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Let 𝑅 be a 2-torsion free ring and let 𝐿 be a noncentral Lie ideal of 𝑅, and let 𝐹 : 𝑅 → 𝑅 and 𝐺 : 𝑅 → 𝑅 be two generalized
derivations of 𝑅. We will analyse the structure of 𝑅 in the following cases: (a) 𝑅 is prime and 𝐹(𝑢𝑚) = 𝐺(𝑢

𝑛

) for all 𝑢 ∈ 𝐿 and fixed
positive integers 𝑚 ̸= 𝑛; (b) 𝑅 is prime and 𝐹((𝑢𝑝V𝑞)𝑚) = 𝐺((V𝑟𝑢𝑠)𝑛) for all 𝑢, V ∈ 𝐿 and fixed integers 𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠 ≥ 1; (c) 𝑅 is
semiprime and 𝐹((𝑢V)𝑛) = 𝐺((V𝑢)𝑛) for all 𝑢, V ∈ [𝑅, 𝑅] and fixed integer 𝑛 ≥ 1; and (d) 𝑅 is semiprime and 𝐹((𝑢V)𝑛) = 𝐺((V𝑢)𝑛)
for all 𝑢, V ∈ 𝑅 and fixed integer 𝑛 ≥ 1.

1. Introduction

Let 𝑅 be an associative ring with characteristic different from
2, 𝑍(𝑅) its center, 𝑈 its (right) Utumi quotient ring, and 𝐶

its extended centroid. The simple commutator 𝑎𝑏 − 𝑏𝑎 will
be denoted by [𝑎, 𝑏]. Recall that a derivation 𝑑 : 𝑅 → 𝑅 is
an additive map satisfying the product rule 𝑑(𝑥𝑦) = 𝑑(𝑥)𝑦 +

𝑥𝑑(𝑦) for all 𝑥, 𝑦 ∈ 𝑅.
A left multiplier 𝐻 on a ring 𝑅 is an additive map

satisfying the rule 𝐻(𝑥𝑦) = 𝐻(𝑥)𝑦 for all 𝑥, 𝑦 ∈ 𝑅. In case
there exists an endomorphism 𝑔 of 𝑅 such that 𝐻(𝑥𝑦) =

𝐻(𝑥)𝑔(𝑦) for all 𝑥, 𝑦 ∈ 𝑅, then 𝐻 is called left 𝑔-multiplier
of 𝑅.

A generalized derivation 𝐹 on a ring 𝑅 is an additive
map satisfying 𝐹(𝑥𝑦) = 𝐹(𝑥)𝑦 + 𝑥𝑑(𝑦) for all 𝑥, 𝑦 ∈ 𝑅

and some derivation 𝑑 of 𝑅. A significative example is a
map of the form 𝐹(𝑥) = 𝑎𝑥 + 𝑥𝑏, for some 𝑎, 𝑏 ∈ 𝑅;
such generalized derivations are called inner. Generalized
derivations have been primarily studied on operator algebras.
Therefore any investigation from the algebraic point of view
might be interesting (see, e.g., [1]). Notice that any derivation
is a generalized one and also that the generalized inner

derivations include leftmultipliers and rightmultipliers.Thus
the concept of generalized derivation covers both the concept
of derivation and the concept of left (right) multipliers.

Since the sum of two generalized derivations is a gener-
alized derivation, of course every map of the form 𝐹(𝑥) =

𝑐𝑥 + 𝑑(𝑥) is a generalized derivation on 𝑅, where 𝑐 is a fixed
element of 𝑅 and 𝑑 is a derivation of 𝑅.

In [1, Theorem 3] Lee proved that every generalized
derivation 𝐹 on a dense right ideal of 𝑅 can be uniquely
extended to the Utumi quotient ring 𝑈 of 𝑅, and thus any
generalized derivation of 𝑅 can be defined on the whole 𝑈;
moreover it is of the form 𝐹(𝑥) = 𝑎𝑥 + 𝑑(𝑥) for some 𝑎 ∈ 𝑈

and 𝑑 is a derivation on 𝑈 (𝐹 is said to be a generalized
derivation associated with derivation 𝑑).

Many results in the literature indicate that the global
structure of a ring 𝑅 is often tightly connected to the
behaviour of additive mappings defined on 𝑅.

In [2] Bergen proved that if 𝑔 is an automorphism of 𝑅
such that (𝑔(𝑥) − 𝑥)

𝑚

= 0, for all 𝑥 ∈ 𝑅, where 𝑚 ≥ 1 is
a fixed integer, then 𝑔 = 1. Daif and Bell [3] showed some
results which have the same flavour, when the automorphism
is replaced by a nonzero derivation 𝑑. In [3] it is proved that

Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2014, Article ID 216039, 8 pages
http://dx.doi.org/10.1155/2014/216039



2 International Journal of Mathematics and Mathematical Sciences

if 𝑅 is a semiprime ring with a nonzero ideal 𝐼 such that
𝑑([𝑥, 𝑦]) − [𝑥, 𝑦] = 0, or 𝑑([𝑥, 𝑦]) + [𝑥, 𝑦] = 0, for all
𝑥, 𝑦 ∈ 𝐼, then 𝐼 is central. Later Hongan [4] proved that if
𝑅 is a 2-torsion free semiprime ring and 𝐼 a nonzero ideal of
𝑅, then 𝐼 is central if and only if 𝑑([𝑥, 𝑦]) − [𝑥, 𝑦] ∈ 𝑍(𝑅),
or 𝑑([𝑥, 𝑦]) + [𝑥, 𝑦] ∈ 𝑍(𝑅), for all 𝑥, 𝑦 ∈ 𝐼. Recently
in [5] Ashraf and Ali obtained commutativity theorems for
prime rings admitting left multipliers which satisfy similar
conditions.More precisely in [5] it is showed that a prime ring
𝑅 must be commutative if there exist a nonzero ideal 𝐼 of 𝑅
and a left multiplier 𝐻, which is not the identity map on 𝐼,
such that one of the following holds: (i)𝐻([𝑥, 𝑦]) = [𝑥, 𝑦] for
all 𝑥, 𝑦 ∈ 𝐼 [5, Theorem 2.1]; (ii) 𝐻(𝑥𝑦) − 𝑥𝑦 ∈ 𝑍(𝑅) for all
𝑥, 𝑦 ∈ 𝐼 [5, Theorem 3.1]; and (iii)𝐻(𝑥𝑦) − 𝑦𝑥 ∈ 𝑍(𝑅) for all
𝑥, 𝑦 ∈ 𝐼 [5, Theorem 3.3]. Moreover the same results hold in
case𝐻 is replaced by a generalized derivation 𝐹 of 𝑅.

In a more recent paper [6], Ali and Huang extended the
previous cited results in the case 𝑅 is a semiprime ring, 𝐼
is a nonzero ideal of 𝑅, and 𝐻 is a left 𝑔-multiplier of 𝑅.
They proved that 𝐼 ⊆ 𝑍(𝑅) if one of the following holds:
(i) 𝐻([𝑥, 𝑦]) = [𝑥, 𝑦] for all 𝑥, 𝑦 ∈ 𝐼 [6, Theorem 2.1]; (ii)
𝐻(𝑥𝑦) = 𝑥𝑦 for all 𝑥, 𝑦 ∈ 𝐼 [6,Theorem 2.2]; (iii)𝐻(𝑥𝑦) = 𝑦𝑥

for all 𝑥, 𝑦 ∈ 𝐼 [6, Theorem 2.3]; and (iv)𝐻(𝑥2) = 𝑥
2, for all

𝑥 ∈ 𝐼 [6, Theorem 2.5]. Moreover, in case 𝑅 is a prime ring,
the same conditions force the commutativity of 𝑅.

A natural question is to consider additive maps 𝐹, 𝐺 :

𝑅 → 𝑅 such that 𝐹(𝑓(𝑥, 𝑦)) = 𝐺(𝑔(𝑥, 𝑦)), when 𝑓(𝑥, 𝑦)

and 𝑔(𝑥, 𝑦) are both either monomials or powers of the
commutator [𝑥, 𝑦]. In this sense, in [7] it is proved that,
under appropriate torsion assumptions, a prime ring 𝑅 is
commutative if it admits a nonzero derivation 𝑑 satisfying
one of the following: (i) 𝑑(𝑥𝑛𝑦𝑚) = 𝑑(𝑦

𝑚

𝑥
𝑛

); (ii) 𝑑((𝑥𝑦)𝑛) =
𝑑((𝑦𝑥)

𝑛

); (iii) 𝑑((𝑥𝑦)𝑛) = 𝑑(𝑥
𝑛

𝑦
𝑛

); and (iv) 𝑑((𝑥𝑦)𝑛) =

𝑑(𝑦
𝑛

𝑥
𝑛

), for all 𝑥, 𝑦 ∈ 𝑅.
So it seems natural to ask about the case when the deriva-

tion 𝑑 is replaced by a generalized derivation. Motivated by
the previous cited results, in this paper we will introduce two
different generalized derivations acting on 𝑅 and satisfying
some appropriate conditions on some suitable subsets of 𝑅.
We will prove the following.

Theorem 1. Let 𝑅 be a 2-torsion free prime ring and let 𝐹 :

𝑅 → 𝑅 and 𝐺 : 𝑅 → 𝑅 be two generalized derivations
associated with derivations 𝑑 : 𝑅 → 𝑅 and 𝛿 : 𝑅 → 𝑅,
respectively. Suppose that there exist𝑚, 𝑛 ≥ 1 integers such that
𝐹([𝑥, 𝑦]

𝑚

) = 𝐺([𝑥, 𝑦]
𝑛

) for all 𝑥, 𝑦 ∈ 𝑅. Then either 𝑅 satisfies
the standard identity 𝑠

4
or one of the following holds:

(a) 𝐹 = 𝐺 is an inner ordinary derivation of 𝑅 and for all
𝑥
1
, 𝑥
2
∈ 𝑅 there exists 𝛼 ∈ 𝐶 such that [𝑥

1
, 𝑥
2
]
𝑚

=

[𝑥
1
, 𝑥
2
]
𝑛

+ 𝛼;

(b) 𝐹 = 𝐺 and [𝑥
1
, 𝑥
2
]
𝑚

= [𝑥
1
, 𝑥
2
]
𝑛, for all 𝑥

1
, 𝑥
2
∈ 𝑅.

Theorem 2. Let 𝑅 be a 2-torsion free prime ring and let 𝐿
be a noncentral Lie ideal of 𝑅, and let 𝐹 : 𝑅 → 𝑅 and
𝐺 : 𝑅 → 𝑅 be two nonzero generalized derivations associated
with derivations 𝑑 : 𝑅 → 𝑅 and 𝛿 : 𝑅 → 𝑅, respectively.
Suppose that there exist 𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠 ≥ 1 integers such that

𝐹((𝑢
𝑝V𝑞)𝑚) = 𝐺((V𝑟𝑢𝑠)𝑛) for all 𝑢, V ∈ 𝐿. Then 𝑅 satisfies the

standard identity 𝑠
4
.

In the last section we study some commutativity con-
ditions for a semiprime ring with a generalized derivation
satisfying suitable algebraic conditions. More precisely, we
will prove the following.

Theorem3. Let𝑅 be a 2-torsion free semiprime ring and let𝐹 :

𝑅 → 𝑅 and𝐺 : 𝑅 → 𝑅 be generalized derivations associated,
respectively, with derivations 𝑑 : 𝑅 → 𝑅 and 𝛿 : 𝑅 → 𝑅. Set
𝐿 = [𝑅, 𝑅] and 𝑛 ≥ 1 such that 𝐹((𝑢V)𝑛) = 𝐺((V𝑢)𝑛) for all
𝑢, V ∈ 𝐿. Then there exists a central idempotent 𝑒 of 𝑈 such
that, on the direct sum decomposition 𝑈 = 𝑒𝑈 ⊕ (1 − 𝑒)𝑈, the
generalized derivations 𝐹 and 𝐺 vanish identically on 𝑒𝑈 and
the ring (1 − 𝑒)𝑈 satisfies 𝑠

4
.

Theorem4. Let𝑅 be a 2-torsion free semiprime ring and let𝐹 :

𝑅 → 𝑅 and 𝐺 : 𝑅 → 𝑅 be generalized derivations associated
with derivations 𝑑 : 𝑅 → 𝑅 and 𝛿 : 𝑅 → 𝑅, respectively. Set
𝑛 ≥ 1 such that 𝐹((𝑢V)𝑛) = 𝐺((V𝑢)𝑛) for all 𝑢, V ∈ 𝑅. Then 𝑅
contains a nonzero central ideal, 𝑑(𝑅) ⊆ 𝑍(𝑅), 𝛿(𝑅) ⊆ 𝑍(𝑅),
and there exist 𝜆, 𝜇 ∈ 𝐶 such that 𝐹(𝑥) = 𝜆𝑥 + 𝑑(𝑥), 𝐺(𝑥) =
𝜇𝑥 + 𝛿(𝑥), for all 𝑥 ∈ 𝑅.

Moreover there exists a central idempotent 𝑒 of 𝑈 such that,
on the direct sum decomposition 𝑈 = 𝑒𝑈 ⊕ (1 − 𝑒)𝑈, the
generalized derivations 𝐹 and 𝐺 vanish identically on 𝑒𝑈 and
the ring (1 − 𝑒)𝑈 is commutative.

2. Action of Generalized Derivations on
Prime Rings

In order to prove the main result in this section, we first fix
some intermediate lemmas and theorems. We begin with the
following.

Remark 5 (see [8], Lemma 3). Let 𝑅 be a prime ring with
extended centroid𝐶 and let 𝑓(𝑥

1
, . . . , 𝑥

𝑛
) be any polynomial,

not necessarilymultilinear.Then the right (left) annihilator of
𝑓(𝑥
1
, . . . , 𝑥

𝑛
) is zero, unless when 𝑓(𝑥

1
, . . . , 𝑥

𝑛
) is an identity

for 𝑅.

Lemma 6. Let 𝑅 be a primitive ring which is isomorphic to a
dense ring of linear transformations of a vector space 𝑉 over
the field 𝐶 such that dim

𝐶
𝑉 ≥ 2 and let 𝑎, 𝑏 ∈ 𝑅, 𝑚, 𝑛 ≥ 1,

different integers. If for any 𝑥, 𝑦 ∈ 𝑅, [𝑥, 𝑦]𝑚𝑎 = [𝑥, 𝑦]
𝑛

𝑏, then
𝑎 = 𝑏 and [𝑥

1
, 𝑥
2
]
𝑚

= [𝑥
1
, 𝑥
2
]
𝑛 for all 𝑥

1
, 𝑥
2
∈ 𝑅, unless when

𝑎 = 𝑏 = 0.

Proof. Let 0 ̸= V ∈ 𝑉. Since dim
𝐶
𝑉 ≥ 2, there exists 𝑤 ∈ 𝑉

such that {V, 𝑤} are linearly 𝐶-independent. By the density of
𝑅 there exist 𝑥, 𝑦 ∈ 𝑅 such that

V𝑥 = 𝑤, V𝑦 = 0, 𝑤𝑦 = V (1)

so that V[𝑥, 𝑦] = V and by the hypothesis

0 = V ([𝑥, 𝑦]𝑚𝑎 − [𝑥, 𝑦]𝑛𝑏) = V (𝑎 − 𝑏) (2)

that is𝑉(𝑎−𝑏) = (0), which implies 𝑎 = 𝑏. Hence ([𝑥
1
, 𝑥
2
]
𝑚

−

[𝑥
1
, 𝑥
2
]
𝑛

)𝑎 = 0 for all 𝑥
1
, 𝑥
2
∈ 𝑅 and by Remark 5 we have
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that either 𝑎 = 𝑏 = 0 or [𝑥
1
, 𝑥
2
]
𝑚

= [𝑥
1
, 𝑥
2
]
𝑛 for any 𝑥

1
,

𝑥
2
∈ 𝑅.

Lemma 7. Let 𝑅 be a 2-torsion free prime ring, 𝐽 a nonzero
two-sided ideal of 𝑅, and 𝑓(𝑥

1
, . . . , 𝑥

𝑛
) a noncentral polyno-

mial over 𝐶, the extended centroid of 𝑅. If 𝐹 : 𝑅 → 𝑅 is a
generalized derivation associated with a derivation 𝑑 : 𝑅 → 𝑅

such that 𝐹(𝑓(𝑟
1
, . . . , 𝑟

𝑛
)) ∈ 𝐶 for all 𝑟

1
, . . . , 𝑟

𝑛
∈ 𝐽, then

𝐹(𝑥) = 0, for all 𝑥 ∈ 𝑅.

Proof. In light of previous remarks, we have that there exists
𝑎 ∈ 𝑈, the Utumi quotient ring of 𝑅, such that 𝐹(𝑥) = 𝑎𝑥 +

𝑑(𝑥), for all 𝑥 ∈ 𝑅. Thus 𝐽 satisfies the generalized differential
identity

[𝑎𝑓 (𝑥
1
, . . . , 𝑥

𝑛
) + 𝑑 (𝑓 (𝑥

1
, . . . , 𝑥

𝑛
)) , 𝑥
𝑛+1

] . (3)

Since, by [9], 𝐽 and 𝑅 satisfy the same differential
identities, then we have that 𝑅 satisfies 𝐹(𝑓(𝑥

1
, . . . , 𝑥

𝑛
)) ∈ 𝐶.

Let 𝑆 be the additive subgroup generated by the subset

{𝑓 (𝑟
1
, . . . , 𝑟

𝑛
) | 𝑟
1
, . . . , 𝑟

𝑛
∈ 𝑅} . (4)

𝑆 is a Lie ideal of 𝑅; indeed for any 𝑟 ∈ 𝑅, 𝑦
1
, . . . , 𝑦

𝑛
∈ 𝑅

one has

[𝑟, 𝑓 (𝑦
1
, . . . , 𝑦

𝑛
)] = ∑

𝑖

𝑓 (𝑦
1
, . . . , [𝑟, 𝑦

𝑖
] , . . . , 𝑦

𝑛
) ∈ 𝑆. (5)

If 𝑆 is noncommutative then, by [10, pages 4-5], there
exists a nonzero two-sided ideal 𝐼 of𝑅 such that 0 ̸= [𝐼, 𝑅] ⊆ 𝑆.
In this case it is easy to see that𝐹([𝑟

1
, 𝑟
2
]) ∈ 𝐶, for all 𝑟

1
, 𝑟
2
∈ 𝐼.

In particular [𝐹(𝑢), 𝑢] = 0 for all 𝑢 ∈ [𝐼, 𝐼]. Since [𝐼, 𝐼] is a
noncentral Lie ideal of 𝑅, it follows easily that 𝐹must be zero
(see, e.g., Theorem 3.3 in [11]).

Hence we may consider it the only case when 𝑆 is
commutative.

Thus [𝑓(𝑥
1
, . . . , 𝑥

𝑛
), 𝑓(𝑦

1
, . . . , 𝑦

𝑛
)] is an identity in𝑅.This

means that there exist a field 𝐾 and a positive integer 𝑚
such that [𝑓(𝑥

1
, . . . , 𝑥

𝑛
), 𝑓(𝑦

1
, . . . , 𝑦

𝑛
)] is also an identity in

𝑀
𝑚
(𝐾). If𝑚 = 1, 𝑅 is commutative, thus we suppose𝑚 ≥ 2.
Since 𝑓(𝑥

1
, . . . , 𝑥

𝑛
) is not central valued on 𝑅, there exist

𝑟
1
, . . . , 𝑟

𝑛
∈ 𝑀
𝑚
(𝐾) such that𝑓(𝑟

1
, . . . , 𝑟

𝑛
) = 𝑎 ∉ 𝑍(𝑅), so that

[𝑎, 𝑓(𝑦
1
, . . . , 𝑦

𝑛
)] is also a generalized identity in𝑀

𝑚
(𝐾). By

a result of Lee (see [12], Theorem), we have the contradiction
that 𝑓(𝑥

1
, . . . , 𝑥

𝑛
) is central valued on 𝑅.

Lemma 8. Let 𝑅 be a 2-torsion free primitive ring which is
isomorphic to a dense ring of linear transformations of a vector
space 𝑉 over the field 𝐶 such that dim

𝐶
𝑉 ≥ 3, and let 𝑎, 𝑏 ∈ 𝑅,

𝛾 ∈ 𝐶, 𝑚, 𝑛 ≥ 1, different integers. If for any 𝑥, 𝑦 ∈ 𝑅,
𝛾[𝑥, 𝑦]

𝑚

+𝑎[𝑥, y]𝑚+[𝑥, 𝑦]𝑚𝑏 = 𝑎[𝑥, 𝑦]
𝑛

+[𝑥, 𝑦]
𝑛

𝑏, then 𝛾 = 0,
𝑎 + 𝑏 = 0 and one of the following holds:

(a) 𝑎, 𝑏 ∈ 𝐶;
(b) for all 𝑥

1
, 𝑥
2

∈ 𝑅 there exists 𝛼 ∈ 𝐶 such that
[𝑥
1
, 𝑥
2
]
𝑚

= [𝑥
1
, 𝑥
2
]
𝑛

+ 𝛼.

Proof. Let 0 ̸= V ∈ 𝑉 such that {V, V𝑎} are linearly 𝐶-
independent. Since dim

𝐶
𝑉 ≥ 3, there exists 𝑤 ∈ 𝑉 such

that {V, V𝑎, 𝑤} are linearly 𝐶-independent. By the density of
𝑅 there exist 𝑥, 𝑦 ∈ 𝑅 such that

V𝑎𝑥 = 𝑤, V𝑎𝑦 = 0, V𝑥 = 𝑤,

V𝑦 = 0, 𝑤𝑦 = V
(6)

so that V[𝑥, 𝑦] = V, V𝑎[𝑥, 𝑦] = 0 and by the hypothesis

0 = V (𝛾[𝑥, 𝑦]𝑚 + 𝑎[𝑥, 𝑦]𝑚 + [𝑥, 𝑦]𝑚𝑏

−𝑎[𝑥, 𝑦]
𝑛

− [𝑥, 𝑦]
𝑛

𝑏) = 𝛾V
(7)

which implies 𝛾 = 0. Thus 𝑎([𝑥, 𝑦]𝑚 − [𝑥, 𝑦]
𝑛

) + ([𝑥, 𝑦]
𝑚

−

[𝑥, 𝑦]
𝑛

)𝑏 = 0 for all 𝑥, 𝑦 ∈ 𝑅 and by Lemma 7 we get the
required conclusions.

Assume now that, for any V ∈ 𝑉, {V, V𝑎} are linearly 𝐶-
dependent. In this case standard arguments show that 𝑎 ∈ 𝐶;
hence [𝑥, 𝑦]𝑚(𝛾 + 𝑎 + 𝑏) = [𝑥, 𝑦]

𝑛

(𝑎 + 𝑏) and by Lemma 6 we
get 𝛾 + 𝑎 + 𝑏 = 𝑎 + 𝑏; that is, 𝛾 = 0 and 𝑎 = −𝑏 ∈ 𝐶.

Lemma 9. Let 𝑅 be a 2-torsion free primitive ring which is
isomorphic to a dense ring of linear transformations of a vector
space𝑉 over the field𝐶 such that dim

𝐶
𝑉 ≥ 3, and let 𝑎, 𝑏, 𝑐, 𝑞 ∈

𝑅 and 𝑚, 𝑛 ≥ 1 be such that 𝑎[𝑥, 𝑦]𝑚 + [𝑥, 𝑦]𝑚𝑏 = 𝑐[𝑥, 𝑦]
𝑛

+

[𝑥, 𝑦]
𝑛

𝑞, for all 𝑥, 𝑦 ∈ 𝑅. Then one of the following holds:

(a) 𝑎, 𝑏, 𝑐, 𝑞 ∈ 𝐶, 𝑎 + 𝑏 = 0 and 𝑐 + 𝑞 = 0;
(b) 𝑎−𝑐 = 𝑞−𝑏 ∈ 𝐶, 𝑎+𝑏 = 𝑐+𝑞 = 0 and for all 𝑥

1
, 𝑥
2
∈ 𝑅

there exists 𝛼 ∈ 𝐶 such that [𝑥
1
, 𝑥
2
]
𝑚

= [𝑥
1
, 𝑥
2
]
𝑛

+ 𝛼;
(c) 𝑎 − 𝑐 = 𝑞 − 𝑏 ∈ 𝐶 and [𝑥

1
, 𝑥
2
]
𝑚

= [𝑥
1
, 𝑥
2
]
𝑛 for all

𝑥
1
, 𝑥
2
∈ 𝑅.

Proof. Suppose first that dim
𝐶
𝑉 = 𝑡 is finite. In this case 𝑅 ≅

𝑀
𝑡
(𝐶), the ring of all 𝑡 × 𝑡matrices over 𝐶 with 𝑡 ≥ 3. Let 𝑒

𝑖𝑗

be the usual matrix unit and denote 𝑎 = ∑𝑎
𝑟𝑠
𝑒
𝑟𝑠
, 𝑐 = ∑ 𝑐

𝑟𝑠
𝑒
𝑟𝑠
,

with 𝑎
𝑟𝑠
, 𝑐
𝑟𝑠
∈ 𝐶. Fix 𝑖 ̸= 𝑗 and choose [𝑥, 𝑦] = [𝑒

𝑖𝑗
, 𝑒
𝑗𝑖
] = 𝑒
𝑖𝑖
−

𝑒
𝑗𝑗
. By the hypothesis

𝑎(𝑒
𝑖𝑖
− 𝑒
𝑗𝑗
)
𝑚

+ (𝑒
𝑖𝑖
− 𝑒
𝑗𝑗
)
𝑚

𝑏 = 𝑐(𝑒
𝑖𝑖
− 𝑒
𝑗𝑗
)
𝑛

+ (𝑒
𝑖𝑖
− 𝑒
𝑗𝑗
)
𝑛

𝑞

(8)

and left multiplying by 𝑒
𝑘𝑘
, for any 𝑘 ̸= 𝑖, 𝑗, it follows that

𝑎
𝑘𝑖
− 𝑐
𝑘𝑖
= 0. This means that the matrix 𝑎 − 𝑐 is diagonal. Let

now 𝜑 be any automorpism of 𝑅 and note that 𝜑(𝑎)[𝑥, 𝑦]𝑚 +
[𝑥, 𝑦]
𝑚

𝜑(𝑏) = 𝜑(𝑐)[𝑥, 𝑦]
𝑛

+ [𝑥, 𝑦]
𝑛

𝜑(𝑞), for all 𝑥, 𝑦 ∈ 𝑅.
Therefore 𝜑(𝑎 − 𝑐) must be a diagonal matrix. In particular,
for any 𝑖 ̸= 𝑗, (1+ 𝑒

𝑖𝑗
)(𝑎− 𝑐)(1− 𝑒

𝑖𝑗
)must be a diagonal matrix.

By easy computation it follows that 𝑎
𝑗𝑗
− 𝑐
𝑗𝑗
= 𝑎
𝑖𝑖
− 𝑐
𝑖𝑖
; that

is, 𝑎 − 𝑐 = 𝛼 ∈ 𝑍(𝑅). Analogously one can prove that
𝑏 − 𝑞 = 𝛽 ∈ 𝑍(𝑅).

Therefore we have that

(𝛼 + 𝛽) [𝑥, 𝑦]
𝑚

+ 𝑐[𝑥, 𝑦]
𝑚

+ [𝑥, 𝑦]
𝑚

𝑞 = 𝑐[𝑥, 𝑦]
𝑛

+ [𝑥, 𝑦]
𝑛

𝑞.

(9)

Suppose now that dim
𝐶
𝑉 = ∞. By Lemma 2 in [13], 𝑅

satisfies the following generalized identity 𝑎𝑥𝑚 +𝑥𝑚𝑏 − 𝑐𝑥𝑛 −
𝑥
𝑛

𝑞. Let 𝑒 ∈ 𝐻 = soc(𝑅) be any idempotent minimal element
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and recall that 𝐻 is generated by such idempotent elements.
Since 𝐻 satisfies 𝑎𝑥𝑚 + 𝑥

𝑚

𝑏 − 𝑐𝑥
𝑛

− 𝑥
𝑛

𝑞, then in particular
𝑎𝑒+𝑒𝑏−𝑐𝑒−𝑒𝑞 = 0.Thus we can easily obtain both (1−𝑒)(𝑎−
𝑐)𝑒 = 0 and 𝑒(𝑏 − 𝑞)(1 − 𝑒) = 0, which imply [𝑎 − 𝑐, 𝑒] = 0

and [𝑏 − 𝑞, 𝑒] = 0; that is, [𝑎 − 𝑐,𝐻] = 0 and [𝑏 − 𝑞,𝐻] = 0.
Also in this case there exist 𝛼, 𝛽 ∈ 𝐶 such that 𝑎 − 𝑐 = 𝛼 and
𝑏 − 𝑞 = 𝛽. Therefore in any case Identity (9) holds and the
conclusion follows as an application of Lemma 8.

Lemma 10. Let 𝑅 be a 2-torsion free prime ring, 𝑎, 𝑏, 𝑐, 𝑞 ∈ 𝑅,
and let𝑚, 𝑛 ≥ 1 be such that 𝑎[𝑥, 𝑦]𝑚 + [𝑥, 𝑦]𝑚𝑏 = 𝑐[𝑥, 𝑦]

𝑛

+

[𝑥, 𝑦]
𝑛

𝑞, for all 𝑥, 𝑦 ∈ 𝑅.Then either𝑅 satisfies 𝑠
4
, the standard

identity of degree 4, or one of the following holds:

(a) 𝑎, 𝑏, 𝑐, 𝑞 ∈ 𝐶, 𝑎 + 𝑏 = 0 and 𝑐 + 𝑞 = 0;
(b) 𝑎−𝑐 = 𝑞−𝑏 ∈ 𝐶, 𝑎+𝑏 = 𝑐+𝑞 = 0 and for all 𝑥

1
, 𝑥
2
∈ 𝑅

there exists 𝛼 ∈ 𝐶 such that [𝑥
1
, 𝑥
2
]
𝑚

= [𝑥
1
, 𝑥
2
]
𝑛

+ 𝛼;
(c) 𝑎 − 𝑐 = 𝑞 − 𝑏 ∈ 𝐶 and [𝑥

1
, 𝑥
2
]
𝑚

= [𝑥
1
, 𝑥
2
]
𝑛 for all

𝑥
1
, 𝑥
2
∈ 𝑅.

Proof. Firstly assume that 𝑅 does not satisfy any nontrivial
generalized polynomial identity. In light of [14] and by our
assumption, it follows that both

𝑎[𝑥, 𝑦]
𝑚

− 𝑐[𝑥, 𝑦]
𝑛

,

[𝑥, 𝑦]
𝑚

𝑏 − [𝑥, 𝑦]
𝑛

𝑞

(10)

are trivial generalized polynomial identities of 𝑅. This means
that 𝑎, 𝑏, 𝑐, 𝑞 ∈ 𝐶, so that (𝑎 + 𝑏)[𝑥, 𝑦]

𝑚

− (𝑐 + 𝑞)[𝑥, 𝑦]
𝑛 is a

trivial generalized polynomial identity for 𝑅.
Hence 𝑎 + 𝑏 = 0 and 𝑐 + 𝑞 = 0.
Consider now the case that 𝑅 satisfies some nontrivial

generalized polynomial identity. By Theorem 3 in [15] it
follows that 𝑆 = 𝑅𝐶 is a primitive ring with soc(𝑅) ̸= 0, where
𝐶 = 𝑍(𝑈) is the extended centroid of 𝑅, and the Utumi
quotient ring𝑈 is a𝐶-algebra centrally closed. Since 𝑅 and𝑈
satisfy the same generalized polynomial identities (see [14]),
without loss of generality, we may replace 𝑅 by 𝑈 and 𝑍(𝑅)
by 𝐶 and 𝑅 is a 𝐶-algebra centrally closed. Then 𝑅 is a dense
ring of linear transformations of a vector space 𝑉 over 𝐶. In
case dim

𝐶
𝑉 ≤ 2, then 𝑅 satisfies the standard identity 𝑠

4
. In

case dim
𝐶
𝑉 ≥ 3 we may apply Lemma 9. In any case we are

done.

We consider now the more general situation.

Proof of Theorem 1. In all that follows we assume that 𝑅 does
not satisfy 𝑠

4
; if not we are done.

Since any generalized derivation𝐻 of 𝑅 can be implicitly
assumed to be defined on the whole 𝑈 and assumes the form
𝐻(𝑥) = 𝑐𝑥 + ℎ(𝑥) for some 𝑐 ∈ 𝑈 and ℎ a derivation on𝑈, we
may assume that there exist 𝑎, 𝑏 ∈ 𝑈 and 𝑑, 𝛿 derivations on
𝑈 such that

𝐹 (𝑥) = 𝑎𝑥 + 𝑑 (𝑥) , 𝐺 (𝑥) = 𝑏𝑥 + 𝛿 (𝑥) . (11)

Since 𝑅 and 𝑈 satisfy the same generalized polynomial
identities [14] as well as the same differential identities [9],

then, without loss of generality, to prove our results we may
assume that

𝐹 ([𝑥, 𝑦]
𝑚

) = 𝐺 ([𝑥, 𝑦]
𝑛

) ∀𝑥, 𝑦 ∈ 𝑈, (12)

where 𝑑, 𝛿 are derivations on 𝑈. We divide the proof into 3
cases.

Case 1. Let 𝑑(𝑥) = [𝑐, 𝑥] and 𝛿(𝑥) = [𝑞, 𝑥] be both inner
derivations in 𝑈, so that 𝐹(𝑥) = 𝑎𝑥 + [𝑐, 𝑥] = (𝑎 + 𝑐)𝑥 − 𝑥𝑐

and 𝐺(𝑥) = 𝑏𝑥 + [𝑞, 𝑥] = (𝑏 + 𝑞)𝑥 − 𝑥𝑞, for suitable elements
𝑐, 𝑞 ∈ 𝑈. Thus we have (𝑎 + 𝑐)[𝑥, 𝑦]

𝑚

+ [𝑥, 𝑦]
𝑚

(−𝑐) = (𝑏 +

𝑞)[𝑥, 𝑦]
𝑛

+ [𝑥, y]𝑛(−𝑞), for all 𝑥, 𝑦 ∈ 𝑈. In this case we apply
Lemma 10 and we have that either 𝑅 satisfies 𝑠

4
or one of the

following holds:

(a) 𝑎 = 𝑏 = 0 and 𝑑 = 𝛿 = 0; that is, 𝐹 = 𝐺 = 0;
(b) 𝑎 = 𝑏 = 0, 𝑐 − 𝑞 ∈ 𝐶, and 𝑑 = 𝛿 = 𝐹 = 𝐺; that is,

𝐹 = 𝐺 is the inner derivation induced by the element
𝑐; moreover for all 𝑥

1
, 𝑥
2
∈ 𝑅 there exists 𝛼 ∈ 𝐶 such

that [𝑥
1
, 𝑥
2
]
𝑚

= [𝑥
1
, 𝑥
2
]
𝑛

+ 𝛼;
(c) [𝑥

1
, 𝑥
2
]
𝑚

= [𝑥
1
, 𝑥
2
]
𝑛, for all 𝑥

1
, 𝑥
2
∈ 𝑅, 𝑞 − 𝑐 ∈ 𝐶 (i.e.,

𝑑 = 𝛿); moreover 𝑎 = 𝑏 + 𝛽 for a suitable 𝛽 ∈ 𝐶. In
this case, our assumption implies that 𝛽[𝑥

1
, 𝑥
2
]
𝑚

= 0

for all 𝑥
1
, 𝑥
2
∈ 𝑅, which means 𝛽 = 0, since 𝑅 is not

commutative. Therefore 𝑎 = 𝑏 and 𝐹 = 𝐺.

Case 2. Assume that 𝑑 and 𝛿 are 𝐶-independent modulo 𝑈-
inner derivations.

By the main assumption, 𝑈 satisfies

𝑎[𝑥, 𝑦]
𝑛

+ ∑

𝑖+𝑗=𝑚−1

[𝑥, 𝑦]
𝑖

([𝑑 (𝑥) , 𝑦] + [𝑥, 𝑑 (𝑦)]) [𝑥, 𝑦]
𝑗

= 𝑏[𝑥, 𝑦]
𝑛

+ ∑

𝑖+𝑗=𝑛−1

[𝑥, 𝑦]
𝑖

([𝛿 (𝑥) , 𝑦] + [𝑥, 𝛿 (𝑦)]) [𝑥, 𝑦]
𝑗

.

(13)

Then by the result in [16], we have that 𝑈 satisfies

𝑎[𝑥, 𝑦]
𝑛

+ ∑

𝑖+𝑗=𝑚−1

[𝑥, 𝑦]
𝑖

([𝑥
1
, 𝑦] + [𝑥, 𝑥

2
]) [𝑥, 𝑦]

𝑗

= 𝑏[𝑥, 𝑦]
𝑛

+ ∑

𝑖+𝑗=𝑛−1

[𝑥, 𝑦]
𝑖

([𝑥
3
, 𝑦] + [𝑥, 𝑥

4
]) [𝑥, 𝑦]

𝑗

.

(14)

In particular 𝑈 satisfies the blended component

∑

𝑖+𝑗=𝑚−1

[𝑥, 𝑦]
𝑖

[𝑥
1
, 𝑦, 𝑥, 𝑦]

𝑗

. (15)

Thus𝑈 is a PI-ring and there exists𝑀
𝑡
(𝐶) satisfying (15).

For 𝑥 = 𝑒
12
, 𝑦 = 𝑒

21
, and 𝑥

1
= 𝑒
32
we have the contradiction

𝑒
31
= 0.

Case 3. Assume finally that 𝑑 and 𝛿 are not both inner
derivations (otherwise we are done by Case 1) such that 𝑑 and
𝛿 are𝐶-dependentmodulo𝑈-inner derivations.Without loss
of generality say𝑑 = 𝛼𝛿+𝑎𝑑

𝑞
; that is,𝑑(𝑥) = 𝛼𝛿(𝑥)+[𝑞, 𝑥], for

suitable 𝛼 ∈ 𝐶 and 𝑞 ∈ 𝑈. Under this assumption, we prove
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that a number of contradictions follow. We may assume the
following:

(i) 𝑑, 𝛿 are both nonzero derivations of𝑅. In fact, if either
𝑑 or 𝛿 is zero then both 𝐹 and𝐺 are inner generalized
derivations of 𝑅, which is a contradiction;

(ii) 𝛿 is not an inner derivation, if not both 𝐹 and 𝐺 are
inner generalized derivations of 𝑅, which is again a
contradiction.

Suppose first that 𝛼 = 0; then 𝑑(𝑥) = [𝑞, 𝑥]. Thus 𝑈
satisfies

𝑎[𝑥, 𝑦]
𝑚

+ [𝑞, [𝑥, 𝑦]
𝑚

] = 𝑏[𝑥, 𝑦]
𝑛

+ 𝛿 ([𝑥, 𝑦]
𝑛

) ; (16)

that is,

(𝑎 + 𝑞) [𝑥, 𝑦]
𝑚

+ [𝑥, 𝑦]
𝑚

(−𝑞)

= 𝑏[𝑥, 𝑦]
𝑛

+ ∑

𝑖+𝑗=𝑛−1

[𝑥, 𝑦]
𝑖

([𝛿 (𝑥) , 𝑦] + [𝑥, 𝛿 (𝑦)]) [𝑥, 𝑦]
𝑗

.

(17)

By [16] it follows that 𝑈 satisfies

(𝑎 + 𝑞) [𝑥, 𝑦]
𝑚

+ [𝑥, 𝑦]
𝑚

(−𝑞)

= 𝑏[𝑥, 𝑦]
𝑛

+ ∑

𝑖+𝑗=𝑛−1

[𝑥, 𝑦]
𝑖

([𝑥
1
, 𝑦] + [𝑥, 𝑥

2
]) [𝑥, 𝑦]

𝑗

(18)

and in particular 𝑈 satisfies the blended component

∑

𝑖+𝑗=𝑛−1

[𝑥, 𝑦]
𝑖

[𝑥
1
, 𝑦] [𝑥, 𝑦]

𝑗

. (19)

Therefore𝑈 is a PI-ring, so that there exists a field𝐾 such
that𝑈 and thematrix ring𝑀

𝑡
(𝐾) satisfy the same polynomial

identities. Moreover, we may assume 𝑡 ≥ 3, since 𝑈 does not
satisfy 𝑠

4
. Notice that if we choose 𝑥 = 𝑒

12
, 𝑦 = 𝑒

21
, and 𝑥

1
=

𝑒
32
then the contradiction 𝑒

31
= 0 follows.

Then assume 𝛼 ̸= 0. Thus 𝑈 satisfies

𝑎[𝑥, 𝑦]
𝑚

+ 𝛼𝛿 ([𝑥, 𝑦]
𝑚

) + [𝑞, [𝑥, 𝑦]
𝑚

]

= 𝑏[𝑥, 𝑦]
𝑛

+ 𝛿 ([𝑥, 𝑦]
𝑛

) ;

(20)

that is,

(𝑎 + 𝑞) [𝑥, 𝑦]
𝑚

+ [𝑥, 𝑦]
𝑚

(−𝑞)

+ 𝛼 ∑

𝑖+𝑗=𝑚−1

[𝑥, 𝑦]
𝑖

([𝛿 (𝑥) , 𝑦] + [𝑥, 𝛿 (𝑦)]) [𝑥, 𝑦]
𝑗

= 𝑏[𝑥, 𝑦]
𝑛

+ ∑

𝑖+𝑗=𝑛−1

[𝑥, 𝑦]
𝑖

([𝛿 (𝑥) , 𝑦] + [𝑥, 𝛿 (𝑦)]) [𝑥, 𝑦]
𝑗

.

(21)

By [16] it follows that 𝑈 satisfies

(𝑎 + 𝑞) [𝑥, 𝑦]
𝑚

+ [𝑥, 𝑦]
𝑚

(−𝑞)

+ 𝛼 ∑

𝑖+𝑗=𝑚−1

[𝑥, 𝑦]
𝑖

([𝑥
1
, 𝑦] + [𝑥, 𝑥

2
]) [𝑥, 𝑦]

𝑗

= 𝑏[𝑥, 𝑦]
𝑛

+ ∑

𝑖+𝑗=𝑛−1

[𝑥, 𝑦]
𝑖

([𝑥
1
, 𝑦] + [𝑥, 𝑥

2
]) [𝑥, 𝑦]

𝑗

(22)

and in particular 𝑈 satisfies both

(𝑎 + 𝑞) [𝑥, 𝑦]
𝑚

+ [𝑥, 𝑦]
𝑚

(−𝑞) = 𝑏[𝑥, 𝑦]
𝑛

, (23)

𝛼 ∑

𝑖+𝑗=𝑚−1

[𝑥, 𝑦]
𝑖

([𝑥
1
, 𝑦] + [𝑥, 𝑥

2
]) [𝑥, 𝑦]

𝑗

= ∑

𝑖+𝑗=𝑛−1

[𝑥, 𝑦]
𝑖

([𝑥
1
, 𝑦] + [𝑥, 𝑥

2
]) [𝑥, 𝑦]

𝑗

.

(24)

As above,𝑈 is a PI-ring, so that there exists a field𝐾 such
that 𝑈 and the matrix ring𝑀

𝑡
(𝐾) satisfy (24). Since we may

assume that 𝑡 ≥ 3, then for 𝑥 = 𝑒
12
, 𝑦 = 𝑒

21
, 𝑥
1
= 𝑒
32
, and

𝑥
2
= 0 in (24) we get 𝛼𝑒

31
= 𝑒
31
; that is, 𝛼 = 1. Moreover, by

(23) and using Lemma 10 we have in any case 𝑞 ∈ 𝐶, that is,
𝑑(𝑥) = 𝛿(𝑥), and one of the following holds.

(a) 𝑢𝑚 = 𝑢
𝑛 for all 𝑢 ∈ [𝑈,𝑈] and there exists 𝛽 ∈ 𝐶 such

that 𝑏 = 𝑎 + 𝛽. In this case we have 𝐹(𝑥) = 𝑎𝑥 + 𝑑(𝑥)

and 𝐺(𝑥) = (𝑎 + 𝛽)𝑥 + 𝑑(𝑥) for all 𝑥 ∈ 𝑈. By the
main assumption we also get 𝑎𝑢𝑚 + 𝑑(𝑢

𝑚

) = 𝑎𝑢
𝑚

+

𝛽𝑢
𝑚

+𝑑(𝑢
𝑚

), for all 𝑢 ∈ [𝑈,𝑈]. Hence𝛽𝑢𝑚 = 0, which
implies 𝛽 = 0 and 𝐹 = 𝐺.

(b) 𝑎 = 𝑏 = 0 and 𝐹 = 𝑑 = 𝛿 = 𝐺. This implies 𝑑(𝑢𝑚 −
𝑢
𝑛

) = 0, for all 𝑢 ∈ [𝑈,𝑈]. Since 𝑑 ̸= 0, by Lemma 7
we have that for all 𝑢 ∈ [𝑈,𝑈] there exists 𝛽

𝑢
∈ 𝐶

such that 𝑢𝑚 − 𝑢𝑛 = 𝛽
𝑢
. Without loss of generality we

consider 𝑛 > 𝑚 and let 𝛼 be any nonzero element of
𝐶. Denote V = [𝑥, 𝑦] ∈ [𝑈,𝑈] and 𝑢 = [𝛼

−𝑚

𝑥, 𝑦] =

𝛼
−𝑚V ∈ [𝑈,𝑈]. Thus there exist 𝛽

𝑢
, 𝛽V ∈ 𝐶 such that

V𝑚 = V𝑛+𝛽V and 𝑢
𝑚

= 𝑢
𝑛

+𝛽
𝑢
. Hence 𝛼V𝑚 = 𝛼

𝑛−𝑚V𝑛+
𝛽
𝑢
implying

𝛼V𝑛 + 𝛼𝛽V = 𝛼
𝑛−𝑚V𝑛 + 𝛽

𝑢
. (25)

In other words, for all 𝛼 ∈ 𝐶 and for all V ∈ [𝑈,𝑈], we
have (𝛼 − 𝛼𝑛−𝑚)V𝑛 ∈ 𝐶. In case 𝛼 ̸= 𝛼

𝑛−𝑚 then V𝑛 ∈ 𝐶 for all
V ∈ [𝑈,𝑈] and as above there exists a field 𝐾 such that 𝑈
and the matrix ring 𝑀

𝑡
(𝐾) satisfy [[𝑥, 𝑦]𝑛, 𝑧] = 0. Since we

may assume that 𝑡 ≥ 3, a contradiction follows easily. Thus
𝛼 = 𝛼

𝑛−𝑚 for any 𝛼 ∈ 𝐶. In this last case and by (25), it follows
that 𝛼𝛽V = 𝛽

𝑢
, for any 𝛼 ̸= 0. Hence, for 0 ̸= 𝛼

1
̸= 𝛼
2
∈ 𝐶, we

get 𝛼
1
𝛽V = 𝛼

2
𝛽V; that is, 𝛽V = 0 for any choice of V ∈ [𝑈,𝑈],

which means V𝑚 = V𝑛 for all V ∈ [𝑈,𝑈].

Corollary 11. Let 𝑅 be a 2-torsion free prime ring and let 𝐿 be
a noncentral Lie ideal of𝑅, and let𝐹 : 𝑅 → 𝑅 and𝐺 : 𝑅 → 𝑅

be two generalized derivations associated with derivations 𝑑 :

𝑅 → 𝑅 and 𝛿 : 𝑅 → 𝑅, respectively. Suppose that there exist
𝑚, 𝑛 ≥ 1 integers such that 𝐹(𝑢𝑚) = 𝐺(𝑢

𝑛

) for all 𝑢 ∈ 𝐿. Then
either 𝑅 satisfies the standard identity 𝑠

4
or one of the following

holds:
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(a) 𝐹 = 𝐺 is an inner ordinary derivation of 𝑅 and for all
𝑥
1
, 𝑥
2
∈ 𝑅 there exists 𝛼 ∈ 𝐶 such that [𝑥

1
, 𝑥
2
]
𝑚

=

[𝑥
1
, 𝑥
2
]
𝑛

+ 𝛼;
(b) 𝐹 = 𝐺 and [𝑥

1
, 𝑥
2
]
𝑚

= [𝑥
1
, 𝑥
2
]
𝑛, for all 𝑥

1
, 𝑥
2
∈ 𝑅.

Proof. Since 𝐿 is not central in𝑅, then by [10, pages 4-5] there
exists a nonzero two-sided ideal 𝐼 of 𝑅 such that [𝐼, 𝐼] ⊆ 𝐿.
Therefore 𝐹([𝑥, 𝑦]𝑚) = 𝐺([𝑥, 𝑦]

𝑛

) for all 𝑥, 𝑦 ∈ 𝐼. As above
we write

𝐹 (𝑥) = 𝑎𝑥 + 𝑑 (𝑥) , 𝐺 (𝑥) = 𝑏𝑥 + 𝛿 (𝑥) (26)

for suitable 𝑎, 𝑏 ∈ 𝑈 and 𝑑, 𝛿 derivations of 𝑅. Thus 𝐼 satisfies
the differential identity

𝑎[𝑥, 𝑦]
𝑚

+ 𝑑 ([𝑥, 𝑦]
𝑚

) − 𝑏[𝑥, 𝑦]
𝑛

− 𝛿 ([𝑥, 𝑦]
𝑛

) . (27)

Since 𝐼, 𝑅, and 𝑈 satisfy the same differential identities
(see [9]), then (27) is satisfied by 𝑈. Hence we conclude by
Theorem 1.

Proof of Theorem 2. Firstly we notice that for 𝑢 = V we have
𝐹(𝑢
𝑚(𝑝+𝑞)

) = 𝐺(𝑢
𝑛(𝑟+𝑠)

), for all 𝑢 ∈ 𝐿. By Corollary 11 we have
that 𝑅 is a PI-ring and, if assumed that 𝑅 does not satisfy 𝑠

4
,

then one has 𝐹 = 𝐺. As remarked above, there exists an ideal
𝐼 of 𝑅 such that [𝐼, 𝐼] ⊆ 𝐿; therefore

𝐹 ((𝑢
𝑝V𝑞)𝑚 − (V𝑟𝑢𝑠)𝑛) = 0 (28)

for all 𝑢, V ∈ [𝐼, 𝐼]. Since 𝑈 and 𝐼 satisfy the same differential
identities, we also have that (28) is satisfied by𝑈. By Lemma 7,
and since 𝐹 ̸= 0, (𝑢𝑝V𝑞)𝑚 − (V𝑟𝑢𝑠)𝑛 is central for all 𝑢, V ∈

[𝑈,𝑈], moreover there exists a field𝐾 such that𝑀
𝑡
(𝐾) and𝑈

satisfy the same polynomial identities. Of course we assume
that 𝑡 ≥ 3, since𝑈 does not satisfy 𝑠

4
. Fix 𝑢 = [𝑒

12
, 𝑒
21
+𝑒
31
] =

𝑒
11
− 𝑒
22
− 𝑒
32
and V = [𝑒

12
, 𝑒
21
] = 𝑒
11
− 𝑒
22
.

Thus

(𝑢
𝑝V𝑞)𝑚 = 𝑒

11
+ 𝛼𝑒
22
+ 𝛽𝑒
32
,

(V𝑟𝑢𝑠)𝑛 = 𝑒
11
+ 𝛾𝑒
22
,

(29)

where 𝛼, 𝛽, 𝛾 ∈ {+1, −1}. Hence

(𝑢
𝑝V𝑞)𝑚 − (V𝑟𝑢𝑠)𝑛 = 𝛽𝑒

32
∉ 𝑍 (𝑀

𝑡
(𝐾)) , (30)

which is a contradiction.

Corollary 12. Let𝑅 be a 2-torsion free prime ring,𝑈 its Utumi
quotient ring, 𝐶 its extended centroid, 𝐿 noncentral Lie ideal
of 𝑅, and 𝐹 : 𝑅 → 𝑅 and 𝐺 : 𝑅 → 𝑅 two generalized
derivations associated with derivations 𝑑 : 𝑅 → 𝑅 and 𝛿 :

𝑅 → 𝑅, respectively. Suppose that there exists 𝑛 ≥ 1 integer
such that 𝐹((𝑢V)𝑛) = 𝐺((V𝑢)𝑛) for all 𝑢, V ∈ 𝐿. Then either
𝐹 = 𝐺 = 0 or 𝑅 satisfies the standard identity 𝑠

4
and 𝐹 − 𝐺 is

an ordinary derivation of 𝑅.

Proof. For 𝑢 = V ∈ 𝐿 in our main assumption we get 𝐹(𝑢2𝑛) =
𝐺(𝑢
2𝑛

); moreover by applying Theorem 2 it follows that 𝑅
must satisfy the standard identity 𝑠

4
.

Therefore 𝑈 ≅ 𝑀
2
(𝐶) and we may assume that 𝑅 ⊆

𝑀
2
(𝐶), the 2 × 2 matrix ring over 𝐶. Since 𝐿 is not central

and 𝑅 is 2-torsion free, as remarked above, it follows that
[𝑅, 𝑅] ⊆ 𝐿. Hence we have that 𝐹([𝑥

1
, 𝑥
2
]
2𝑛

) = 𝐺([𝑥
1
, 𝑥
2
]
2𝑛

)

is satisfied by 𝑅. Let 𝑎, 𝑏 ∈ 𝑈 such that 𝐹(𝑥) = 𝑎𝑥 + 𝑑(𝑥) and
𝐺(𝑥) = 𝑏𝑥+𝛿(𝑥), for all 𝑥 ∈ 𝑅; then𝑅 satisfies the generalized
differential identity

(𝑎 − 𝑏) [𝑥
1
, 𝑥
2
]
2𝑛

+ (𝑑 − 𝛿) ([𝑥
1
, 𝑥
2
]
2𝑛

) . (31)

Firstly notice that in case 𝐹 = 0 then 𝑅 satisfies
𝐺([𝑥
1
, 𝑥
2
][𝑦
1
, 𝑦
2
]
𝑛

) and by Lemma 7 it follows that 𝐺 = 0

unless [𝑥
1
, 𝑥
2
][𝑦
1
, 𝑦
2
] is central valued on 𝑅. In the latter case

for [𝑥
1
, 𝑥
2
] = 𝑒
12
and [𝑦

1
, 𝑦
2
] = 𝑒
21
a contradiction follows.

Thus we assume both 𝐹 ̸= 0 and 𝐺 ̸= 0 and denote𝐻(𝑥) =
𝑑(𝑥) − 𝛿(𝑥) (of course𝐻 is a derivation of 𝑅). Here we apply
again Kharchenko’s theory, using the fact that [𝑥

1
, 𝑥
2
]
2𝑛 is

central valued on 𝑅, and we prove that 𝑎 = 𝑏. To do this, we
divide the proof into two cases.

Case 1. Let𝐻(𝑥) = [𝑐, 𝑥] be the inner derivations in 𝑅. Thus
we have that (𝑎−𝑏)[𝑥, 𝑦]2𝑛 = 0, for all 𝑥, 𝑦 ∈ 𝑅, which implies
𝑎 = 𝑏.

Case 2. Assume that 𝐻 is not inner. By Kharchenko’s theory
in [16], and since 𝑅 satisfies

(𝑎 − 𝑏) [𝑥
1
, 𝑥
2
]
2𝑛

+ ∑

𝑖+𝑗=2𝑛−1

[𝑥
1
, 𝑥
2
]
𝑖

([𝐻 (𝑥
1
) , 𝑥
2
] + [𝑥

1
, 𝐻 (𝑥

2
)]) [𝑥
1
, 𝑥
2
]
𝑗

,

(32)

then 𝑅 satisfies

(𝑎 − 𝑏) [𝑥
1
, 𝑥
2
]
2𝑛

+ ∑

𝑖+𝑗=2𝑛−1

[𝑥
1
, 𝑥
2
]
𝑖

([𝑦
1
, 𝑥
2
] + [𝑥

1
, 𝑦
2
]) [𝑥
1
, 𝑥
2
]
𝑗

;
(33)

in particular (𝑎 − 𝑏)[𝑥
1
, 𝑥
2
]
2𝑛 is a generalized identity for 𝑅,

which implies again that 𝑎 = 𝑏.

Corollary 13. Let𝑅 be a 2-torsion free prime ring,𝑈 its Utumi
quotient ring, 𝐶 its extended centroid, and 𝐹 : 𝑅 → 𝑅 and
𝐺 : 𝑅 → 𝑅 two generalized derivations associated with
derivations 𝑑 : 𝑅 → 𝑅 and 𝛿 : 𝑅 → 𝑅, respectively. Suppose
that there exists 𝑛 ≥ 1 integer such that 𝐹((𝑢V)𝑛) = 𝐺((V𝑢)𝑛)
for all 𝑢, V ∈ 𝑅. Then either 𝐹 = 𝐺 = 0 or 𝑅 is commutative.

Proof. By Corollary 12, if we assume that 𝐹 ̸= 0 and 𝐺 ̸= 0, it
follows that 𝑅 ⊆ 𝑀

2
(𝐶) and 𝐹−𝐺 = 𝐻 is ordinary derivation

of 𝑅. In particular𝐻(𝑥2) = 0 for all 𝑥 ∈ 𝑅 and by Lemma 7 it
follows that either𝐻 = 0 or 𝑥2 ∈ 𝑍(𝑅), for all 𝑥 ∈ 𝑅.

In case 𝐻 = 0, then 𝐹 = 𝐺 and 𝐹((𝑢V)𝑛 − (V𝑢)𝑛) = 0 for
all 𝑢, V ∈ 𝑅. Again by Lemma 7, since 𝐹 ̸= 0, one has (𝑢V)𝑛 −
(V𝑢)𝑛 ∈ 𝑍(𝑅); in particular for 𝑢 = 𝑒

11
and V = 𝑒

11
+ 𝑒
12
,

it follows the contradiction 𝑒
12
∈ 𝑍(𝑅). Therefore 𝑅 must be

commutative.
Let 𝐻 ̸= 0, so that 𝑥2 ∈ 𝑍(𝑅), for all 𝑥 ∈ 𝑅 follows by

the previous argument. Thus 𝑅 is commutative and by the
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main assumption it follows 𝐻((𝑢V)𝑛) = 0. Once again by
Lemma 7, since 𝐻 ̸= 0, it follows (𝑢V)𝑛 ∈ 𝑍(𝑅), which leads
to a contradiction, as remarked above.

An easy consequence of Corollary 13 is the following.

Corollary 14. Let𝑅 be a 2-torsion free prime ring,𝑈 its Utumi
quotient ring, 𝐶 its extended centroid, and 𝐹 : 𝑅 → 𝑅 a
generalized derivation of 𝑅. Suppose that there exists 𝑛 ≥ 1

integer such that 𝐹((𝑢V)𝑛) = 0 for all 𝑢, V ∈ 𝑅. Then either
𝐹 = 0 or 𝑅 is commutative.

3. Results in Semiprime Rings

In order to prove the main result of this section we will make
use of the following facts.

Remark 15. Let 𝑅 be a semiprime ring and let 𝐹 be a
generalized derivation of 𝑅 associated with derivation 𝑑. If
𝐹(𝑅) = 0, then 𝑑(𝑅) = 0.

Claim 1 (see [17, Proposition 2.5.1]). Any derivation of a
semiprime ring 𝑅 can be uniquely extended to a derivation
of its left Utumi quotient ring 𝑈, and so any derivation of 𝑅
can be defined on the whole 𝑈.

Claim 2 (see [18, page 38]). If 𝑅 is semiprime then so is its left
Utumi quotient ring.

The extended centroid 𝐶 of a semiprime ring coincides
with the center of its left Utumi quotient ring.

Claim 3 (see [18, p. 42]). Let𝐵 be the set of all the idempotents
in 𝐶, the extended centroid of 𝑅. Assume that 𝑅 is B-algebra
orthogonal complete. For anymaximal ideal𝑃 of 𝐵,𝑃𝑅 forms
a maximal prime ideal of 𝑅, which is invariant under any
derivation of 𝑅.

We are now ready to proveTheorems 3 and 4.

Proof of Theorem 3. Let 𝑎, 𝑏 ∈ 𝑈 and 𝑑, 𝛿 derivations of 𝑈 be
such that 𝐹(𝑥) = 𝑎𝑥 + 𝑑(𝑥) and 𝐺(𝑥) = 𝑏𝑥 + 𝛿(𝑥), for all
𝑥 ∈ 𝑅. By Claim 2, 𝑍(𝑈) = 𝐶, and by Claim 1 𝑑 and 𝛿 can
be uniquely defined on the whole 𝑈. Since 𝑈 and 𝑅 satisfy
the same generalized differential identities, then 𝐹((𝑥𝑦)𝑛) =
𝐺((𝑦𝑥)

𝑛

), for all 𝑥, 𝑦 ∈ [𝑈,𝑈]. Let 𝐵 be the complete Boolean
algebra of idempotents in 𝐶 and𝑀 any maximal ideal of 𝐵.

Since 𝑈 is 𝐵-algebra orthogonal complete (see [18, page
42, (2) of Fact 1]), by Claim 3, 𝑀𝑈 is a prime ideal of 𝑈,
which is both 𝑑-invariant and 𝛿-invariant. Let 𝑑 and 𝛿 be the
derivations induced, respectively, by 𝑑 and 𝛿 on 𝑈 = 𝑈/𝑀𝑈

and denote 𝐹(𝑥) = 𝑎𝑥 + 𝑑(𝑥), 𝐺(𝑥) = 𝑏𝑥 + 𝛿(𝑥). For any
𝑥, 𝑦 ∈ [𝑈,𝑈],𝐹((𝑥𝑦)𝑛) = 𝐺((𝑦𝑥)

𝑛

). In particular𝑈 is a prime
ring and so, by Corollary 12, either 𝐹 = 0 and 𝐺 = 0 in 𝑈 or
𝑈 satisfies 𝑠

4
. This implies that, for any maximal ideal 𝑀 of

𝐵, 𝐹(𝑈) ⊆ 𝑀𝑈 and 𝐺(𝑈) ⊆ 𝑀𝑈 or 𝑠
4
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) ⊆ 𝑀𝑈,

for all 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
∈ 𝑈. In any case 𝐹(𝑈)𝑠

4
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) ⊆

⋂
𝑀
𝑀𝑈 = 0 and also 𝐺(𝑈)𝑠

4
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) ⊆ ⋂

𝑀
𝑀𝑈 =

0. From [17, Chapter 3] there exists a central idempotent

element 𝑒 of 𝑈, such that 𝐹(𝑒𝑈) = 0, 𝐺(𝑒𝑈) = 0 and (1 − 𝑒)𝑈
satisfies 𝑠

4
.

Proof of Theorem 4. Here we repeat the same argument
above. Let 𝑎, 𝑏 ∈ 𝑈 such that 𝐹(𝑥) = 𝑎𝑥 + 𝑑(𝑥) and
𝐺(𝑥) = 𝑏𝑥 + 𝛿(𝑥). Let 𝐵 be the complete Boolean algebra
of idempotents in 𝐶 and𝑀 any maximal ideal of 𝐵.

Since 𝑈 is 𝐵-algebra orthogonal complete (see [18, p.
42, (2) of Fact 1]), by Claim 3, 𝑀𝑈 is a prime ideal of 𝑈,
which is both 𝑑-invariant and 𝛿-invariant. Let 𝑑 and 𝛿 be two
derivations induced, respectively, by 𝑑 and 𝛿 on 𝑈 = 𝑈/𝑀𝑈

and denote 𝐹(𝑥) = 𝑎𝑥 + 𝑑(𝑥), 𝐺(𝑥) = 𝑏𝑥 + 𝛿(𝑥). For any
𝑥, 𝑦 ∈ [𝑈,𝑈], 𝐹((𝑥𝑦)𝑛) = 𝐺((𝑦𝑥)

𝑛

). Since 𝑈 is a prime ring
so, by Corollary 13, either 𝐹 = 0 and 𝐺 = 0 in 𝑈 or 𝑈 is
commutative. Moreover, if 𝐹 = 0 and 𝐺 = 0 in 𝑈 then, by
Remark 15, it follows that 𝑑 = 0 and 𝛿 = 0 in 𝑈.

This implies that, for any maximal ideal 𝑀 of 𝐵, one of
the following holds:

(a) either 𝐹(𝑈) ⊆ 𝑀𝑈, 𝑑(𝑈) ⊆ 𝑀𝑈, 𝐺(𝑈) ⊆ 𝑀𝑈 and
𝛿(𝑈) ⊆ 𝑀𝑈;

(b) or [𝑈, 𝑈] ⊆ 𝑀𝑈.

In any case [𝐹(𝑈), 𝑈] ⊆ ⋂𝑀𝑈 = 0 and [𝑑(𝑈), 𝑈] ⊆

⋂𝑀𝑈 = 0 imply that [𝑎𝑈,𝑈] = 0. Analogously [𝐺(𝑈), 𝑈] ⊆
⋂𝑀𝑈 = 0 and [𝛿(𝑈), 𝑈] ⊆ ⋂𝑀𝑈 = 0 implying that
[𝑏𝑈,𝑈] = 0.

As mentioned above it follows that there exists a central
idempotent element 𝑒 in 𝑈 such that, on the direct sum
decomposition 𝑒𝑈 ⊕ (1 − 𝑒)𝑈, 𝐹 and 𝐺 vanish identically on
𝑒𝑈 and the ring (1 − 𝑒)𝑈 is commutative.

Moreover, [𝑎𝑈2, 𝑈] = (0) implies 𝑎𝑈[𝑈,𝑈] = (0); that is,
both 𝑈𝑎𝑈

2

[𝑈, 𝑈] = (0) and 𝑎𝑈𝑈
2

[𝑈, 𝑈] = (0). Therefore
[𝑎, 𝑈]𝑈

2

[𝑎, 𝑈] = (0) and, by the semiprimeness of 𝑈, it
follows [𝑎, 𝑈] = (0); that is, 𝑎 ∈ 𝐶. Analogously one can prove
that 𝑏 ∈ 𝐶.

On the other hand, since by Theorem 3 in [9] 𝑈 and 𝑅

satisfy the same differential identities, then [𝑑(𝑅), 𝑅] = 0 and
[𝛿(𝑅), 𝑅] = 0, which imply that 𝑑(𝑅) ⊆ 𝑍(𝑅), 𝛿(𝑅) ⊆ 𝑍(𝑅),
and 𝑅 contains some nonzero central ideals, unless when
𝑑(𝑅) = 0 and 𝛿(𝑅) = 0.

In the last case, 𝜆(𝑢V)𝑛 = 𝜇(V𝑢)𝑛 for all 𝑢, V ∈ 𝑅, and in
particular 𝜆(𝑢)2𝑛 = 𝜇(𝑢)

2𝑛 for all 𝑢 ∈ 𝑅. The semiprimeness
of 𝑅 forces 𝜆 = 𝜇 ̸= 0 (since 𝐹 ̸= 0), so that (𝑢V)𝑛 = (V𝑢)𝑛 for
all 𝑢, V ∈ 𝑅. Finally by Theorem 1 in [19], the commutativity
of 𝑅 follows which is a contradiction.
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