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Abstract—This paper proposes a new exposure fusion ap-
proach for producing a high quality image result from multiple
exposure images. Based on the local weight and global weight
by considering the exposure quality measurement between dif-
ferent exposure images, and the just noticeable distortion-based
saliency weight, a novel hybrid exposure weight measurement is
developed. This new hybrid weight is guided not only by a single
image’s exposure level but also by the relative exposure level
between different exposure images. The core of the approach is
our novel boosting Laplacian pyramid, which is based on the
structure of boosting the detail and base signal, respectively,
and the boosting process is guided by the proposed exposure
weight. Our approach can effectively blend the multiple exposure
images for static scenes while preserving both color appearance
and texture structure. Our experimental results demonstrate that
the proposed approach successfully produces visually pleasing
exposure fusion images with better color appearance and more
texture details than the existing exposure fusion techniques and
tone mapping operators.

Index Terms—Boosting Laplacian pyramid, exposure fusion,
global and local exposure weight, gradient vector.

I. Introduction

THE DYNAMIC range of a natural scene often spans a
much larger scope than the capture range of common

digital cameras. An exposure image only captures a certain
dynamic range of the scene and some regions are invisible
due to under-exposure or over-exposure. Variable exposure
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photography captures multiple images of the same scene with
different exposure settings of the camera while maintaining a
constant aperture. In order to recover the full dynamic range
and make all the details visible in one image, high dynamic
range (HDR) imaging techniques [3], [22], [32] are employed
to reconstruct one HDR image from an input exposure se-
quence. These generated HDR images usually have higher
fidelity than convectional low dynamic range (LDR) images,
which have been widely applied in many computer vision
and image processing applications, such as physically-based
realistic images rendering [32] and photography enhancement
[30]. On the other hand, the current displays are only capable
of handling a very limited dynamic range. In order to resolve
the contradiction between the HDR characteristic of real world
scenes and the conventional LDR display devices, a single
HDR image is first reconstructed from multiple exposure
images using HDR imaging techniques [3], [29] and then a
tone mapping image is generated with existing tone mapping
operators [9], [13], [14], [28]. This workflow of two phases
is not efficient, while the process of direct exposure fusion
combines multiple exposure images into a single LDR image
without the aforementioned two phases.

Exposure fusion [18], [20], [23]–[25], [27], [30] is currently
a very active research area in the field of computer vision,
as it offers the full dynamic range from an input exposure
sequence. The task of exposure fusion is slightly different
from the traditional HDR imaging technique [3], and it does
not need to reconstruct a single HDR image from a set
of images under different exposure settings from the same
scene [32]. The traditional image fusion techniques are most
relevant to our algorithm, but image fusion algorithms focus
on preserving the details and can be viewed as an analogy to
alpha blending [2], [4], [16]. The purpose of exposure fusion
is to acquire the full dynamic range of a scene by blending
multiple exposure images into a single high-quality composite
image, and preserving the detail and texture information as
much as possible.

The general image fusion approaches usually use the mul-
tisensor or multispectral images as input [5], [16], while
exposure fusion methods use the multiple exposure images as
input. Taking a sequence of images with different exposures
of a scene as input, our approach produces a detail and texture
preserving fusion result using the boosting Laplacian pyramid.
The proposed fusion method neither needs to generate any
HDR image nor needs to do the tone mapping process. This
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Fig. 1. Exposure fusion results using the boosting Laplacian pyramid. Our
result exhibits more details with enhanced texture information, especially in
the cloud background and light glares, and the overall visual appearance
contrast. (a) Input sequence. (b) Result by [27]. (c) Our result.

avoids the requirement of knowing the exposure time of cap-
turing different exposure images. Our fusion method produces
a more visually pleasing fusion result using the boosting
Laplacian pyramid and the exposure quality measurements. As
shown in Fig. 1, our result exhibits more details with enhanced
contrast and texture information, and achieves a more visually
pleasing result than the method in [27], especially in terms
of the details of the cloud background, light glares, and road
texture.

Compared with previous works on exposure fusion, we can
see that our paper has the following research contributions.

1) A new exposure fusion approach is proposed, which is
based on the novel boosting Laplacian pyramid and the
hybrid exposure weight.

2) A novel hybrid exposure weight measurement is pre-
sented, which is based on the local weight, the global
weight and the just noticeable distortion (JND)-based
saliency weight. Our novel global exposure weight

considers the gradient vectors between different expo-
sure images.

3) A new boosting Laplacian pyramid is developed, which
is based on the structure of boosting the detail layers
and base layers respectively, and the boosting process is
guided by the proposed local exposure weight and the
JND-based saliency weight.

The paper is organized as follows. In Section II, we sum-
marize the related work on exposure fusion and HDR imaging
techniques. In Section III, we present our exposure fusion
algorithm by designing a novel hybrid exposure weight. In
Section IV, we derive a new boosting Laplacian pyramid by
boosting the detail layers and base layers respectively. We give
the fusion examples to validate the proposed method and then
conclude the paper with a brief discussion in Section V.

II. Related work

Exposure fusion [6], [11], [15], [23] is originally intro-
duced as a subarea of the more general topic of image
fusion approaches, which creates the fusion result with more
details of the same scene taken under different exposure
settings. However, the general image fusion approaches [16]
are referred to the fusion of multisensor and multispectral
images, and are usually restricted to merging the gray level
images. Exposure fusion is a recently developed technique
for producing the details and expanding the dynamic range
without the need of creating an intermediate HDR image.
For instance, Goshtasby [15] has proposed an exposure fusion
method from multiple exposure images of a static scene. Their
approach blends the image blocks in an image domain by
selecting the uniform image blocks containing the most useful
information. In this paper, we focus on the multiple exposure
fusion image fusion and present a novel fusion approach using
the hybrid exposure weight and the new boosting Laplacian
pyramid.

In recent years, a few approaches of multiple exposure
fusion have been proposed and are widely used for their
simplicity and effectiveness. Mertens et al. [23] presented an
exposure fusion approach using Gaussian and Laplacian pyra-
mid in a multiresolution fashion, which belongs to the pixel-
level fusion approach. Raman and Chaudhuri [25] employed
the edge-preserving bilateral filters to generate an exposure
fusion result from multiexposure input images. Raman et al.
[26] further proposed an automatic multiexposure fusion ap-
proach without the ghost artifacts by determining the moving
objects. Recently, Zhang and Cham [27] presented a tone-
mapping-like exposure fusion method under the guidance of
gradient-based quality assessment. Later, Song et al. [37]
synthesized an exposure fusion image using a probabilistic
model, which preserves the luminance levels and suppresses
reversals in the image luminance gradients. More recently, Hu
et al. [35] presented a novel registration and fusion approach
for the exposure images in the presence of both live scenes
and camera motions.

The dynamic ranges of HDR images need to be mapped
into the limited dynamic ranges of the dominant display
technologies, such as CRTs and LCDs. The works on HDR
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imaging and tone mapping techniques [8], [9], [13] are closely
related to exposure fusion approaches. The HDR imaging
approaches usually create a single HDR image with a good
alignment of multiple input exposures and recover the cam-
era response curve [3], [32]. Tone mapping techniques for
HDR images have been fascinating for a long time, and
many methods have been developed during the last decade.
For instance, Reinhard et al. [8] presented a tone mapping
method to compress the high dynamic range of the real world
luminance to the low dynamic range of the photographic
print. Recently, Li et al. [14] presented a wavelet-based sub-
band decomposition for compressing and companding HDR
images. In order to remove the halo artifacts caused by
the amplitude distortion, they used a symmetrical analysis-
synthesis wavelet-based filter bank and local gain control to
improve the modified sub-bands. Khan et al. [17] proposed
a ghosting-free HDR imaging method by a non-parametric
model to determine each pixel’s weight for the static part
of a scene. More recently, Jacobs et al. [21] presented an
automatic HDR image generation method from LDR images,
which removes the ghosting artifacts in the HDR images by a
camera-alignment module and a movement detector.

Compared with the traditional tone mapping techniques, the
proposed exposure fusion approach does not need to recover
the camera response curve and record the exposure time of an
input sequence of different exposure images [3]. As described
earlier, the conventional two stages include the HDR image
creation and tone mapping, and this two-stage process usually
needs complex user interactions and tends to miss some color
and texture details in the created fusion result. Therefore, it is
desirable to produce the fusion result from a multiple exposure
sequence input, which is more efficient and effective. The
purpose of our exposure fusion technique is to directly produce
visually pleasing photographs for the displaying purpose while
preserving the details and enhancing the contrast.

III. Exposure fusion algorithm

We now introduce and discuss our exposure fusion method,
which is based on a new boosting Laplacian pyramid (BLP).
This new pyramid framework is very efficient to fuse multiple
exposure images, as it has the advantage of boosting both the
structure and texture details while avoiding the phenomenon
of color cast. Our method first begins with decomposing an
input sequence into multiscale detail and base layers using the
proposed BLP. We will give the detailed descriptions on how
to construct our boosting Laplacian pyramid in Section IV.
Our exposure fusion process is guided by the weight maps for
each layer of boosting Laplacian pyramid as follows:

R(x, y) =
N∑
i=1

Wi(x, y) × Fi(x, y) (1)

where R(x, y) denotes the image pixel at coordinate position
(x, y) of the fusion result, Wi(x, y) indicates the hybrid expo-
sure weight, and Fi(x, y) is one layer of our boosting Laplacian
pyramid (Fi(x, y) = Bi(x, y) + Di(x, y), Bi(x, y) is the base
layer and Di(x, y) is the detail layer) with the i-th exposure

image. N is the number of images in the input sequence. In
our implementation, we use different hybrid exposure weight
Wi(x, y) for base layers and detail layers in (1), and we will
further discuss it in detail in Section IV.

Our goal is to automatically find the useful visibility in-
formation from each input exposure image, and then combine
these regions together so as to generate a high quality fusion
result with more details. We propose three different guidance
methods to identify each pixel’s contribution to the final
fusion components, and we consider both the global and local
exposure weight for multiple exposure fusion. Our method
is different from the approach in [23], which emphasizes
the local cues to determine the weight maps, such as the
contrast, saturation and exposure measurement. In contrast,
we measure the exposure weight by computing the exposure
levels from both the local and global information. The local
exposure weight E(x, y) is used to determine the useful pixels
needed to be preserved during the fusion process. The global
exposure weight is calculated by considering the exposure
changes between the current exposure image with another
exposure image. We present a global exposure weight method
using the gradient vector, since the gradient vector does not
change dramatically in the proper exposure image. We then
compute the exposure difference with gradient direction from
the multiple exposure images, and obtain the global exposure
weight V (x, y). In order to preserve the salient regions, we
propose the third guidance to compute the saliency weight
J(x, y) using the JND model.

In order to obtain a new hybrid exposure quality weight
Wi(x, y) by considering the global exposure weight, local
exposure weight and saliency weight for the i-th image of the
input sequence, we combine the aforementioned three cues
together and normalize them as follows:

Wi(x, y) =
Ei(x, y) × Vi(x, y) × Ji(x, y)∑N
i=1 Ei(x, y) × Vi(x, y) × Ji(x, y)

. (2)

A. Local exposure weight

Both under-exposure and over-exposure usually reveal some
regions and also make other regions of the image invisible
[33]. Therefore, the fusion should be performed on the correct
regions so as to increase the image visibility and reduce the
visual artifacts. It will be invalid to directly fuse and enhance
these regions in under-exposed or over-exposed areas. We use
an asymmetric logic function to evaluate the exposure quality
[33]. This exposure quality assessment Q(x, y) sets the lightest
and darkest regions with zero values, while it assigns other
regions with the values between zero and one. Our exposure
weight map E(x, y) is the grayscale image of Q(x, y) and
represents the exposure quality of the input image I(x, y),
which is defined as

Qi(x, y) = 1 −
∣∣∣∣∣∣
1

a

⎧⎨
⎩log

I
1
c

i (x, y)

1 − I
1
c

i (x, y)
− b

⎫⎬
⎭

∣∣∣∣∣∣ (3)

Ei(x, y) = rgb2gray(Qi(x, y)) (4)

where the parameters a, b, and c are used to control the shape
of the asymmetric logic function curve [33]. We set a = 3.2,



1582 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 9, SEPTEMBER 2014

Fig. 2. Illustration of analyzing the gradient vectors with different exposure
images. Note that (a), (b) and (c) are the input images. (a) Low level exposure.
(b) Middle level exposure. (c) High level exposure. (d) Final fusion result.
(e)–(g) Gradient vectors Mi(x, y) and Mj(x, y) at position (x, y) in i-th and
j-th images.

b = −1.3, and c = 0.4 in our implementation. The exposure
weight E(x, y) is also used to construct our boosting Laplacian
pyramid and we will discuss it in detail in Section IV-A.

B. Global exposure weight

The aforementioned exposure weight is a local weight map,
which computes the exposure level only from a single expo-
sure image of the input sequence. However, this local weight
map does not utilize the global relationship of measuring the
exposure level between different exposure images. Hence we
define a global exposure weight V (x, y) to make a better
exposure measurement by considering other exposure images
from the sequence.

We take advantage of the sine values of the angle between
gradient vectors from different exposure images as shown
in Fig. 2. We calculate the sine values of gradient vector
pairs, which are obtained by selecting any two images from a
sequence of N exposure images. Let < Mi(x, y), Mj(x, y) >

denotes the angle between gradient vectors Mi(x, y) and
Mj(x, y) at a position (x, y) in the i-th and j-th images. The
sine value Sij(x, y) is computed and smoothed as follows:

Sij(x, y) = ‖Mj(x, y)‖ × sin < Mi(x, y), Mj(x, y) >,

Sij(x, y) = mean(Sij(x, y)) (5)

where mean(·) indicates the mean filter and its window size
is normally 9 × 9 pixels. The mean filter is used to produce
the smooth Sij(x, y).

Since the value of Sij(x, y) is in the range of [0, 1], and is
very small, we use a factor λ to amplify it. Then the weight
map Tij(x, y) is given by

Tij(x, y) = 1 − λ × Sij(x, y) (6)

where we set λ = 100 in our implementation.
In fact, Tij(x, y) may be below zero, which will cause the

incorrect weight results. So we need the following thresholding
function to modify it:

T
′
ij(x, y) =

{
Tij(x, y), Tij(x, y) > 0;

0, otherwise.
(7)

Fig. 3. Magnitude of the RGB color vector in the base layers and the detail
layer is boosted along the direction of the RGB color vector. Top row:
before boosting. Second row: after boosting. Third row: direction of the RGB
color vector. Bottom row: magnitude of the RGB color vector. (a) Level 0.
(b) Level 1. (c) Level 2.

Finally, we multiply the weight map of each exposure image
to obtain its final global exposure level of the input sequence.
Thus, the global exposure weight Vj(x, y) of the j-th exposure
image is defined as

Vj(x, y) =
N∏

i=1,i�=j

T
′
ij(x, y). (8)

C. JND-Based Saliency Weight

JND refers to the maximum distortion that the human visual
system (HVS) does not perceive, and defines a perceptual
threshold to guide a perceptual image quality measurement
task. The JND model helps us to represent the HVS sensi-
tivity of observing an image [12]. It is an important visual
saliency cue for image quality measurement. We employ the
JND model to define the saliency weight J(x, y), which can
pick up the pixels in different exposure images with good color
contrast and saturation regions. Furthermore, we can utilize a
saliency weight map based function to estimate the level of
boosting in our BLP. We use a nonlinear additivity JND model
to define the saliency weight as [12], [31]

Ji(x, y) = Jl
i (x, y) + Jt

i (x, y) − Kl,t(x, y)min(Jl
i (x, y), J t

i (x, y))
(9)

where Jl
i (x, y) and Jt

i (x, y) are the background luminance
masking and the texture masking of the image visibility,
respectively. Kl,t(x, y)(0 < Kl,t(x, y) < 1) accounts for the
overlapping effect in masking.

We adopt two different functions to model the relationship
between luminance Jl

i (x, y) and the average background lu-
minance [12]. One is a root equation for low background
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Fig. 4. Boosting and fusion process on the base layer and the detail layers
separately. Note that here B in the blue circular icon denotes the boosting
operator.

luminance (below 127), and the other is approximated by a
linear function for the part over 127, which is defined as

Jl
i (x, y) =

⎧⎨
⎩

17

(
1 −

√
I(x,y)
127

)
+ 3, if I(x, y)≤127

3
128 (I(x, y) − 127) + 3, otherwise.

I(x, y) =
1

32

5∑
i=1

5∑
j=1

I(x − 3 + i, y − 3 + j)·B(i, j), (10)

B(i, j) =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1

1 2 2 2 1

1 2 0 2 1

1 2 2 2 1

1 1 1 1 1

⎤
⎥⎥⎥⎥⎦

where I(x, y) is the intensity value and B(i, j) is a weighted
low-pass filter.

Texture masking is usually determined by local spatial
gradients around the pixel. In order to obtain more accurate
JND estimation, edge and nonedge regions should be well
distinguished. Based on the fact that the edge structure attracts
more attention by HVS [12], we take the edge difference into
account to define Jt

i (x, y) as

Jt
i (x, y) = max

k=1,2,3,4
{|gradk(x, y)|},

gradk(x, y) = I(x, y)⊗gk(x, y) (11)

where ⊗ is a convolution operator. gk(x, y) is the k-th direc-
tional high-pass filter, which is defined as follows (k=4):

g1 =

⎡
⎢⎢⎣

0 0 0 0 0

1 3 8 3 1

0 0 0 0 0

−1 −3 −8 −3 −1

0 0 0 0 0

⎤
⎥⎥⎦ , g2 =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0

0 8 3 0 0

1 3 0 −3 −1

0 0 −3 8 0

0 0 −1 0 0

⎤
⎥⎥⎥⎥⎦ ,

g3 =

⎡
⎢⎢⎣

0 0 1 0 0

0 0 3 8 0

−1 −3 0 3 1

0 −8 −3 0 0

0 0 −1 0 0

⎤
⎥⎥⎦ , g4 =

⎡
⎢⎢⎣

0 1 0 −1 0

0 3 0 −3 0

0 8 0 −8 0

0 3 0 −3 0

0 1 0 −1 0

⎤
⎥⎥⎦

IV. Boosting Laplacian Pyramid

In order to preserve the color and texture details as much
as possible, we propose a novel exposure fusion approach
using the aforementioned weight map and the BLP. Our
boosting Laplacian pyramid enhances the performance of
classical Laplacian pyramids [1], which is based on the
standard recursive downsampling and upsampling procedure.
The Laplacian pyramid has been employed to decompose
images into multiple scales and is widely used for a variety
of image processing applications, such as detail enhancement
[19] and exposure fusion [23]. Unlike the existing Laplacian
pyramid [1], [19] and edge-aware Laplacian pyramid [34], our
boosting Laplacian pyramid is designed especially for the task
of exposure fusion. We first decompose the input signal into
the detail layer and the base layer of each level, and then the
detail boosting stage and the base boosting stage are applied
separately. Secondly, our boosting process is guided by the
aforementioned local exposure weight and JND-based saliency
weight with different exposure images. It is very useful to
correctly select the salient regions to boost, and the boosting
level is controlled by the exposure quality measurement.

In order to avoid the color casting artifacts, we multiply
the RGB triplet by a scalar, which keeps the chromaticity
unchanged before and after signal boosting and reduces the
color distortion. Fig. 3 gives an illustration of our boosting on
the magnitude of the RGB color vector along the direction of
this color vector. The direction of the RGB color vector lies in
the line of 45 degrees diagonal, which means that the direction
of this color vector does not change before and after using our
boosting Laplacian pyramid (Fig. 3, third row). At the same
time, the magnitude of the RGB color vector increases non-
linearly before and after the boosting process (Fig. 3, bottom
row). Our boosting method preserves the structure and texture
details so as to get a natural and visually pleasing fusion result.

Now we will address the structure of our boosting Laplacian
pyramid for exposure fusion. For clarity, we take two exposure
images (I1 and I2 when N = 2) as an input sequence
for illustration simplicity. Each input exposure image is first
decomposed into the detail layers and base layer using the
Gaussian pyramid. One base layer (LB

12) and two detail layers
(LD

11 and LD
12) of the input image I1 are created when the

number of pyramid levels is 3. Then the detail layers are
boosted using our detail boosting guidance and (13), and the
base layer is boosted using our base boosting guidance and
(14). After the above boosting stages, we obtain the enhanced
base layer (B1) and the enhanced detail layers (D11 and D12).
Using the same decomposition and boosting mechanism, we
obtain the boosted base layer (B2) and detail layers (D21 and
D22) for the second exposure image. Finally, we obtain the
fusion result by combining the weight maps and the boosted
base and detail layers as follows:

R =
N=2∑
i=1

Wi1Di1 + (
N=2∑
i=1

Wi2Di2)↑ + (
N=2∑
i=1

Wi3Bi)↑ (12)

where R is the final fusion result, W is the hybrid exposure
weight computed by (2), and the symbol ↑ is the image
upsampling operator.
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Fig. 5. Performance comparisons on the input sequence with the exposure fusion approach [23] and the gradient directed fusion approach [27]. (a) Input
sequence. (b) Result by [23]. (c) Result by [27]. (d) Our result. (e) Close-up of (b). (f) Close-up of (c). (g) Close-up of (d).

The detail layer is obtained by the original signal subtracting
the Gaussian pyramid signal, which is based on the standard
image Laplacian pyramid [1]. Our BLP exhibits the new
advantages of boosting the base layer and detail layer signal
according to the boosting guidance, which is computed by
our local exposure weight and JND-based saliency weight
introduced in Section III.

A. Boosting guidance

As mentioned before, our boosting process is guided by the
two image quality measurements, the local exposure weight
guidance and the JND-based saliency weight guidance. We
first use the exposure weight guidance to select the well
exposed regions which need to be boosted using our BLP.
This strategy can avoid the visual artifacts. It is beneficial to
boost the base layer and detail layers with different extents
for each pixel according to the guidance map, since the well-
exposure regions and under-exposure or over-exposure regions
of the sequence should be enhanced with different amplifying
values during the boosting process.

In order to select the useful pixels from the different
exposure images, we compute the exposure weight map to
guide the boosting level in different pyramid layers. To achieve
this goal, we compute the exposure weight map by applying
a threshold operation σ to the local exposure weight E(x, y)

for the detail layers as follows:

GE
i (x, y) =

{
1, Ei(x, y) > σ;

0, otherwise.
(13)

where σ equals 0.01 in our implementation.
For the pixels with GE(x, y) = 0, our boosting process

does not operate. Then, we use the saliency weight J(x, y)
to further compute the boosting level of each pixel. As
mentioned in Section III-C, this saliency weight J(x, y) is
a JND-based image quality measurement, and we obtain the
updated saliency weight map GJ (x, y) for the base layers by
the following equation:

GJ
i (x, y) = GE

i (x, y) × Ji(x, y). (14)

B. Boosting function

As shown in Fig. 4, the input signal is decomposed into the
base and detail signal using the Gaussian pyramid. We boost
the base and detail layers separately, which is guided by the
boosting guidance weight. The detail layer usually contains the
structure feature of the original image while the base layer
preserves color information. So we apply different boosting
functions to enhance these different kinds of layers, and create
the final fusion result by combining the boosted detail and base
layers using the proposed local exposure weight and saliency



SHEN et al.: EXPOSURE FUSION USING BOOSTING LAPLACIAN PYRAMID 1585

Fig. 6. Comparison of our approach with the exposure methods [23], [27]
and the linear windowed tone mapping method [28]. (a) Input sequence.
(b) Result by [23]. (c) Result by [27]. (d) Result by [28]. (e) Our result.

weight in Section III. In our implementation, we boost the
detail layer LD(x, y) patch by patch as in [15] and [34].

Detail boosting: Our detail boosting function is inspired
by the mechanism of the photoreceptor adaptation model
[10], [13]. The classic retinal adaptation mechanism is the
multiplicative retinal adaptation model, which multiplies input
intensities by a variable between 0 and 1. This adaptation
mechanism controls the ability of the human visual system
to perceive the spatial pattern vision. The physiological evi-
dence has been presented to measure the intensity-response
relationship between different exposure light and varying
adaption conditions [10], [13]. Electrophysiological research

Fig. 7. Close-ups of Fig. 6(b)–(e). The regions inside the red boxes in the
second and third rows of Fig. 6(b)–(e) are zoomed in. The right bottom close-
up is our result. (a) Result by [23]. (b) Result by [27]. (c) Result by [28].
(d) Our result.

has found that the intensity-response relationship of neurones
in the vertebrate retina has a sigmoid shape curve. Thus,
such intensity-response functions are often modeled by a
generalized Naka-Rushton equation [10], [32]

Di(x, y) =
[LD

i (x, y)]αi

[LD
i (x, y)]αi+βαi

, αi= α0
GJ

i (x,y) (15)

where D(x, y) is the boosting response of the detail layer
LD(x, y), β is the intensity parameter of the half-maximum
response value, and αi controls the response sensitivity accord-
ing to the saliency weight with standard argument α0 [32].

Base boosting: The multiple exposure fusion approach is
often used to recover the HDR characteristics of a given
scene. The pixel values of the same positions can change
very drastically for the images which are taken under different
exposure conditions. The base layer usually contains the large-
scale features and the background color information of the
exposure image. We use the geometric average of the impor-
tance guidance map to boost the base layer as the following
power-like function:

Bi(x, y) = [LB
i (x, y)]γi ,

γi = γ0exp (
1

n

n∑
(x,y)

log (GJ
i (x, y) + ε)) (16)

where B(x, y) is the boosting response of the base layer
LB(x, y), and n is the number of pixels in one exposure image.
ε is a small constant (we set ε = 1e − 10), which prevents the
logarithm of zero. γ is a parameter that controls the response
sensitivity according to the saliency weight GJ (x, y) and the
standard argument γ0 [32].
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Fig. 11. Sensitivity analysis of the boosting parameters (α0, β, γ0) on the Memorial church sequence. The result generated with α0 = 0.2, β = 0.5 and
γ0 = [1, 1, 1, 1, 1] is used as the reference image. (a) Input sequence. (b) Reference image. α0 = 0.2; β = 0.5; γ0 = [1, 1, 1, 1, 1]. (c) α0 = 1. (d) α0 = 0.001.
(e) α0 = 0.0001. (f) β = 1. (g) β = 0.8. (h) β = 0.2.

V. Experimental Results

We have used several LDR image sequences for comparing
with other existing exposure fusion approaches [23], [27] and
HDR image tone mapping algorithms [8], [14], [28]. Fig. 5
shows the comparison of our exposure fusion algorithm with
other two fusion methods [23], [27] on the city concert hall
image sequence. The results of exposure fusion approach [23]
in all experiments are generated by direct implementation from
its webpage1 in our comparison. Our result is comparable to
both the results by [23] and [27]. However, our fusion result
exhibits better contrast and color details than the results by
[23] and [27]. In particular, our approach gives more details
in the region of the corridor area and the wall with the carved
flower pattern [Fig. 5(g)]. Fig. 6 gives a more challenging
example, where our result is compared with other image fusion
methods [23], [27] and some tone mapping methods [28].
In all our experiments, we use the HDRShop2 software to
generate the HDR images from the corresponding LDR se-
quence images. The results of linear windowed tone mapping
are generated by the MATLAB implementation provided by
their website.3 In order to give a relatively fair fusion quality
comparison with other approaches, we run their programs in
the default parameter settings in all our experiments. The

1http://research.edm.uhasselt.be/ ˜ tmertens/exposure fusion
2http://www.hdrshop.com/
3http://www.cs.washington.edu/homes/shanqi/

result by [28] suffers some color artifacts, such as the color
distortion in the region of the church ceiling. In contrast, our
result gives a more pleasing result with texture details than the
results by the approaches in [23], [27], and [28], and close-up
comparison is shown in Fig. 7.

In order to better understand the influence of different
weight maps during the fusion process, we visualize the
local exposure weight E(x, y), global exposure weight V (x, y),
and saliency weight J(x, y). As shown in Fig. 8, the color-
coded weight maps include the aforementioned local exposure
weight [Fig. 8(a)–(c)], global exposure weight [Fig. 8(d)–(f)],
and saliency weight [Fig. 8(g)–(i)]. These three weights in-
dicate different aspects of image quality measurements, and
the hybrid weight maps denote the overall contribution of
the different exposure images to the final fusion result. As
mentioned before, the basic principle of exposure fusion is
to select the good exposure pixels from the input images,
and preserve the detail and texture information as much as
possible during the fusion process. Therefore, we define a local
weight E(x, y) and a global weight V (x, y) to measure the
exposure level of the input images. E(x, y) selects the good
exposure pixels while V (x, y) eliminates the bad exposure
regions of the current image. Thus, V (x, y) helps E(x, y) to
compensate the exposure level measurement. J(x, y) measures
the visual saliency according to the background luminance and
texture information. Regions with more texture details will get
higher weights, which are visualized as the warmer color. By
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Fig. 8. Visualization of the proposed hybrid weight maps. (a)–(c): Local
exposure weight maps E(x,y). (d)–(f): Global exposure weight maps V(x,y).
(g)–(i): Saliency weight maps J(x,y). (j)-(l): Hybrid weight map W(x,y). Here
the red color refers to large weights and blue means small weights, and the
input sequence is shown in Fig. 6(a).

considering three measurements simultaneously, we multiply
them all together and then normalize the results to get the final
fusion weight maps [Fig. 8(j)–(l)] for each image of the whole
sequence.

The performance evaluation of exposure fusion results has
so far been qualitative. In order to obtain a quantitative
evaluation result, we conduct the user studies to determine
which fusion result has the best visual quality. In our user

Fig. 9. Results of the user studies of our method and other approaches. Note
that we abbreviate exposure fusion approach [23] (CGF08), gradient fusion
method [27] (CVPR10), photographic tone reproduction [8] (SIG02), subband
compression [14] (SIG05) and linear windowed tone mapping [28] (TVCG10).
The input sequences of scenes 1–3 are shown in Figs. 6(a), 11(a), and 1(a),
respectively.

Fig. 10. Comparison results. (a) Our approach without the gradient direction.
(b) Our full method including the direction of gradient.

experience study, we show the users 18 exposure fusion result
images, which are obtained with three scenes by six different
exposure fusion methods and tone mapping approaches. We
invite 20 professional photographers to participate in the user
experience study, and we ask each user to give one score for
each fusion result. As shown in Fig. 9, the total accumulative
satisfactory scores by the user study are 91, 88, and 85 for
the fusion results by our method, which are higher than the
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Fig. 12. Comparison with other exposure fusion and tone mapping methods. Top row: the fusion and tone mapping results. Middle and bottom rows: close
ups. Note that we abbreviate exposure fusion approach [23] (CGF08), gradient fusion method [27] (CVPR10), photographic tone reproduction [8] (SIG02),
sub-band compression [14] (SIG05) and linear windowed tone mapping [28] (TVCG10). The detail of red sunset and riverbank appears in our result (middle
row, first column), while this detail is more or less lost in other results (middle row). Moreover, our result preserves the correct color of red sunset, while the
results by both the subband compression [14] and linear windowed tone mapping [28] show some color distortion (bottom row).

satisfactory scores with other approaches. Since our approach
achieves better visual quality with fine color and texture
details, the users prefer to give the higher scores to our fusion
results. From this evaluation, we conclude that our approach
can acquire the best visual quality in a way well matching the
sense of human beings.

In order to justify the effectiveness of considering the
gradient direction to be a measure of correct exposure in our
method more comprehensively, we perform the comparison
experiments by our approach with and without the gradient
direction measurement. As shown in Fig. 10, our full algorithm
with the gradient direction achieves the better visual quality
than the result without it, especially in terms of the fine details
and more vivid textures, which are shown in the close ups
[Fig. 10(b)]. The overall appearance of our full algorithm and
the result without the gradient direction are similar, because
our local exposure weight, JND-based saliency weight and
BLP together help to achieve the overall visual quality. In
contrast, incorporating the gradient direction into the global
exposure weight further improves the quality of fusion results
with more color and texture details [Fig. 10(b)].

Fig. 11 gives the illustration of the sensitivity analysis with
three boosting parameters on the memorial church sequence.
We give three groups of results to analyze the sensitivity of
each parameter, and each group is generated with only one
parameter changed and the other two unchanged. When α0

gradually decreases, the fusion result contains more details
and reveals more information in the under-exposure regions
[Fig. 11(c)–(e)]. Our approach achieves the overall visually
pleasing results with detail and texture enhancement under

different parameter settings. In this paper, we use the default
parameters α0 = 0.2, β = 0.5, and γ0 = [1, 1, 1, 1, 1] to
generate all the experimental results. The smaller β is, the
more detailed color and texture information in the fusion result
there will be [Fig. 11(f)–(h)]. The smaller γ0 is, the more
strongly the base layer will be enhanced [Fig. 11(i)–(k)].

As shown in Fig. 12, we compare and show three representa-
tive tone mapping methods, including photographic tone repro-
duction [8], subband compression [14], and linear windowed
tone mapping [28]. We use the HDRShop plugin4 to generate
the results of photographic tone reproduction, and adopt the
MATLAB implementations provided by the respective authors
to generate the results of sub-band compression5 and linear
windowed tone mapping.6 In order to give a relatively fair
image quality comparison with our exposure fusion method,
we use the optimal parameter settings to produce the good
quality tone mapping results with their programs in all our
comparison experiments. We further compare our approach
with two representative exposure fusion approaches, i.e. ex-
posure fusion [23], and gradient fusion [27]. The gradient-
directed fusion method is implemented by ourselves, and
the final fusion results are produced as good as possible by
adjusting the parameter settings in our comparison results.
As shown in Fig. 12, our approach achieves the best visual
appearance with the color and texture details compared with
the previous methods.

4http://www.gregdowning.com/HDRI/tonemap/Reinhard/
5http://people.csail.mit.edu/yzli/
6http://www.cs.washington.edu/homes/shanqi/
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VI. Conclusion

This paper has presented a novel exposure fusion approach
using BLP to produce a high quality image from multiple
exposure images. Our novel BLP algorithm is based on
boosting the detail and base signal respectively, and can
effectively blend the multiple exposure images for preserving
both color appearance and texture structures. A novel hybrid
exposure weight is also introduced, which incorporates the
local weight, global weight and JND-based saliency weight.
Visual inspection and quantitative performance evaluation
both demonstrate that the employment of the BLP model
has brought a better fusion performance than the traditional
fusion approaches. Our proposed exposure fusion approach
successfully creates a visually pleasing fusion image with
more color and texture details. We therefore believe that our
fusion method will suffice to produce the results with fine
details for most practical applications.

The comprehensive perceptual study and analysis of expo-
sure fusion algorithms will make an interesting subject for
future work. For instance, we can create a benchmark of
input exposure images and conduct a user study to compare
a representative number of state-of-the-art exposure fusion
methods. In terms of the computational efficiency, we would
like to extend our exposure fusion algorithm with GPU im-
plementation for real-time applications in future work. There
are many more tone mapping approaches as well as public
research data of exposure images that we have not mentioned,
and we can implement and compare more tone mapping oper-
ators in future. However, we believe that the aforementioned
experimental results suffice to validate the effectiveness of the
proposed approach. We will investigate further extensions of
the exposure fusion for detecting the moving objects [22], [35],
[36] of the dynamic scenes in the future work.
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