
Implementation of IEEE 32 Bit Single Precision Floating

Point Addition and Subtraction

Khushbu Naik

EC-M.Tech UTU university
Bardoli-394601,

Gujarat,India

khushbu060192@gmail.com

 Prof.Tarun Lad
EC-Department,UTU university

Bardoli-394601
Gujarat,India

tarun.lad@utu.ac.in

ABSTRACT

This paper presents a floating-point addition and subtraction

algorithm and their pipeline design. Floating point unit have

different operations which is hard to implement on FPGAs

due to complexity of their algorithms. Many scientific

applications require more accuracy in result. For that reason,

we have explored implementation of addition and subtraction

for IEEE single precision floating point numbers. We

implemented trade-off between area and speed for accuracy.

We have implemented adder and subtractor as a bit-parallel

adder. The algorithms are designed in VHDL language and

can be implemented on FPGA kit by use of Xilinx ISE

compiler. Floating point adder and subtractor unit design

using pipeling which provides high performance and increase

the speed.it used for execute multiple instructions

simultaneously. The language is used for coding is VHDL and

tool is Xlinix ISE.

Keywords
Floating point arithmetic, algorithm, IEEE 754 format,

simulation, VHDL.

1. INTRODUCTION
The main advantage of floating point representation compare

to fixed point number is it supports wide range of values. The

disadvantages of fixed numbers are it can‟t support of

fractional numbers and limited dynamic range. On the other

hand, many problems like text to speech converter require

adder and subtractor with high accuracy of calculations [3,6].

Many of problems have a high degree of regularity that makes

them good candidates for hardware implementations. Because

of these reason need for 32-bit floating point adder and

subtractor implemented in FPGAs arises. Floating point

addition and subtraction are hard to implement on FPGAs due

to complexity of algorithms [1].

The adder and subtractor built as a parallel structure and

pipeling technique for increase through-put. In this paper we

start the paper by briefly reviewing in first section IEEE

standard format.in the next section, the adder and subtrator are

described briefly algorithms. The floating point number

representation shown in figure 1, main four components: the

sign bit, the significant s,the base of exponent and the

exponent [2].

 ⁄ e:exponent S:significant

Figure.1: Representation of a Floating-Point Number in IEEE

standard format[3]

The use of exponent biased format has no effect on cost and

speed of adder and subtractor unit, the small number of bits

used.it give facilitate zero detection, by use of small format,

smaller and faster implementation can be built but we

achieved less accuracy in calculations. For that in our

implementation, accuracy is main objective for 32-bit operates

was designed, the bit parallel adder give more chip area but

have more speed[4].

2. IEEE standard floating point format
Table 1

Features of the ANSI/IEEE Standard

Floating-Point Representation

Features Single

Word length, bits 32

Significant bits

Significant range [1,2-2-23]

Exponent bits 8

Exponent bias 127

Zero(±0) E+bias=0,f = 0

Denormal E+bias=0,f ≠ 0

Infinity(±∞) E+bias=255,f = 0

Not-a-number(NAN) E+bias=255,f ≠ 0

Minimum 2-126 ≈ 1.2*10-38

Maximum ≈2128≈3.4*1038

International Journal of Computer Application (2250-1797)

 Volume 5– No. 3, April 2015

 107

A main aim to developing such a standard, floating point

representation standard which make numerical programs

predictable and completely portable. The standard specifies

three types of formats for floating point number

representation: basic (single precision), extended (double

precision) and Quadruple precision [5].

2.1 floating point format for single

precision
The MSB starts from left to right. The basic three components

are the sign bit, the exponent and the significant (mantissa).

Figure 2: Single Precision Format for floating point numbers

Single precision floating point numbers are represented by 32

bits. The sign has 1 bit width, exponent has 8 bit width and

the significant (mantissa) has 23 bit width (1 + 8 + 23). The

range of single precision numbers that can be represented is

(−2−126−22; 2 *2127).the number in floating point single

precision is composed of the below three fields[10]:

(1) Sign bit S: the value of s =1 indicates that the

number is negative, and a s =0 indicates a positive

number.

(2) Biased exponent, e = E +bias: This gives us an

exponent range from E min = -126 to E max =127.

(3) Significant: The fractional part of the number.

The classes of floating point single precision numbers are as

follows:

 Normalized numbers: the bias is 28−1 − 1 = 127; the

range of the exponent is [−126:127], while its binary

value is in the range [1:254]

 Denormalized numbers: the exponent is -126, while its

binary value is 0 (as is the case for denormalized

numbers)

 Infinities & NaN: these special representation have a

binary value of 28 − 1 = 256-1=255 for the exponent (all

ones)

3. Floating point adder and subtractor

3.1 addition and subtraction: overview
Floating-point numbers are coded as sign bit, reversing the

sign-bit inverses the sign. The same operator performs

addition or subtraction according to the two operand‟s signs.

Addition/subtraction of floating-point numbers S = A ± B and

it is more hard to implement than multiplication and division

of floating point numbers.

Following steps are used for addition and subtraction for

floating point numbers.

• significands alignment if A and B exponents are different

to each other.

• Addition/subtraction of the aligned significands,

• Renormalization of the significand sum S if not already

normalized,

• Rounding of sum S.

3.2 addition and subtraction algorithms
Here, we use two operands i.e. N1 and N2 for that the

algorithms shown in fig.3 to compute their successive

addition or subtraction. For that e1 and e2 are the exponent and

s1 and s2 are the significands of the numbers [7,8].
The other detailed description of algorithms is given below:

Figure 3: Floating Point Addition Algorithm

1. First the 24th hidden bit explicit. If ei = 0 or Ni = 0 and make

it directly 0,otherwise ei ≠ 0 or Ni ≠ 0 then make it „1‟ at that

stage 33 bits are necessary to store the number, in that 8 bits

for the exponent e,24 bits for the significand s and 1 bit for

the sign.

2. Compare the exponent e1 and e2.it the value of exponent of

e2 is larger than e1 i.e. e2 > e1.if this condition is satisfied then

swap both N1 and N2.this swapping is occurred then s1(e1) will

referring to the s2 (e2) and s2(e2) will referring as s1(e1).also,

find the difference between exponent values d= (│e2-e1│).

3. Shift significand s2 shift right by difference value d = (│e2-

e1│).fill the left part bits with simple zeros.

4. If the operands N1 and N2 have different signs bit, replace

significand s2 by its 2‟s complement.

5. Compute the final sum i.e. s, by simply add s1 and s2.

6. The final significand of sum s is negative then sum s is

replaced by its 2‟s complement. The sum s is negative then

the below conditions is true:

(1) The operands have different signs.

(2) the msb of significadn sum of s is „1‟.

(3) no carry out in step 5.

7. Normalization steps for significand sum,

(1) If operands have same sign and there was carry-out in

step5 then the significands sum s shift right by one, drop the

lsb bit and fill up MSB with 1.

(2) Else, shift sum of significands s left up to there is a „1‟ in

msb.the number of left shifts must be stored.

International Journal of Computer Application (2250-1797)

 Volume 5– No. 3, April 2015

 108

(3) If sum s was shifted by left more than 24 times, then result

should be directly zero.

8. now, the sign of results output is determined by make the

output sign by the larger number of operand sign i.e. N1 and

N2.this sign bit if sign is positive then it will be „0‟ and

negative then it will be „1‟ is replaced as a msb of s with this

sign bit.

9. The result of exponent is adjusted by added amount

determined in step (7). If it was determined in step 7 part 3

that is s=0 then set directly exponent should be zero.

10. Convert all number into 32 bit standard format.

3.2.1 Special condition

Some special conditions are checked before processing for

algorithms. If any condition is satisfied then we have no need

to calculate the result by normal procedure. Results are

directly calculated. So all the operations are bypassed, when

any such condition is satisfied.

1) If operands N1=0 and N2=0 then result will be directly

zero.

2) If N1=N2 and sign of N1¹ N2 sign of then result will be

again zero.

3) If N1=0 and N2=0 then result will be equal to N2.

4) If N2=0 and N1= 0 then result will be equal to N1.

5) If d=|e1 – e2| > 24 then result will be equal to larger of N1

and N2.

Figure 4: Architecture of Adder/Subtractor without Special

Conditions

3.3 Adder implementation

The hardware implementation of the floating point adder and

subtracter are outlined in figure 4.this outlined reflects the

algorithms explained in section 3.2.Two points worth nothing

are the hidden bit extraction and the re-assembly of the result

into the 32-bit floating point format.

The implicit bit for each of the N1 and N2 operands must be

explicit. Many of the times this will be a „1‟, then possibility

of the number to become zero is neglected. From the IEEE

standard format, the biased exponent and significand field are

zero „0‟, then the also number representation is zero. so, the in

order to extract the correct bit, two 8 bit binary input is

inserted in OR gates are used. If all bits of the exponent are

zero „0‟,then directly number directly say zero „0‟ and there

24th bit will be zero or „1‟ is inserted.

Once get the result of the simple addition of two operand N1

and N2 is obtained, it will must be converted into the 32-bit

standard floating point format. Now, that addition output feed

into normalization unit and the results are shifted left until to

the msb bit set to „1‟ at position 24th bit. After that we can say

the result is normalized and the 24th bit directly replace by the

sign of result. Also, the exponent of N1 and N2 is selected as

the result of exponent must be adjusted by reflecting shifting

that took place, although shifting amount of result is stored

and it directly added exponent of N1 i.e. e1 to get the correct

exponent result. Now at that stage, the final output or result is

available in 32 bit standard IEEE format.it can be passed to

the next operator and stored in memory.

Figure 5: Floating Point Adder and subtractor Circuit

4. Results

4.1. Summary of Synthesis Report

4.1.1 HDL synthesis report

======================================
HDL Synthesis Report

Macro Statistics

Adders/Subtractors : 8

23-bit adder : 1

25-bit subtractor : 1

28-bit adder : 1

28-bit subtractor : 1

8-bit adder : 1

8-bit subtractor : 1

9-bit subtractor : 2

Registers : 3

32-bit register : 3

Comparators : 2

8-bit comparator equal : 1

8-bit comparator greater : 1

Xors : 2

1-bit xor2 : 2

International Journal of Computer Application (2250-1797)

 Volume 5– No. 3, April 2015

 109

4.1.2 Device utilization summary

Device utilization summary:

Selected Device : 3s100evq100-5

Number of Slices: 438 out of 960 45%

Number of Slice Flip Flops: 96 out of 1920 5%

Number of 4 input LUTs: 838 out of 1920 43%

Number of IOs: 99

Number of bonded IOBs: 99 out of 66 150% (*)

Number of GCLKs: 1 out of 24 4%

4.1.3 Timing summary

Timing Summary:

Speed Grade: -5

Minimum period: 28.743ns (Maximum Frequency:

34.791MHz)

Minimum input arrival time before clock: 23.158ns

Maximum output required time after clock: 4.040ns

Maximum combinational path delay: No path found

4.2 SIMULATION RESULTS

4.2.1 Addition

Figure 6: Waveforms generated while performing Addition.

Figure 6 shows the waveforms generated using model sim

while performing addition. The detailed description of the

given inputs and the output generated is given further.

4.2.1.1 Input operands

fp_a = 4 = (100)2 = 1.00 * 22.

So, sign fp_a = 0 (value is positive)

Exponentfp_a = 2+127 = 129 = 1000 0001.

Fractionfp_a = 000 0000 0000 0000 0000 0000.

Operand fp_a (in base 2) = 0 1000 0001 000 0000 0000 0000

0000 0000.

fp_b = 12= (1100)2 = 1.10 * 23.

So, sign fp_b = 0 (value is positive).

Exponentfp_b = 3+127 = 130 = 1000 0010.

Fractionfp_b = 100 0000 0000 0000 0000 0000.

Operand fp_b (in base 2) = 0 1000 0010 100 0000 0000

0000 0000 0000.

4.2.1.2 Output

Output (in base 2) = 16 = (10000)2 = 1.0000 * 24

Sign fp_z = 0 (value is positive).

Exponentfp_z = 4+127 = 131 = 1000 0011.

Fractionfp_z = 000 0000 0000 0000 0000 0000.

Operand fp_z (in base 2) = 0 1000 0011 000 0000 0000

0000 0000 0000.

4.2.2 Subtraction

Figure 7: Waveforms generated while performing

Subtraction.

Figure 7 shows the waveforms generated using model sim

while performing subtraction. The detailed description of the

given inputs and the output generated is given further.

4.2.2.1 Input operands

fp_a = - 4 = (100)2 = 1.00 * 22.

So, sign fp_a = 1 (value is negative)

Exponentfp_a = 2+127 = 129 = 1000 0001.

Fractionfp_a = 000 0000 0000 0000 0000 0000.

Operand fp_a (in base 2) = 1 1000 0001 000 0000 0000 0000

0000 0000.

fp_b = 12= (1100)2 = 1.10 * 23.

So, sign fp_b = 0 (value is positive).

Exponentfp_b = 3+127 = 130 = 1000 0010.

Fractionfp_b = 100 0000 0000 0000 0000 0000.

Operand fp_b (in base 2) = 0 1000 0010 100 0000 0000

0000 0000 0000.

4.2.2.2 Output

Output (in base 2) = 8 = (1000)2 = 1.000 * 23

Sign fp_z = 0 (value is positive).

Exponentfp_z = 3+127 = 130 = 1000 0010.

Fractionfp_z = 000 0000 0000 0000 0000 0000.

Operand fp_z (in base 2) = 0 1000 0010 000 0000 0000

0000 0000 0000.

International Journal of Computer Application (2250-1797)

 Volume 5– No. 3, April 2015

 110

5 Conclusions

IEEE single precision floating point arithmetic is

implemented on Sparten 3E using XILINX ISE.The

architectures have been chosen according to the needs. For

some operations where speed is critical, combinational

architecture has been chosen and where area is critical

sequential architecture has been implemented.we get delay

28.743ns and maximum frequency is 34.791MHz .

6. REFERENCES

[1] R. V. K. Pillai, D. A1 - IShalili and A. J. A1 - Khalili, “A

Low Power Approach to Floating Point Adder Design”, in

Proceedings of the I997 International Conference on

Computer Design, pp. 178-185.

[2] L. A. Tawalbeh, “Radix-4 ASIC Design of a Scalable

Montgomery Modular Multiplier using Encoding

Techniques,” M.S. Thesis, Oregon State University, USA,

October 2002.

[3]Dhiraj Sangwan & Mahesh K. Yadav, “Design and

Implementation of Adder/Subtractor and

Multiplication Units for Floating-Point Arithmetic”, in

International Journal of Electronics Engineering, 2(1), 2010,

pp. 197-203.

[4] Loucas Louca, Todd A. Cook, William H. Johnson,

“Implementation of IEEE Single Precision Floating Point

Addition and Multiplication on FPGAs” , In IEEE

International Conference on Electronics, Circuits and

Systems, 1996.

[5] IEEE computer society: IEEE Standard 754 For binary

floating-point arithmetic,1985.

[6] R. V. K. Pillai, D. A1 - IShalili and A. J. A1 - Khalili, “A

Low Power Approach to Floating Point Adder Design”, in

Proceedings of the I997 International Conference on

Computer Design, pp. 178-185.

[7] Ali Malik, Seok-Bum Ko, “A Study On The Floating Point

Adder In FPGAS”, IEEE CCECE/CCGEI, Ottawa, May 2006.

[8] W. Kahan “IEEE Standard 754 for Binary Floating-Point

Arithmetic,” 1997.

[9] Wakerly, John F., “Digital Design – Principles and

Practices”, Tata McGraw Hill Series.

[10] M.P. Farmwald, “On the Design of High-Performance

Digital Arithmetic Units,” PhD thesis, Stanford Univ., Aug.

1981.

[11] N.T. Quach and M.J. Flynn, “An Improved Floating

PointAddition Algorithm,”Technical Report CSL-TR-90-442,

StanfordUniv., June 1990. (Available at

http://umunhum.stanford.edu/main.html).

International Journal of Computer Application (2250-1797)

 Volume 5– No. 3, April 2015

 111

