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ABSTRACT 

This paper presents a floating-point addition and subtraction 

algorithm and their pipeline design. Floating point unit have 

different operations which is hard to implement on FPGAs 

due to complexity of their algorithms. Many scientific 

applications require more accuracy in result. For that reason, 

we have explored implementation of addition and subtraction 

for IEEE single precision floating point numbers. We 

implemented trade-off between area and speed for accuracy. 

We have implemented adder and subtractor as a bit-parallel 

adder. The algorithms are designed in VHDL language and 

can be implemented on FPGA kit by use of Xilinx ISE 

compiler. Floating point adder and subtractor unit design 

using pipeling which provides high performance and increase 

the speed.it used for execute multiple instructions 

simultaneously. The language is used for coding is VHDL and 

tool is Xlinix ISE. 

Keywords 
Floating point arithmetic, algorithm, IEEE 754 format, 

simulation, VHDL. 

1. INTRODUCTION 
The main advantage of floating point representation compare 

to fixed point number is it supports wide range of values. The 

disadvantages of fixed numbers are it can‟t support of 

fractional numbers and limited dynamic range. On the other 

hand, many problems like text to speech converter require 

adder and subtractor with high accuracy of calculations [3,6].  

Many of problems have a high degree of regularity that makes 

them good candidates for hardware implementations. Because 

of these reason need for 32-bit floating point adder and 

subtractor implemented in FPGAs arises. Floating point 

addition and subtraction are hard to implement on FPGAs due 

to complexity of algorithms [1].  

The adder and subtractor built as a parallel structure and 

pipeling technique for increase through-put. In this paper we 

start the paper by briefly reviewing in first section IEEE 

standard format.in the next section, the adder and subtrator are 

described briefly algorithms. The floating point number 

representation shown in figure 1, main four components: the 

sign bit, the significant s,the base of exponent and the 

exponent [2]. 

 

  ⁄  e:exponent S:significant 

 

Figure.1: Representation of a Floating-Point Number in IEEE 

standard format[3] 

The use of exponent biased format has no effect on cost and 

speed of adder and subtractor unit, the small number of bits 

used.it give facilitate zero detection, by use of small format, 

smaller and faster implementation can be built but we 

achieved less accuracy in calculations. For that in our 

implementation, accuracy is main objective for 32-bit operates 

was designed, the bit parallel adder give more chip area but 

have more speed[4]. 

2. IEEE standard floating point format 
Table 1 

Features of the ANSI/IEEE Standard 

Floating-Point Representation 

Features Single 

Word length, bits 32 

Significant bits              

Significant range [1,2-2-23] 

Exponent bits 8 

Exponent bias 127 

Zero(±0) E+bias=0,f = 0 

Denormal E+bias=0,f ≠ 0 

Infinity(±∞) E+bias=255,f = 0 

Not-a-number(NAN) E+bias=255,f ≠ 0 

Minimum        2-126 ≈ 1.2*10-38 

Maximum  ≈2128≈3.4*1038 
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A main aim to developing such a standard, floating point 

representation standard which make numerical programs 

predictable and completely portable. The standard specifies 

three types of formats for floating point number 

representation: basic (single precision), extended (double 

precision) and Quadruple precision [5]. 

2.1 floating point format for single 

precision  
The MSB starts from left to right. The basic three components 

are the sign bit, the exponent and the significant (mantissa). 

 

Figure 2: Single Precision Format for floating point numbers 

Single precision floating point numbers are represented by 32 

bits. The sign has 1 bit width, exponent has 8 bit width and 

the significant (mantissa) has 23 bit width (1 + 8 + 23). The 

range of single precision numbers that can be represented is 

(−2−126−22; 2 *2127).the number in floating point single 

precision is composed of the below three fields[10]: 

(1) Sign bit S: the value of s =1 indicates that the 

number is negative, and a s =0 indicates a positive 

number. 

(2) Biased exponent, e = E +bias: This gives us an 

exponent range from E min = -126 to E max =127. 

(3) Significant: The fractional part of the number. 

The classes of floating point single precision numbers are as 

follows: 

 Normalized numbers: the bias is 28−1 − 1 = 127; the 

range of the exponent is [−126:127], while its binary 

value is in the range [1:254] 

 Denormalized numbers: the exponent is -126, while its 

binary value is 0 (as is the case for denormalized 

numbers) 

  Infinities & NaN: these special representation have a 

binary value of 28 − 1 = 256-1=255 for the exponent (all 

ones) 

 

3. Floating point adder and subtractor 

3.1 addition and subtraction: overview 
Floating-point numbers are coded as sign bit, reversing the 

sign-bit inverses the sign. The same operator performs 

addition or subtraction according to the two operand‟s signs. 

Addition/subtraction of floating-point numbers S = A ± B and 

it is more hard to implement than multiplication and division 

of floating point numbers. 

Following steps are used for addition and subtraction for 

floating point numbers. 

• significands alignment if A and B exponents are different 

to each other. 

• Addition/subtraction of the aligned significands, 

• Renormalization of the significand sum S if not already 

normalized, 

• Rounding of sum S. 

3.2 addition and subtraction algorithms 
Here, we use two operands i.e. N1 and N2 for that the 

algorithms shown in fig.3 to compute their successive 

addition or subtraction. For that e1 and e2 are the exponent and 

s1 and s2 are the significands of the numbers [7,8]. 
The other detailed description of algorithms is given below: 

 

Figure 3: Floating Point Addition Algorithm 
 

1. First the 24th hidden bit explicit. If ei = 0 or Ni = 0 and make 

it directly 0,otherwise ei  ≠ 0 or Ni ≠ 0 then make it „1‟ at that 

stage 33 bits are necessary to store the number, in that 8 bits 

for the exponent e,24 bits  for the significand s and 1 bit for 

the sign. 

2. Compare the exponent e1 and e2.it the value of exponent of 

e2 is larger than e1 i.e. e2 > e1.if this condition is satisfied then 

swap both N1 and N2.this swapping is occurred then s1(e1) will 

referring to the s2 (e2) and s2(e2) will referring as s1(e1).also, 

find the difference between exponent values d= (│e2-e1│). 

3. Shift significand s2 shift right by difference value d = (│e2-

e1│).fill the left part bits with simple zeros. 

4. If the operands N1 and N2 have different signs bit, replace 

significand s2 by its 2‟s complement.  

5. Compute the final sum i.e. s, by simply add s1 and s2. 

6. The final significand of sum s is negative then sum s is 

replaced by its 2‟s complement. The sum s is negative then 

the below conditions is true: 

(1) The operands have different signs. 

(2) the msb of significadn sum of s is „1‟. 

(3) no carry out in step 5. 

7. Normalization steps for significand sum, 

(1) If operands have same sign and there was carry-out in 

step5 then the significands sum s shift right by one, drop the 

lsb bit and fill up MSB with 1. 

(2) Else, shift sum of significands s left up to there is a „1‟ in 

msb.the number of left shifts must be stored. 
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(3) If sum s was shifted by left more than 24 times, then result 

should be directly zero. 

8. now, the sign of results output is determined by make the 

output sign by the larger number of operand sign i.e. N1 and  

N2.this sign bit if sign is positive then it will be „0‟  and 

negative then it will be „1‟ is replaced as a msb of s with this 

sign bit. 

9. The result of exponent is adjusted by added amount 

determined in step (7). If it was determined in step 7 part 3 

that is s=0 then set directly exponent should be zero. 

10. Convert all number into 32 bit standard format. 

3.2.1 Special condition 

Some special conditions are checked before processing for 

algorithms. If any condition is satisfied then we have no need 

to calculate the result by normal procedure. Results are 

directly calculated.  So all the operations are bypassed, when 

any such condition is satisfied. 

1) If operands N1=0 and N2=0 then result will be directly 

zero. 

2) If N1=N2  and sign of  N1¹ N2  sign of  then result will be 

again zero. 

3) If N1=0 and N2=0 then result will be equal to N2. 

4) If N2=0 and N1= 0 then result will be equal to N1. 

5) If d=|e1 – e2| > 24 then result will be equal to larger of N1 

and N2. 

 

  
 

Figure 4: Architecture of Adder/Subtractor without Special 

Conditions 

3.3 Adder implementation 

The hardware implementation of the floating point adder and 

subtracter are outlined in figure 4.this outlined reflects the 

algorithms explained in section 3.2.Two points worth nothing 

are the hidden bit extraction and the re-assembly of the result 

into the 32-bit floating point format. 

The implicit bit for each of the N1 and N2 operands must be 

explicit. Many of the times this will be a „1‟, then possibility 

of the number to become zero is neglected. From the IEEE 

standard format, the biased exponent and significand field are 

zero „0‟, then the also number representation is zero. so, the in 

order to extract the correct bit, two 8 bit binary input is 

inserted in OR gates are used. If all bits of the exponent are 

zero „0‟,then directly number directly say zero „0‟ and there 

24th bit will be zero or „1‟ is inserted. 

Once get the result of the simple addition of two operand N1 

and N2 is obtained, it will must be converted into the 32-bit 

standard floating point format. Now, that addition output feed 

into normalization unit and the results are shifted left until to 

the msb bit set to „1‟ at position 24th bit. After that we can say 

the result is normalized and the 24th bit directly replace by the 

sign of result. Also, the exponent of  N1 and N2 is selected as 

the result of exponent must be adjusted by reflecting shifting 

that took place, although shifting amount of result is stored 

and it directly added exponent of N1 i.e. e1 to get the correct 

exponent result. Now at that stage, the final output or result is 

available in 32 bit standard IEEE format.it can be passed to 

the next operator and stored in memory. 

 

Figure 5: Floating Point Adder and subtractor Circuit 

4. Results 

4.1. Summary of Synthesis Report 

4.1.1 HDL synthesis report 

====================================== 
HDL Synthesis Report 

Macro Statistics 

# Adders/Subtractors : 8 

23-bit adder : 1 

25-bit subtractor : 1 

28-bit adder : 1 

28-bit subtractor : 1 

8-bit adder : 1 

8-bit subtractor : 1 

9-bit subtractor : 2 

# Registers : 3 

32-bit register : 3 

# Comparators : 2 

8-bit comparator equal : 1 

8-bit comparator greater : 1 

# Xors : 2 

1-bit xor2 : 2 
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4.1.2 Device utilization summary 

Device utilization summary: 

--------------------------- 

Selected Device : 3s100evq100-5  

Number of Slices: 438 out of 960 45%  

Number of Slice Flip Flops: 96 out of 1920 5%  

Number of 4 input LUTs: 838 out of 1920 43%  

Number of IOs: 99 

Number of bonded IOBs: 99 out of 66 150% (*)  

Number of GCLKs: 1 out of 24 4%  

4.1.3 Timing summary 

Timing Summary: 

--------------- 

Speed Grade: -5 

Minimum period: 28.743ns (Maximum Frequency: 

34.791MHz) 

Minimum input arrival time before clock: 23.158ns 

Maximum output required time after clock: 4.040ns 

Maximum combinational path delay: No path found 

4.2 SIMULATION RESULTS 

4.2.1 Addition 

 

Figure 6: Waveforms generated while performing Addition. 

Figure 6 shows the waveforms generated using model sim 

while performing addition. The detailed description of the 

given inputs and the output generated is given further. 

4.2.1.1 Input operands 

 
fp_a = 4 = (100)2  = 1.00 * 22. 

So, sign fp_a = 0 (value is positive) 

Exponentfp_a = 2+127 = 129 = 1000 0001. 

Fractionfp_a = 000 0000 0000 0000 0000 0000. 

Operand fp_a (in base 2) = 0  1000 0001  000 0000 0000 0000 

0000 0000. 

fp_b = 12= (1100)2  = 1.10 * 23. 

So, sign fp_b = 0 (value is positive). 

Exponentfp_b = 3+127 = 130 = 1000 0010. 

Fractionfp_b = 100 0000 0000 0000 0000 0000. 

Operand fp_b (in base 2)  = 0  1000 0010  100 0000 0000 

0000 0000 0000. 

4.2.1.2 Output 

Output (in base 2) = 16 = (10000)2 = 1.0000 * 24  

Sign  fp_z = 0 (value is positive). 

Exponentfp_z = 4+127 = 131 = 1000 0011. 

Fractionfp_z = 000 0000 0000 0000 0000 0000. 

Operand fp_z (in base 2)  = 0  1000 0011  000 0000 0000 

0000 0000 0000. 

4.2.2 Subtraction 

 

Figure 7: Waveforms generated while performing 

Subtraction. 

Figure 7 shows the waveforms generated using model sim 

while performing subtraction. The detailed description of the 

given inputs and the output generated is given further. 

 

4.2.2.1 Input operands 

 
fp_a = - 4 = (100)2  = 1.00 * 22. 

So, sign fp_a = 1 (value is negative) 

Exponentfp_a = 2+127 = 129 = 1000 0001. 

Fractionfp_a = 000 0000 0000 0000 0000 0000. 

Operand fp_a (in base 2) = 1 1000 0001 000 0000 0000 0000 

0000 0000. 

fp_b = 12= (1100)2  = 1.10 * 23. 

So, sign fp_b = 0 (value is positive). 

Exponentfp_b = 3+127 = 130 = 1000 0010. 

Fractionfp_b = 100 0000 0000 0000 0000 0000. 

Operand fp_b (in base 2)  = 0  1000 0010  100 0000 0000 

0000 0000 0000. 

4.2.2.2 Output 

Output (in base 2) = 8 = (1000)2 = 1.000 * 23  

Sign  fp_z = 0 (value is positive). 

Exponentfp_z = 3+127 = 130 = 1000 0010. 

Fractionfp_z = 000 0000 0000 0000 0000 0000. 

Operand fp_z (in base 2)  = 0  1000 0010  000 0000 0000 

0000 0000 0000. 

 

 

International Journal of Computer Application (2250-1797)

                                                Volume 5– No. 3, April 2015

 110



5 Conclusions 
 

IEEE single precision floating point arithmetic is 

implemented on Sparten 3E using XILINX ISE.The 

architectures have been chosen according to the needs. For 

some operations where speed is critical, combinational 

architecture has been chosen and where area is critical 

sequential architecture has been implemented.we get delay 

28.743ns and maximum frequency is 34.791MHz . 
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