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Abstract—This paper discusses the development of a reduced-
error finite-difference time-domain algorithm, capable of handling
conducting media in an efficient manner. Founded on a spatially
extended stencil, the proposed scheme introduces a novel design
procedure, whose basic idea is to enforce conditions of the con-
tinuous space to the discrete level. In this way, we derive reliable
space—time models for 2-D Maxwell’s equations, minimizing the
inherent phase and amplitude deviations. A high degree of adap-
tivity is also accomplished, as the spectral reliability range can be
adjusted according to problem-dependent needs. Consequently, an
upgraded discretization strategy is provided, which exhibits the
same computational complexity with the conventional scheme.

Index Terms—Finite-difference time-domain (FDTD) methods,
high-order schemes, lossy media, optimized algorithms.

I. INTRODUCTION

ESPITE THE growing amount of available computational
Dpower and resources, the development of efficient nu-
merical methods for electromagnetic (EM) wave phenomena
remains a particularly active research topic. In this context,
the foundation of high-order finite-difference time-domain
(FDTD) techniques has been the subject of various publications
(see, e.g., [1] and the references therein), providing attractive
alternatives for Yee’s classic second-order algorithm [2], [3]. In
recent years, innovative formulations have been proposed for an
emerging class of reliable FDTD approaches, which facilitate
performance tuning and behavior optimization according to
case-related requirements [4]—-[12]. Such schemes can accom-
plish further accuracy enhancement for a given computational
stencil (i.e., without affecting the entailed computational cost),
by avoiding the shortcomings of the standard—based on Taylor
series—approximate operators.

Unfortunately, most of the aforementioned approaches are
suited for configurations involving lossless materials only, a fea-
ture that hinders their generalized application. Electrically con-
ducting spaces are almost always overlooked, probably due to
the fact that theoretical error estimates become troublesome (or
even impossible) under such circumstances. To some degree,
these difficulties can be associated with the simultaneous pres-
ence of phase and amplitude errors in discretized lossy media
[13], in contrast to pure phase artifacts of nonconducting areas.
Yet, it is a common belief that optimized FDTD dicretizations
may never be extensively utilized unless they are capable of
dealing with a wide variety of EM features.
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This paper is devoted to a new variant of the FDTD method,
which aims at the reliable modeling of wave interactions in
lossy spaces, considering 2-D geometries. The proposed algo-
rithm is structurally similar to the (2,4) scheme [14], as it com-
bines the second-order leapfrog integration with four-point spa-
tial expressions. While simple to implement, this methodology
accomplishes low error levels by altering the form of the approx-
imate space—time operators, without affecting the size of the
adopted computational stencil. Both phase and amplitude errors
are mitigated to a satisfactory degree, thanks to a novel design
procedure developed for the derivation of the technique’s con-
stituent elements. In essence, physical conditions that govern
wave behavior in continuous lossy areas are required to hold
in the discrete domain as well, thus guaranteeing the preserva-
tion of fundamental EM properties. By further controlling the
bandwidth of the scheme’s spectral reliability, a high level of
flexibility is attained, which we deem a necessary attribute for
the successful handling of problems with diverse nature. In the
remainder of this paper, the foundation of the new approach is
analytically presented, and its properties are analyzed via var-
ious theoretical studies and numerical simulations.

II. METHODOLOGY

We will be studying the 2-D case of TE. waves (I, I,
and H, components); the treatment of TM, waveforms can be
conducted in a similar manner.

Let us consider a homogeneous medium with electric permit-
tivity €, magnetic permeability p, and electric conductivity o.
For the TE, case, Maxwell’s equations reduce to the system

0, . 0
€ ag _—
ot 8y Ea:
0 i L lE =0
P p 0 :
dy or Mot

if sources are absent. This paper’s methodology attempts the
reliable transfer of certain physical conditions [extracted from
(1)] from the continuous to the discrete state. In other words,
numerical operators are designed so that the aforementioned re-
quirement is fulfilled. Apparently, electric and magnetic fields
do not satisfy identical conditions, as the third equation is struc-
turally different from the first two. Therefore, we opt to treat the
corresponding approximations separately.

Assuming plane-wave propagation along n = cos¢$X +
sin ¢y (Fig. 1), the electric-field intensity can be written as

E = Ege?!'™7" (- sin ¢X + cos ¢Y) )
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2-D configuration of a TE . wave, propagating at angle ¢.

Fig. 1.

where 4 = yn denotes the complex propagation constant (y =

Vjwu(o + ywe) = a + yf), and Ey is a complex magnitude.

For the magnetic-field intensity, we have

0 grt—yry 3)

with 7 = jwuy~! being the medium’s intrinsic impedance.
Functions (2) and (3) comprise a solution set of (1).

We are considering an FDTD realization that utilizes the
common second-order leapfrog integrator and generalized defi-
nitions of the spatial operators. For magnetic-field components,
spatial derivatives are approximated by

OH.

ou

12
~ Au Z ( 1+(2m—1)/2 - Hz|i—(2m_1)/2)
" )

for u € {z,y}. Moreover, a weighted average of successive
electric-field samples is selected for current-density terms

% (Eu|n+1/2+ Eu|n—1/2). )

i

(Eu)|" =

By substituting the exact solutions (2) and (3) in the second
equation of (1), and replacing the continuous operators with the
approximate expressions (4) and (5), we are led to

n[eT (w) +08Y (w)]cosdp + X™ (v) =0 (6)
where
9 2
X0 (y) = - - ;Om sinh [Un (,7)] (D)
T () :Z—]tsin (“’TN> ®)
SU(w) = A% cos (“’TN) )
Uy (a,b) = 2 ;) baAa (10)

and a € {z,y}, b € {«a,B,~}. If the intrinsic impedance is
analyzed as 7 = 11 + ym2 (71,12 € R), then (6) becomes

0 (1

2 2
Z |:7n_1 (Z KnmCy + (G AY + /\n>

n=1 m=1
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where
K = — é sinh (U, (, )] cos [Un (2, )] (12)

o = — Alx cosh [Unn ()] sin [Um (2, 8)]  (13)

Co = 0Ty COB (“’T&) cos ¢ (14)

A = (—1)" Aitng,_nesin (“’TN> cosg. (15

Notice that quantities (12)—(15) are real valued. Evidently, (11)
still applies if the magnitude of its left-hand side vanishes as
follows:

2

—0. (16)

2 2
=> KZ FonmChy + Cn A + )\n>
n=1

m=1

Since the above equation has been derived assuming an exact so-
lution of Maxwell’s equations, approximations (4) and (5) that
comply with (16) will be exact as well. Unfortunately, (16) gen-
erally represents a strict requirement that cannot be satisfied by
an FDTD method for all propagation angles and wavelengths
due to the finite differences’ inherent anisotropy, dispersion, and
loss. Exact solutions for the unknowns CY{, C3, and AY could
probably be determined for a selected pair (wo, ¢po) degrading,
however, the scheme’s global character. Instead, we attempt to
make the frequency- and angle-dependent function defined in
(16) as close to zero as possible in an average sense. We ex-
pect that sufficiently small values of e (w, ¢) should guarantee
accurate simulations since they would imply a good approxi-
mation of the continuous state. Given that, in most cases, al-
gorithmic reliability is required: 1) within a specific frequency
band (w; < w < ws) and 2) for all directions (0 < ¢ < 27), we
define the total error according to

- /0 / e (w, ) dudp.

In case of time—harmonic or narrowband situations, it suffices
to select a specific value for w and perform single integration
over ¢ € [0 27) in (17).

The minimization of £ calls for the vanishing of V& with
respect to C7, C3, and AY, leading to a 3 x 3 system

a7

ai1r a2 a3 (O by
a1 azy a3 | |C§ | = | b (18)
as1 asz ass AY b
If we introduce
2 wo
1= [ [ fdods (19)
0 w1
then, for n = 1,2, it is an, = I(n%n+n§n), ass =
I(¢t +<2) alg = a1 = I(Kiik12 + K21K22), Gn3 =
asn = I (k1nC1 + k20(2), bn = —I (A1K1n + A2k2,), and
by = —I(A1(1 + A2(2). Consequently, the solution of (18)

determines the discretization of the second equation of (1).
Regarding the first equation, the same procedure can be applied,
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leading to a similar system for C¥, C3, and A®. Due to the
complicated form of (12)—(15), all integrations are performed
numerically.

In order to formulate difference approximations for the spatial
operators applied to electric-field components, we consider the
third equation of (1). Derivatives are now expressed as

OE,
ou

12
~ Au Z D, (E”|i+(2m—1)/2 - Ev|i—(2m—1)/2)
3 m=1

Z (20)
where (u,v) € {(z,y),(y,z)}. By following the procedure
described previously, we obtain

n T (W) + V0 (7)sing + X (y)cosp=0 (1)

where
9 2
Xe() == 5= > Dhsioh[Un (2] @2
m=1

2 2
(M =-x; 2 Dhsinh(Un (v7)]. 23)
m=1

Again, (21) represents the outcome from discretizing a physical
condition. This can be satisfied in a mean-value sense if the
corresponding unknowns are determined from the solution of
specific equations

a1 a2 a1z as] [DY b1
asy a2 a3 ass | | D3 by
2| = . (4
as1 a3 G33 34 fo b3 @4
41 Q42 (43 (44 Dé’ by
By defining
2
Rim = = 5 sinh [U,, (z, @)] cos [Uy, (z, 8)]cos ¢ (25)
z
2
Rom = = 1 cosh [Up, (z,@)]sin [Uy, (z,08)] cos¢  (26)
x
2
Vim = — Ao sinh [Up, (y, a)] cos [Up, (y, B)]sing  (27)
Yy
2
Vo = — A—y COSh [Um (y7 a)] Sin [Um (y718)] Sin(ﬁ (28)
2un3—n . (wAt)
An = sin (29)
(nf —mn3) At 2
then it is a,, = I(/{%n—i—m%n) forn = 1,2, ann =
I (V12(n—2) + V%(n—?)) for n = 374’ @12 - a1 =
I (k11Kk12 + K21K22), a3 = az1 = I (Ki1ivi1 + Koavor),
a4 = Q41 = I(H11V12 +lf211/22), a3 = Q432 =

I (kiov11 + Koavo1), a2a = ase = I (Kiaviz + Kaalaz),
aza = aaz = I (1112 + vo1v22), by = —1 (MK1n + A2k2s)
forn = 1,2, and b, = —I (A1¥i(n-2) + AoVo(n—2)) for
n = 3,4.

III. PERFORMANCE

For the described numerical technique, the characteristic
dispersion relation can be obtained by substituting appropriate
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Fourier modes in the discretized version of (1), producing

- - - €T + oS,

X)X (F)+Y M I () 6717082 = T (eT + 05,)
(30)

with ¥ being the numerical propagation constant. Recall that

the latter is a complex quantity and, therefore, the approximate

scheme induces both phase and amplitude errors. Furthermore,

a stability analysis [3], [7] reveals that bounded solutions are

guaranteed if temporal sampling complies with

—1/2

— < Au €19

j% S3 {(C%‘Cé‘)(Di‘—D;)r

u€{z,y}

In order to facilitate accuracy studies, the discretization error
at an angular frequency w is estimated via

L L AW 9)
=g [ -1

Apparently, this definition takes into account all possible di-
rections of propagation equally, implicitly incorporating every
error-producing mechanism. In fact, e;-p represents a measure
of the average error pertinent to the propagation constant, and is
expected to behave more reliably compared to other common
choices such as the maximum absolute error (which actually
overlooks the anisotropic behavior).

Consider now a lossy medium with €, = 3, 0 = 0.01 S/m,
with our interest focused around the central frequency fo =
1 GHz (tan §g = o/wpe ~ 0.06). The capabilities of the new
scheme are revealed by calculating es-p (w) for various design
frequencies, which designate different bandwidths

(32)

‘ dé.

fo— f1
Jo

In (33), f1 = wi/27 and fo = ws /27 denote the lower and
upper optimization points, respectively. The selected grid res-
olution corresponds to 20 cells per wavelength at fy, and the
time step is set to 0.85A/v/2co (A is the spatial step). Fig. 2
plots es-p as a function of frequency, when BW is equal to 30%,
60%, or 90%. The case of single-frequency optimization at fj is
also shown. As seen, the error curves are adjusted according to
the requirements prescribed through the optimization process.
High-frequency errors also become comparable to—or weaker
than—those emerging in the lower bands, a quality not exhib-
ited by conventional difference operators. Another interesting
observation is that, according to numerical evidence (see, for
instance, Table I), eo-p exhibits a fourth-order convergence rate
at fo when single-frequency tuning is performed. Thanks to the
combined treatment of space—time errors, inaccuracies are mini-
mized in a mean-value fashion so that algorithmic performance
is essentially controlled by anisotropic features only. This at-
tribute also renders our approach fundamentally different from
the standard (2, 4) scheme since the latter calls for undesirably
small time steps in order to attain such a spectral response.

BW = 100%.

(33)
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—— Conventional method

- - Improved method (1 GHz)

—6— Improved method (0.85-1.15 GHz)
Improved method (0.7-1.3 GHz)
Improved method (0.55-1.45 GHz)
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1
Frequency (GHz)

Fig. 2. Error e;-p versus frequency for different bandwidth choices.

TABLE I
ERROR ¢5-pp FOR VARIOUS DISCRETIZATIONS AND MAXIMUM TIME
STEPS AT 1 GHz WHEN ¢, = 3 AND ¢ = 0.02 S/m
(THE IMPROVED SCHEME IS OPTIMIZED AT 1 GHz)

Standard (2,4) method Improved (2,4) method

Spatial step | exp @ 1 GHz | Rate exp @ 1 GHz Rate
A/5 1.78¢ — 2 4.38¢ — 4

A/10 5.60e — 3 1.86 2.53¢ — 5 403
A/20 1.48¢ — 3 1.56e — 6
/40 3.76¢ — 4 1.0le — 7

Next, the overall error produced within more extensive parts
of the spectrum is calculated according to the formula

o / ea-p (W) dw.

W2 — W1 w1

€1 = (34)
The considered cases refer to two different bandwidths (30%
and 60%), as well as two conductivity values (0.01 and 0.3 S/m)
for fy = 1 GHz and a medium with ¢, = 3. Note that the
integral’s limits in (34) are selected to coincide with the de-
sign points. The ey estimates, plotted in Fig. 3 versus grid
density, are indicative of the modified (2,4) scheme’s perfor-
mance. Evidently, the algorithm demonstrates—as probably
expected—second-order behavior in wideband simulations,
providing at the same time significant error mitigation, for
varying bandwidths and media parameters.

Note that no limitations regarding the values of the back-
ground permittivities or conductivities have been introduced,
implying that the proposed method can handle a wide range
of materials. Nevertheless, one should keep in mind that opti-
mized schemes are probably not necessary for the discretization
of highly lossy structures. In such cases, the propagating nature
of EM fields is diminished due to severe attenuation and, con-
sequently, excessive numerical errors are less likely to emerge
or spread throughout the computational domain.

IV. NUMERICAL RESULTS

In the first numerical demonstration, we examine the single-
mode support by a lossy parallel-plate waveguide. The struc-
ture’s size is 57.15 cm x 2.286 cm, and the electric character-

107

tan 3, ~ 0.06
BW =30%
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tan 8 ~ 0.06
BW = 60%

v <~
5 107 5 107
= =]
a) Eaj
107 . 107 .
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tan 802 1.8 tan 5”= 1.8
10° BW=30% 107 BW=60% |
‘e y ‘e N
=10 = 10
g 10 5 10
Eal Eal

10 —©- Yee's method

—&- Conventional (2,4) method
— Improved (2,4) method
20
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40
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Fig. 3. Error ey versus cells size for different bandwidths and materials.

istics of the background medium are described by ¢, = 2.5
and ¢ = 0.01 S/m. In essence, propagation of the second TM
mode is simulated, which is excited at 10 GHz by enforcing the
exact field distribution at the configuration’s ports throughout
the time-stepping process. Initial values are assigned according
to the exact solution as well, while the perfectly conducting
boundaries are treated via proper symmetric or antisymmetric
conditions with the aid of additional image nodes. To compare
the performances of Yee’s method, the standard (2, 4) and the
improved (2, 4) techniques, simulations are carried out with lat-
tices comprising 250 m x 10 m cells, m = 1,2, 4, 8 for 4000m
time steps. For m = 1 we have C}' = 1.12527112, C% =
0.04479331, D} = 1.12725418, Dy = —0.04555975, and
A" = 1.01713586. The maximum Lo(t) error,

2
n+l/2 exac ntl/2
E (Hz |i+1/2,j+1/2 — H t|'»'-|—1/2,j+1/2)

Ly (t) = \| =

(35)

? max.] max

is given in Fig. 4 as a function of computational time (sim-
ulations are performed on a workstation with a Pentium
4-3.8-GHz processor). In this time-harmonic problem, the
improved scheme accomplishes fourth-order convergence,
which is in contrast to the second-order rate of the other two
approaches. Clearly, phase and amplitude errors are efficiently
mitigated, avoiding at the same time any extra computational
cost. Similar conclusions can be drawn from Fig. 5, which
exhibits the error versus the cell size for a larger conductivity
(o = 0.05 S/m). The slopes of the matching lines, derived
through a least squares fitting, verify the aforementioned con-
clusions.

Next, the wideband capabilities of the proposed scheme are
tested in the case of multimodal propagation in a 2-D waveguide
(22.86 cm x 2.286 cm size with €, = 2.5, 0 = 0.01 S/m). The
simulated EM field is the superposition of the first three TM
modes, excited at 8, 11, and 14 GHz, respectively. Boundary
and initial values are determined according to the procedure of
the previous example. The computational domain is discretized
by 180m x 18m cell lattices, m = 1,2, 4,8, and the duration
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Fig. 4. Maximum L, (t) error versus required computational time in the
single-mode waveguiding problem when o = 0.01 S/m.
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Fig. 5. Maximum L () error versus cell size in the single-mode waveguiding
problem when ¢ = 0.05 S/m.

of each simulation is 4000m time steps. A snapshot of the cal-
culated magnetic-field intensity is shown in Fig. 6 at the last
time step, when m = 1. It can be seen that the accumulated
error of the standard (2, 4) method induces unacceptable devi-
ations, unlike the more valid results of the improved scheme.
The dependence of the maximum Lo (¢) values on the size of
the spatial steps is also depicted in Fig. 7, where improvement
by an average factor of 7.7 is verified.

The following test is concerned with the resonant fre-
quencies of a partially lossy rectangular cavity. In partic-
ular, a 10 mm X 6 mm cavity is modeled, which encloses
a 4 mm x 2 mm lossy slab, located at its center (¢, = 2,
o = 0.01 S/m). To excite all modes, a Gaussian pulse is
introduced at various points, and the emerging waveforms
are recorded at preselected positions. Spatial steps of 0.5 mm
are chosen, and the duration of the simulation is 32768 time
steps. The results obtained from a 10x denser grid serve as
reference. For the parts of the cavity not occupied by lossy
material, optimized operators are derived by adjusting the
design procedure of Section II to lossless free space (¢, = 1,
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Fig. 6. Snapshot of the magnetic-field intensity along the waveguide under
multimodal excitation.
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Fig. 7. Maximum L, (¢) error versus the cell size in the 2-D waveguide simu-
lation under multimodal excitation.

o = 0). Arithmetic averaging of the constitutive parameters is
applied on the material interfaces; therefore, some additional
artifacts are expected due to this simplified treatment. The
absolute error regarding the resonant frequencies of the first 14
modes is plotted in Fig. 8 (the band of interest extends from
14.9 to 74.8 GHz). As shown, errors are significantly reduced
in the case of the optimized technique, a fact quite evident at
higher frequencies. Apparently, a more sophisticated handling
of the media discontinuities (e.g., [15] and [16]) should lead to
even better accuracy.

We finally present a result regarding plane-wave scattering
from an electrically large conducting rectangular target. The
size of the latter is 2.75 m x 30 cm with ¢, = 2.2 and
o = 0.06 S/m. The incident waveform is a horizontally
propagating modulated Gaussian pulse with its central fre-
quency located at 7 GHz. The size of the computational
domain is 616 x 126 cells, including an eight-layer perfectly
matched surrounding absorber [17]. The design frequencies
are selected 4.5 and 9.5 GHz, according to the spectral con-
tent of the incident field. The discretization scheme within
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Fig. 8. Error in determining the resonant frequencies of a lossy cavity.
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Fig. 9. Time evolution of the magnetic field in the wave-scattering problem.

the scatterer introduces the parameters C}* = 1.13309786,

Cy = —0.04750884, A* = 1.0115051, D} = 1.13152537,
and D3 = —0.04672861. Fig. 9 depicts the calculated wave-

form at a point close to the right side of the scatterer (a
reference solution has been obtained with a 5x denser lattice).
As noticed, the improved scheme avoids severe distortions and
reproduces EM fields reliably, even with coarse discretizations.

V. CONCLUSION

A modified (2,4) FDTD scheme, capable of reducing phase
and amplitude inaccuracies in lossy media, has been proposed
in this paper. Through a novel design procedure, we have de-
termined optimized approximations by requiring the validity of
specific physical conditions on the discrete level, thus avoiding
the drawbacks of conventional operators. The algorithm also
exhibits adaptive capabilities, as it allows explicit control of
its bandwidth (i.e., its spectral reliability range) according to
case-related requirements. Without altering the entailed com-
putational burden, the new scheme outperforms the standard

1445

one, as proven by theoretical and experimental evidence. The
pertinent ideas could be potentially applied to different sten-
cils as well, investigating the possibility of even better wide-
band responses. The generalization of the presented approach
to 3-D spaces will also enable its integration with other opti-
mized methods, originally derived for lossless media.
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