ (𝑅
[−1]
𝐿
[∗]

+𝐹
𝑋max) (𝑖)] = 0

⇐⇒ ∑

𝑖∈Z

Tr [(√𝑌 (𝑖) (𝑅[−1]𝐿[∗] + 𝐹𝑋max) (𝑖))
∗

⋅ 𝑅
𝑛
(𝑖) (𝑅

[−1]
𝐿
[∗]

+𝐹
𝑋max) (𝑖) √𝑌 (𝑖)] = 0

(47)

for all 𝑖 ∈ Z. Now let us recall the following property of
nonnegative operators: Tr[𝐴𝐴∗] = 0 ⇒ 𝐴 = 0. From (47),
we obtain

√𝑌 (𝑖) (𝑅
[−1]
𝐿
[∗]

+𝐹
𝑋max) (𝑖)

∗

√𝑅
𝑛
(𝑖)

= 0 ⇒ √𝑌 (𝑖) (𝑅
[−1]
𝐿
[∗]

+𝐹
𝑋max) (𝑖)

∗

𝑅
𝑛
(𝑖) = 0.

(48)

Passing to the limit as 𝑛 → ∞ in the above equality, we get

√𝑌 (𝑖) (𝑅
[−1]
𝐿
[∗]

+𝐹
𝑋max) (𝑖)

∗

𝑅 (𝑖) = 0. (49)

Taking into account that 𝑅(𝑖) is invertible for all 𝑖 ∈ Z, we
deduce that√𝑌(𝑖)(𝑅[−1]𝐿[∗] + 𝐹𝑋max)(𝑖)

∗

= 0, for all 𝑖 ∈Z or,
equivalently,

√𝑌[𝑅
[−1]
𝐿
[∗]

+𝐹
𝑋max]

[∗]

= 0. (50)

Thus,√𝑌(𝐴 + 𝐵𝐹𝑋max)
[∗]

= √𝑌(𝐴 − 𝐵𝑅
[−1]
𝐿
[∗]

)
[∗] for all 𝑌 ∈

𝑙
Z
𝑆(𝐻)

and

Tr [𝑌Π
𝐹
𝑋max (𝑋)] = Tr [𝑌Π

−𝑅
[−1]
𝐿
[∗] (𝑋)] (51)

for all𝑋 ∈N
𝐻
. In view of (40), we get

𝑦
∗N𝐻

(Π
𝐹
𝑋max (𝑋)) = 𝑦

∗N𝐻
(Π
−𝑅
[−1]
𝐿
[∗] (𝑋)) (52)

for all 𝑋 ∈N
𝐻
. Let us prove that the above equality remains

true if we replace𝑋with an arbitrary𝑋 ∈ 𝑙Z
𝑆(𝐻)

. Asmentioned
above, there is a sequence 𝑋

𝑛
∈ N

𝐻
that converges compo-

nentwise and weakly to 𝑋. That is, 𝑋
𝑛
(𝑖) →

𝑛→∞

𝑋(𝑖), weakly,
for all 𝑖 ∈ Z. From hypothesis (P2), it follows that (𝐴

𝑝
+

𝐵
𝑝
𝐹
𝑋max)

∗

(𝑖)E(𝑋
𝑛
)(𝑖)(𝐴

𝑝
+ 𝐵

𝑝
𝐹
𝑋max)(𝑖) is norm convergent

to (𝐴
𝑝
+ 𝐵

𝑝
𝐹
𝑋max)

∗

(𝑖)E(𝑋)(𝑖)(𝐴
𝑝
+ 𝐵

𝑝
𝐹
𝑋max)(𝑖) for all 𝑖 ∈ Z

and 𝑝 = 0, . . . , 𝑟. This is because the multiplication to the
right and to the left with compact operators promotes the
weak convergence of operators to the uniform convergence.

Therefore, Π
𝐹
𝑋max (𝑋𝑛) is ‖ ⋅ ‖Z-convergent to Π𝐹𝑋max (𝑋).

Similarly, we deduce that Π
−𝑅
[−1]
𝐿
[∗](𝑋

𝑛
) is ‖ ⋅ ‖Z-convergent

to Π
−𝑅
[−1]
𝐿
[∗](𝑋). From (52) we have

𝑦
∗

(Π
𝐹
𝑋max (𝑋𝑛)) = 𝑦

∗

(Π
−𝑅
[−1]
𝐿
[∗] (𝑋

𝑛
)) (53)

and passing to the limit for 𝑛 → ∞ we obtain

𝑦
∗

(Π
𝐹
𝑋max (𝑋)) = 𝑦

∗

(Π
−𝑅
[−1]
𝐿
[∗] (𝑋)) , 𝑋 ∈ 𝑙

Z
𝑆(𝐻)
. (54)

So 𝜌𝑦∗ = Π∗
𝐹
𝑋max (𝑦

∗

) = Π
∗

−𝑅
[−1]
𝐿
[∗](𝑦

∗

). In view of (45), we
just have obtained a contradiction of (b).Therefore,𝑋max is a
stabilizing solution and the conclusion follows.

Remark 12. If the maximal solution would have the property
that 𝜌

Π
𝐹
𝑋max

≤ 1, the proof of the above theorem could be
modified such that condition 𝜆 ≥ 1 is to be replaced by 𝜆 = 1.

Before stating the next result, we note that𝐴𝑋,𝑋𝐴 ∈N
𝐻

for all𝐴 ∈N
𝐻
and𝑋 ∈ 𝑙Z

𝑆(𝐻)
; that is,N

𝐻
is a two-sided ideal

of 𝑙Z
𝑆(𝐻)

.
In the case when Z is infinite, we have the following

version of Theorem 11.

Theorem 13. Assume that Z is infinite and 𝐴
𝑝
, 𝐵
𝑝
∈ N

𝐻
,

𝑝 = 0, . . . , 𝑟. If

(a) Π is stabilizable and
(b) the pair (Π∗

−𝑅
−1
𝐿
[∗] , 𝑄−𝑅−1𝐿[∗]) has not an unobservable

eigenvalue 𝜆 ≥ 1, then the algebraic Riccati equation
(10) has a stabilizing solution.

Proof. Arguing as in the proof of the above theorem, we see
that (10) has a maximal solution𝑋max. Since

Π
𝐹
𝑋max (𝑋) (𝑖) =

𝑟

∑

𝑝=0
(𝐴
𝑝
(𝑖) + 𝐵

𝑝
𝐹
𝑋max (𝑖))

∗

E (𝑋) (𝑖)

⋅ (𝐴
𝑝
(𝑖) + 𝐵

𝑝
𝐹
𝑋max (𝑖))

(55)
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for all 𝑋 ∈ 𝑙
Z
𝑆(𝐻)

and N
𝐻
is a two-sided ideal of 𝑙Z

𝑆(𝐻)
, we

deduce easily that

Π
𝐹
𝑋max (𝑋) ∈N𝐻

(56)

for all 𝑋 ∈ 𝑙
Z
𝑆(𝐻)

. Assuming by contradiction that 𝑋max is
not a stabilizing solution and reasoning as in the proof of the
above theorem, we deduce that 𝜌

Π
𝐹
𝑋max

≥ 1 and there is 𝑦∗ ∈
(𝑙
Z
𝑆(𝐻)
)
∗, 𝑦∗ ≥ 0, 𝑦∗ ̸= 0, such that Π∗

𝐹
𝑋max (𝑦

∗

) = 𝜌
Π
𝐹
𝑋max
𝑦
∗.

Property (56) ensures that 𝑦∗(N
𝐻
) ̸= {0}. Otherwise, (56)

implies that 𝜌
Π
∗

𝐹
𝑋max
𝑦
∗

(𝑋) = 𝑦
∗

(Π
∗

𝐹
𝑋max (𝑋)) = 0 for all 𝑋 ∈

𝑙
Z
𝑆(𝐻)

, which contradicts the assumption 𝑦∗ ̸= 0. As in the
proof of Theorem 11, we obtain 𝑦∗(𝑄

−𝑅
−1
𝐿
[∗]) = 0 and

𝑦
∗

([𝑅
[−1]
𝐿
[∗]

+𝐹
𝑋max]

[∗]

𝑅 [𝑅
[−1]
𝐿
[∗]

+𝐹
𝑋max])

= 0.

(57)

Letting 𝑌 = 𝜓
−1
(𝑦
∗

|N𝐻
) and repeating step by step the

arguments in the proof of Theorem 11, we obtain succes-
sively √𝑌(𝑖)(𝑅[−1]𝐿[∗] + 𝐹𝑋max)(𝑖)

∗

= 0, 𝑖 ∈ Z, and
√𝑌(𝐴 + 𝐵𝐹

𝑋max)
[∗]

= √𝑌(𝐴 − 𝐵𝑅
[−1]
𝐿
[∗]

)
[∗] for all 𝑌 ∈

𝑙
Z
𝑆(𝐻)

. Now, property (56) implies that Tr[𝑌Π
𝐹
𝑋max (𝑋)] =

Tr[𝑌Π
−𝑅
−1
𝐿
[∗](𝑋)] for all 𝑋 ∈ 𝑙

Z
𝑆(𝐻)

and (54) holds. There-
fore, Π∗

𝐹
𝑋max (𝑦

∗

) = Π
∗

−𝑅
−1
𝐿
[∗](𝑦

∗

) and Π
∗

−𝑅
−1
𝐿
[∗](𝑦

∗

) =

𝜌
𝑇
(𝐴−𝐵𝐹
𝑋max )∗

𝑦
∗. Since 𝑦∗(𝑄

−𝑅
−1
𝐿
[∗]) = 0, we have obtained

a contradiction of statement (b). Consequently, 𝑋max is a
stabilizing solution and the proof is complete.

Now, let us apply our results to finite-dimensional
MAREs associated with stochastic systems of the forms (5)
and (6). We will prove that conditions (a) and (b) from
Theorem 13 are necessary and sufficient for the existence of
a stabilizing solution to MARE (10).

Corollary 14. Assume that Z is finite and the Hilbert spaces
𝐻 and𝑈 are finite-dimensional.The algebraic Riccati equation
(10) has a stabilizing solution if and only if

(a) Π is stabilizable,
(b) 𝜆 = 1 is not an unobservable eigenvalue for the pair
(Π
∗

−𝑅
−1
𝐿
[∗] , 𝑄−𝑅−1𝐿[∗]).

Proof. We first recall that, in finite dimensions, all linear
and bounded operators are compact and nuclear. Also, if Π
is stabilizable, the maximal solution of MARE (10) has the
property 𝜌

Π
𝐹
𝑋max

≤ 1. Indeed, from the proof of Theorem
9 from [8], we know that 𝑋max(𝑖) is the strong limit of an
increasing sequence𝑋

𝑛
(𝑖), 𝑖 ∈Z, of solutions of certain asso-

ciated Lyapunov equations. Denoting by Π𝑛1 the Lyapunov
operators associated with these equations, we also know that
Π
𝑛

1 converges toΠ𝐹𝑋max and 𝜌Π𝑛1 < 1 (see [7, 8], e.g.,). Since the
eigenvalues of a matrix and consequently its spectral radius
depend continuously on thematrix coefficients, we pass to the
limit as 𝑛 → ∞ in the last inequality and we get 𝜌

Π
𝐹
𝑋max

≤ 1.
The conclusion follows.

Further, we observe that the hypotheses of Theorems
10 and 11 are fulfilled. The necessity part of the corollary
follows fromTheorem 10 while the sufficiency part is a direct
consequence of Theorem 11 and Remark 12.

Remark 15. (a) Under the hypotheses of the above corollary,
the operator Π∗

−𝑅
−1
𝐿
[∗] coincides with the Lyapunov operator

associated with the close-loop DTLS from [17, Theorem 12]
for the stabilizing feedback controller 𝐹 = −𝑅−1𝐿[∗].

(b) In view of (a), Corollary 14 shows that Theorems 10,
11, and 13 are infinite-dimensional extensions of Theorem 12
from [17].

5. Numerical Examples

In this section, we provide some numerical examples which
show the efficiency of our theory. Even in the finite-
dimensional case our results (see Corollary 14) seem to be
new when applied to DTLSs with Markovian jumps. So, let
us begin with a finite-dimensional example which proves
that Corollary 14 is a viable alternative when stochastic
detectability and stochastic observability conditions fail to
hold.

Example 1. Consider (5) and (7) in the special case where the
multiplicative noise is missing (𝑟 = 1, 𝐴1 = 0, 𝐵1 = 0) and

(P3) 𝐻 = 𝑈 = R,𝑁 ∈ N∗,𝑁 > 3 is fixed,Z = {1, . . . , 𝑁},
𝑙
Z
𝑆(𝐻)

= R𝑁, 𝐴0(𝑖) = 𝐵0(𝑖) = 3((𝑖 − 1)/𝑖), 𝑖 ∈ Z,𝑀 =

𝐶
[∗]

𝐶,𝐶 = (0, 1, 0, 1, 0, 1, . . .) ∈ R𝑁,𝑅(𝑖) = 1,𝐿(𝑖) = 0
for all 𝑖 ∈Z, and𝑝

𝑖,𝑖
= 𝑝

𝑖,𝑖+1 = 1/2 for 𝑖 = 1, . . . , 𝑁−1,
𝑝
𝑁,𝑁

= 1, and 𝑝
𝑖,𝑗
= 0 otherwise.

Let

𝑦 (𝑡) = 𝐶 (𝜂
𝑡
) 𝑥 (𝑡) (58)

be the output of (5). Note that, in its operation, system (5)
switches between the modes

𝑥 (𝑡 + 1) = 3(𝑖 − 1
𝑖
) 𝑥 (𝑡) + 3(𝑖 − 1

𝑖
) 𝑢 (𝑡) ,

if 𝜂 (𝑡) = 𝑖 ∈Z,
(59)

according to the law of theMarkov chain 𝜂(𝑡). For example, if
the initial state is 𝜂(𝑡0) = 𝑖, it obeys (59) till time 𝑡1 when the
Markov chain switches to 𝜂(𝑡1) = 𝑗 ∈ Z from 𝜂(𝑡0) = 𝑖 and
system (5) obeys (59) with 𝑗 replacing 𝑖.

Let us solve the optimization problem (O) defined in
Section 1.

In this special case, problem (O) is exactly a linear
quadratic control problem associated with (5), (58). The
associated MARE (10) has the following particular form:

𝑋 (𝑖) = 4.5(𝑖 − 1
𝑖
)

2
(𝑋 (𝑖) +𝑋 (𝑖 + 1)) +𝑀 (𝑖)

−
20.25 ((𝑖 − 1) /𝑖)4 (𝑋 (𝑖) + 𝑋 (𝑖 + 1))2

1 + 4.5 ((𝑖 − 1) /𝑖)2 (𝑋 (𝑖) + 𝑋 (𝑖 + 1))
,

𝑖 ∈Z − {𝑁} ,

(60)



Discrete Dynamics in Nature and Society 9

𝑋 (𝑁) = 9(𝑁 − 1
𝑁

)

2
(𝑋 (𝑁)) +𝑀 (𝑁)

−
81 ((𝑁 − 1) /𝑁)4 (𝑋 (𝑁))2

1 + 9 ((𝑁 − 1) /𝑁)2 (𝑋 (𝑁))
.

(61)

We know [7] that if MAREs (60) and (61) have a
stabilizing solution X, then the optimal control problem (O)
has a solution 𝑢(𝑡) = 𝐹X(𝜂(𝑡))𝑥(𝑡), where 𝐹X is defined by
(32). So we only have to find a stabilizing solution of (60) and
(61).

Let (𝐴) be the stochastic system (5) without control (i.e.,
𝐵
𝑝
= 0, 𝑝 = 0, . . . , 𝑟) and let (𝐴, 𝐶) be the system defined

by (𝐴) and the output (58). The existing literature results
(see [7] and the references therein) show that (10) has a
stabilizing solution if the stochastic system with control is
stabilizable and if (𝐴, 𝐶) is either stochastically observable
or stochastically detectable. We will establish that (𝐴, 𝐶) is
neither stochastically uniformly observable nor stochastically
detectable. (Note that stochastic observability does not imply
stochastic detectability [7].) In this case, we will see that
Corollary 14 ensures the existence of the stabilizing solution.

(I) System (𝐴, 𝐶) Is Not Stochastically Uniformly Observable.
According to Theorem 8 from [10], (𝐴, 𝐶) is stochastically
uniformly observable iff there are 𝑛0 ∈ N and 𝛿 > 0 such
that

𝑛0

∑

𝑘=0
Π
𝑘

1 (𝐶
[∗]

𝐶) (𝑖) > 𝛿, 𝑖 ∈Z, (62)

whereΠ1 is defined by (22) with the coefficients from (P3). A
direct computation shows that

Π1 (𝑋) (𝑖) = 4.5(𝑖 − 1
𝑖
)

2
(𝑋 (𝑖) +𝑋 (𝑖 + 1)) ,

𝑖 ∈Z − {𝑁} ,

Π1 (𝑋) (𝑁) = 9(𝑁 − 1
𝑁

)

2
𝑋 (𝑁) ,

(63)

for all 𝑋 ∈ R𝑁. Using (P3), we see that Π𝑘1(𝐶
[∗]

𝐶)(1) = 0 for
all 𝑘 ∈ N and (62) fails to hold for 𝑖 = 1. Consequently, (𝐴, 𝐶)
is not stochastically uniformly observable.

(II) System (𝐴, 𝐶) Is Not Stochastically Detectable. Following
[5] (see Definition 2 and Proposition 16 therein), the system
(𝐴, 𝐶) is detectable in conditional mean iff there is 𝐹 ∈ R𝑁

such that the nonnegative operator Π𝐶
𝐹
defined by

Π
𝐶

𝐹
(𝑋) (𝑖)

= (3 𝑖 − 1
𝑖
+ 𝐹 (𝑖) 𝐶 (𝑖))

2
(
𝑋 (𝑖) + 𝑋 (𝑖 + 1)

2
) ,

𝑖 ∈Z − {𝑁} ,

Π
𝐶

𝐹
(𝑋) (𝑁) = (3𝑁 − 1

𝑁
+𝐹 (𝑁)𝐶 (𝑁))

2
𝑋(𝑁) ,

𝑋 ∈ R
𝑁

(64)

generates an exponentially stable evolution operator. We
observe that the matrix (𝑎

𝑖,𝑗
) associated with Π𝐶

𝐹
is upper

triangular with the main diagonals 𝑎
𝑖𝑖
= (1/2)(3((𝑖 − 1)/𝑖) +

𝐹(𝑖)𝐶(𝑖))
2, 𝑖 ∈ Z − {𝑁}, and 𝑎

𝑁𝑁
= (3((𝑁 − 1)/𝑁) +

𝐹(𝑁)𝐶(𝑁))
2. Since 𝑎33 = 2, we deduce that 𝜆 = 2 is

an eigenvalue of Π𝐶
𝐹
and 𝜌

Π
𝐶

𝐹

≥ 1. So Π𝐶
𝐹
cannot generate

an exponentially stable evolution operator and (𝐴, 𝐶) is not
detectable in conditional mean.

Now let us show that Corollary 14 can be used to prove
that MARE (10) has a stabilizing solution in the special case
when (P3) holds.

(III) Stabilizing Solution for the Algebraic Riccati Equation.We
will prove that conditions (a) and (b) ofCorollary 14 hold and,
consequently, (60) has a stabilizing solutionX. Setting𝑊(𝑖) =
−5/2, 𝑖 ∈Z, we have (see (28))

Π
𝑊
(𝑋) (𝑖) =

1
4
(
𝑖 − 1
𝑖
)

2
(
𝑋 (𝑖) + 𝑋 (𝑖 + 1)

2
) ,

𝑖 ∈Z − {𝑁} ,

Π
𝑊
(𝑋) (𝑁) =

1
4
(
𝑁 − 1
𝑁

)

2
𝑋(𝑁)

(65)

for all 𝑋 ∈ R𝑁. The matrix associated with Π
𝑊

is upper
triangular. Since all the elements of the main diagonal are less
than 1/4, it follows that 𝜌

Π𝑊
< 1/4 and Π

𝑊
is exponentially

stable. Hence,Π is stabilizable, according to Definition 8, and
condition (a) of Corollary 14 is satisfied. Let us prove that (b)
holds, too. From (P3), we see that𝑄

−𝑅
−1
𝐿
[∗] = 𝑀−𝐿𝑅

[−1]
𝐿
[∗]

=

𝑀 and Π
−𝑅
−1
𝐿
[∗] , equal to Π1, are given by (63). The matrix

(𝑏
𝑖,𝑗
) associatedwithΠ1 is also upper triangular with themain

diagonal 𝑏
𝑖,𝑖
= 4.5((𝑖−1)/𝑖)2 for 𝑖 ∈Z−{𝑁} and 𝑏

𝑁,𝑁
= 9((𝑁−

1)/𝑁)2. It is not difficult to see that 𝜆 = 1 is not an eigenvalue
of Π1 because 1 ∉ {𝑏𝑖,𝑖, 𝑖 ∈ Z}. Consequently, 𝜆 = 1 is not an
eigenvalue ofΠ∗1 = Π

∗

−𝑅
−1
𝐿
[∗] and it cannot be an unobservable

eigenvalue for the pair (Π∗
−𝑅
−1
𝐿
[∗] , 𝑄−𝑅−1𝐿[∗]). Condition (b) of

Corollary 14 is satisfied and (60) has a stabilizing solutionX.
Proposition 14 from [10] ensures that this stabilizing

solution is nonnegative and maximal among all nonnegative
solutions of (60). Then, solving (60) and choosing the
maximal solution, we get the stabilizing solutionX.

For𝑁 = 4, the stabilizing solution is

X (1) = 0,

X (2) = 1.7446,

X (3) = 0.84627,

X (4) = 1.9061

(66)

and the feedback stabilizing gain is

𝐹
X
(1) = 0,

𝐹
X
(2) = − 0.74455,

𝐹
X
(3) = 0.84627,

𝐹
X
(4) = 0.9061.

(67)
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Then, the optimal control problem (O) has a solution 𝑢(𝑡) =
𝐹
X
(𝜂(𝑡))𝑥(𝑡), with the optimal cost being 𝐽(𝑢; 𝑡0, 𝑥, 𝑖) =

⟨X(𝑖)𝑥, 𝑥⟩, 𝑖 ∈ {1, 2, 3, 4}.

In the following example, we apply Theorem 13 to prove
the existence of stabilizing solutions for infinite-dimensional
MAREs.

Example 2. Consider MARE (10) under the following
additional hypotheses. The Hilbert space 𝐻 is infinite-
dimensional, 𝑈 = 𝐻, Z = N∗, 𝑟 = 1, 𝐴1 = 𝐵1 = 0, and
𝐴0(𝑖) = 𝐵0(𝑖) = 8((𝑖 − 1)/𝑖3)𝐾(𝑖), 𝑖 ∈ N∗, where 𝐾 ∈ 𝑙

Z
𝑆1(𝐻)

,
𝐾 ̸= 0. The other coefficients of MARE (10) are 𝐿 = 0, 𝑅 =
Φ
𝐻
,𝑀(1) = 0,𝑀(𝑖) = 𝐼

𝐻
, 𝑖 ∈ Z, 𝑝

𝑖,𝑖
= 𝑝

𝑖,𝑖+1 = 1/2, 𝑖 ∈ Z,
and 𝑝

𝑖,𝑗
= 0 otherwise. Let us show that the corresponding

MARE (10) has a stabilizing solution.
Obviously 𝐴0, 𝐵0 ∈ N

𝐻
, 𝑄
−𝑅
−1
𝐿
[∗] = 𝑀, and Π

−𝑅
−1
𝐿
[∗] =

Π1. Assume that 𝜆 ≥ 1 is an unobservable eigenvalue
of (Π∗

−𝑅
−1
𝐿
[∗] , 𝑄−𝑅−1𝐿[∗]) and let 𝑦∗ ∈ (𝑙

Z
𝑆(𝐻)
)
∗ be a positive

eigenvector of 𝜆. We have

𝜆 (𝑦
∗

) (𝐼
𝐻
, 0, 0, . . . , ) = Π∗

−𝑅
−1
𝐿
[∗] (𝑦

∗

) (𝐼
𝐻
, 0, 0, . . . , )

= 𝑦
∗

(Π1 (𝐼𝐻, 0, 0, . . . , ))

= 𝑦
∗

(0, 0, . . . , ) = 0.

(68)

It follows that (𝑦∗)(𝑀) = 𝑦
∗

(Φ
𝐻
) − (𝑦

∗

)(𝐼
𝐻
, 0, 0, . . . , ) =

𝑦
∗

(Φ
𝐻
). FromLemma 6 from [10], we know that ‖𝑦∗(Φ

𝐻
)‖ =

‖𝑦
∗

‖ ̸= 0. Hence, (𝑦∗)(𝑄
−𝑅
−1
𝐿
[∗]) = (𝑦

∗

)(𝑀) ̸= 0 and we
get a contradiction. Thus, 𝜆 ≥ 1 cannot be an unobservable
eigenvalue for the pair (Π∗

−𝑅
−1
𝐿
[∗] , 𝑄−𝑅−1𝐿[∗]). Condition (a) of

Theorem 13 holds.
Further, we define 𝑊(𝑖) = −(1/(2𝑘))(2𝑘 + √2)𝐼

𝐻
,

𝑖 ∈ Z, where 𝑘 = sup
𝑖∈Z‖𝐾(𝑖)‖1. Then, Π

𝑊
(Φ
𝐻
)(𝑖) =

(1/(2𝑘2))(8((𝑖−1)/𝑖3))2𝐾(𝑖)∗𝐾(𝑖), 𝑖 ∈ N∗, and ‖Π
𝑊
(Φ
𝐻
)‖Z ≤

𝑘
2sup

𝑖∈N∗(1/2𝑘
2
)(8((𝑖 − 1)/𝑖3))2 = 1/2. Therefore, ‖Π

𝑊
‖ =

‖Π
𝑊
(Φ
𝐻
)‖Z ≤ 1/2 and Π

𝑊
generates an exponentially

stable evolution operator. Thus, Π is stabilizable, according
to Definition 8. Conditions (a) and (b) of Theorem 13 are
satisfied and (10) has a stabilizing solution. Theorem 9 from
[8] provides an iterative algorithm for the computation of this
stabilizing solution.

The following example is an application of Theorem 10.

Example 3. Assume that, except 𝐴0, 𝐵0, and 𝑀, the other
coefficients of MARE (10) satisfy (P3) (see Example 1) with𝑁
replaced by∞. Let𝐴0(𝑖) = 𝐵0(𝑖) = 1,𝑀(𝑖) = 0, for all 𝑖 ∈ N∗,
and 𝜙 = (1, . . . , 1, . . .) ∈ 𝑙

∞
(N∗). We recall that Π

−𝑅
−1
𝐿
[∗] =

Π1 and 𝑄
−𝑅
−1
𝐿
[∗] = 𝑀 and Π1 is a positive operator. Since

Π1(𝜙) = 𝜙, we can apply Lemma 6 from [10] to deduce that
‖Π1‖ = ‖Π1(𝜙)‖Z = ‖𝜙‖Z = 1. On the other hand, 𝜆 = 1
is an eigenvalue of Π1 and, consequently, 𝜌Π1

= 1. Theorem
3.2.3 from [18] ensures that there is 𝑦∗ ∈ (𝑙Z

𝑆(𝐻)
)
∗, 𝑦∗ ≥ 0,

𝑦
∗

̸= 0, such that Π∗
−𝑅
−1
𝐿
[∗](𝑦

∗

) = 𝑦
∗. Obviously, 𝑦∗(𝑀) = 0

andnow it is clear that𝜆 = 1 is an unobservable eigenvalue for
(Π
∗

−𝑅
−1
𝐿
[∗] , 𝑄−𝑅−1𝐿[∗]). FromTheorem 10, it follows that MARE

(10) has not a stabilizing solution.

6. Conclusions and Further Research

In this paper we have obtained necessary and sufficient
conditions for the existence of stabilizing solutions forMARE
(10) in infinite dimensions. These conditions are similar to
those given in [11, 17] for finite-dimensional MAREs and do
not involve other detectability and observability conditions.
They are viable alternatives to existing results (see, e.g., [3, 5,
7] and the references therein) obtained under detectability or
observability hypotheses.

The main difficulties in obtaining a “perfect” analog of
the results from [17] (or [11]) are related to the fact that
Lemma 1 is not true for infiniteZ and we cannot ensure the
existence of a nonnegative linear functional 𝑦∗ satisfying (34)
and condition 𝑦∗(N

𝐻
) ̸= {0}. To compensate these gaps, we

have assumed a compactness hypothesis in Theorem 11 and
the condition 𝐴

𝑝
, 𝐵
𝑝
∈ N

𝐻
, 𝑝 = 0, . . . , 𝑟, in Theorem 13. A

natural question is how to relax these conditions.
Another open problem is whether the assertion 𝜌

Π
𝐹
𝑋max

≤

1, where𝑋max is themaximal solution ofMARE (10), remains
true in infinite dimensions or for infinite Z. The validity of
this assertion will improve Theorems 11 and 13, as indicated
in Remark 12.

Also, further research is required to study the existence of
stabilizing solutions forMARE (10) in the case when the state
space of the Markov chain is a general Borel Space as in [1].

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] O. L. V. Costa and D. Figueiredo, “LQ control of discrete-time
jump systemswithMarkov chain in a general Borel space,” IEEE
Transactions on Automatic Control, 2014.

[2] M. D. Fragoso and J. Baczynski, “Optimal control for con-
tinuous-time linear quadratic problems with infinite Markov
jump parameters,” SIAM Journal on Control and Optimization,
vol. 40, no. 1, pp. 270–297, 2001.

[3] O. L. V. Costa and M. D. Fragoso, “Discrete-time LQ-optimal
control problems for infinite Markov jump parameter systems,”
IEEE Transactions on Automatic Control, vol. 40, no. 12, pp.
2076–2088, 1995.

[4] M. G. Todorov andM. D. Fragoso, “Output feedback𝐻
1
control

of continuous-time infinite Markovian jump linear systems via
LMI methods,” SIAM Journal on Control and Optimization, vol.
47, no. 2, pp. 950–974, 2008.

[5] V. M. Ungureanu, “Stability, stabilizability and detectability for
Markov jump discrete-time linear systems with multiplicative
noise in Hilbert spaces,” Optimization, vol. 63, no. 11, pp. 1689–
1712, 2014.

[6] O. L. V. Costa, M. D. Fragoso, and R. P. Marques, Discrete-
TimeMarkov Jump Linear Systems, Springer Science & Business
Media, 2006.

[7] V. Dragan, T. Morozan, and A. Stoica, Mathematical Methods
in Robust Control of Discrete Time Linear Stochastic Systems,
Springer, New York, NY, USA, 2013.



Discrete Dynamics in Nature and Society 11

[8] V.M. Ungureanu, V. Dragan, and T.Morozan, “Global solutions
of a class of discrete-time backward nonlinear equations on
ordered Banach spaces with applications to Riccati equations of
stochastic control,” Optimal Control Applications and Methods,
vol. 34, no. 2, pp. 164–190, 2013.

[9] V. M. Ungureanu and V. Dragan, “Stability of discrete-time
positive evolution operators on ordered Banach spaces and
applications,” Journal of Difference Equations and Applications,
vol. 19, no. 6, pp. 952–980, 2013.

[10] V. M. Ungureanu, “Optimal control for linear discrete-time
systems with Markov perturbations in Hilbert spaces,” IMA
Journal of Mathematical Control and Information, vol. 26, no.
1, pp. 105–127, 2009.

[11] J. Zheng and L. Qiu, “On the existence of a mean-square stabi-
lizing solution to a continuous-time Modi.ed algebraic Riccati
equation,” in Proceedings of the 21st International Symposium on
Mathematical Theory of Networks and Systems, Groningen, The
Netherlands, July 2014.

[12] D. L. Russell and G. Weiss, “A general necessary condition for
exact observability,” SIAM Journal on Control andOptimization,
vol. 32, no. 1, pp. 1–23, 1994.

[13] B. Jacob and J. R. Partington, “The Weiss conjecture on admis-
sibility of observation operators for contraction semigroups,”
Integral Equations and Operator Theory, vol. 40, no. 2, pp. 231–
243, 2001.

[14] H.H. Schaefer,Banach Lattices and Positive Operators, Springer,
Berlin, Germany, 1974.

[15] C. S. Kubrusly, The Elements of Operator Theory, Birkhäuser,
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