
On the Iteration Complexity of Oblivious First-Order
Optimization Algorithms

Yossi Arjevani YOSSI.ARJEVANI@WEIZMANN.AC.IL

Weizmann Institute of Science, Rehovot 7610001, Israel

Ohad Shamir OHAD.SHAMIR@WEIZMANN.AC.IL

Weizmann Institute of Science, Rehovot 7610001, Israel

Abstract
We consider a broad class of first-order opti-
mization algorithms which are oblivious, in the
sense that their step sizes are scheduled regard-
less of the function under consideration, ex-
cept for limited side-information such as smooth-
ness or strong convexity parameters. With the
knowledge of these two parameters, we show
that any such algorithm attains an iteration com-
plexity lower bound of Ω(

√
L/ε) for L-smooth

convex functions, and Ω̃(
√
L/µ ln(1/ε)) for L-

smooth µ-strongly convex functions. These
lower bounds are stronger than those in the tradi-
tional oracle model, as they hold independently
of the dimension. To attain these, we abandon
the oracle model in favor of a structure-based ap-
proach which builds upon a framework recently
proposed in (Arjevani et al., 2015). We further
show that without knowing the strong convexity
parameter, it is impossible to attain an iteration
complexity better than Ω̃ ((L/µ) ln(1/ε)). This
result is then used to formalize an observation re-
garding L-smooth convex functions, namely, that
the iteration complexity of algorithms employing
time-invariant step sizes must be at least Ω(L/ε).

1. Introduction
The ever-increasing utility of mathematical optimization in
machine learning and other fields has led to a great inter-
est in understanding the computational boundaries of solv-
ing optimization problems. Of a particular interest is the
class of unconstrained smooth, and possibly strongly con-
vex, optimization problems. Formally, we consider the
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problem of minx∈Rd f(x) where f : Rd → R is con-
vex and L-smooth, i.e., ‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖
for some L > 0, and possibly µ-strongly convex, that is,
f(y) ≥ f(x) + 〈y − x,∇f(x)〉 + µ

2 ‖y − x‖2 for some
µ > 0. In this work, we address questions regarding
how fast can one expect to solve this sort of problems to
a prescribed level of accuracy, using methods which are
based on first-order information (gradients, or more gener-
ally sub-gradients) alone.

The standard approach to quantify the computational hard-
ness of optimization problems is through the oracle model.
In this approach, one models the interaction of a given op-
timization algorithm with some instance from a class of
functions as a sequence of queries, issued by the algorithm,
to an external first-order oracle procedure. Upon receiving
a query point x ∈ Rd, the oracle reports the correspond-
ing value f(x) and gradient∇f(x). In their seminal work,
Nemirovsky and Yudin (1983) showed that for any first-
order optimization algorithm, there exists an L-smooth and
µ-strongly convex function f : Rd → R such that the num-
ber of queries required to obtain an ε-optimal solution x̃
which satisfies

f(x̃) < min
x∈Rd

f(x) + ε,

is at least1

Ω̃
(
min

{
d,
√
κ
}

ln(1/ε)
)
, µ > 0 (1)

Ω̃(min{d ln(1/ε),
√
L/ε}), µ = 0

where κ := L/µ is the so-called condition number. This
lower bound, although based on information considerations
alone, is tight. Concretely, it is achieved by a combina-
tion of Nesterov’s well-known accelerated gradient descent

1Following standard conventions, here, tilde notation hides
logarithmic factors in the smoothness parameter, the strong con-
vexity parameter and the distance of the initialization point from
the minimizer.
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(AGD, (Nesterov, 1983)) with an iteration complexity of

Õ
(√
κ ln(1/ε)

)
, µ > 0 (2)

O
(√

L/ε
)
, µ = 0,

and the center of gravity method (MCG, (Levin,
1965; Newman, 1965)) whose iteration complexity is
O(d ln(1/ε)).

Although the combination of MCG and AGD appear to
achieve optimal iteration complexity, this is not the case
when focusing on computationally efficient algorithms.
In particular, the per-iteration cost of MCG scales poorly
with the problem dimension, rendering it impractical for
high-dimensional problems. In other words, not taking into
account the computational resources needed for processing
first-order information limits the ability of the oracle model
to give a faithful picture of the complexity of optimization.

To overcome this issue (Arjevani et al., 2015) recently pro-
posed the framework of p-Stationary Canonical Linear It-
erative (p-SCLI) in which, instead of modeling the way al-
gorithms acquire information on the function at hand, one
assumes certain dynamics which restricts the way new iter-
ates are being generated. This framework includes a large
family of computationally efficient first-order algorithms,
whose update rule, when applied on quadratic functions,
reduce to a recursive application of some fixed linear trans-
formation on the most recent p points (in other words, p
indicates the number of previous iterates stored by the algo-
rithm in order to compute a new iterate). The paper showed
that the iteration complexity of p-SCLIs over smooth and
strongly convex functions is bounded from below by

Ω̃
(
p
√
κ ln(1/ε)

)
. (3)

Crucially, as opposed to the classical lower bounds in (1),
the lower bound in (3) holds for any dimension d > 1. This
implies that even for fixed d, the iteration complexity of
p-SCLI algorithms must scale with the condition number.
That being said, the lower bound in (3) raises a few major
issues which we wish to address in this work:

• Practical first-order algorithms in the literature only at-
tain this bound for p = 1, 2 (by standard gradient descent
and AGD, respectively), so the lower bound appears in-
tuitively loose. Nevertheless, (Arjevani et al., 2015)
showed that this bound is actually tight for all p. The
reason for this discrepancy is that the bound for p > 2
was shown to be attained by p-SCLI algorithms whose
updates require exact knowledge of spectral properties
of the Hessian, which is computationally prohibitive to
obtain in large-scale problems. In this work, we circum-
vent this issue by systematically considering the side-
information available to the algorithm. In particular, we

show that under the realistic assumption, that the algo-
rithm may only utilize the strong convexity and smooth-
ness of the objective function, the lower bound in (3) can
be substantially improved.

• The lower bound stated above is limited to stationary op-
timization algorithms whose coefficients αj , βj are not
allowed to change in time (see Section 2.2).

• The formulation suggested in (Arjevani et al., 2015) does
not allow generating more than one iterate at a time. This
requirement is not met by many popular optimization
problems for finite sums minimization.

• Lastly, whereas the proofs in (Arjevani et al., 2015) are
elaborate and technically complex, the proofs we pro-
vide here are relatively short and simple.

In its simplest form, the framework we consider is con-
cerned with algorithms which generate iterates by applying
the following simple update rule repeatedly:

x(k+1) =

p∑
j=1

αj∇f(x(k+1−j)) + βjx
(k+1−j), (4)

where αj , βj ∈ R denote the corresponding coefficients. A
clear advantage of this class of algorithms is that, given the
corresponding gradients, the computational cost of execut-
ing each update rule scales linearly with the dimension of
the problem and p.

This basic formulation already subsumes popular first-
order optimization algorithms. For example, at each iter-
ation the Gradient Descent (GD) method generates a new
iterate by computing a linear combination of the current
iterate and the gradient of the current iterate, i.e.,

x(k+1) = x(k) + α∇f(x(k)) (5)

for some real scalar α. Another important example is a
stationary variant of AGD (Nesterov, 2004) and the heavy-
ball method (e.g., (Polyak, 1987)) which generates iterates
according to

x(k+1) = β1x
(k) + α1∇f(x(k))

+ β2x
(k−1) + α2∇f(x(k−1)). (6)

In this paper, we follow a generalized form of (4) which
is exhibited by standard optimization algorithms: GD,
conjugate gradient descent, sub-gradient descent, AGD,
the heavy-ball method, coordinate descent, quasi-Newton
methods, ellipsoid method, etc. The main difference be-
ing how much effort one is willing to put in computing
the coefficients of the optimization process. We call these
methods first-order p-Canonical Linear Iterative optimiza-
tion algorithms (in this paper, abbr. p-CLI). We note that
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our framework (as a method to prove lower bounds) also
applies to stochastic algorithms, as long as the expected up-
date rule (conditioned on the history) follows a generalized
form similar to (4).

In the context of machine learning, many algorithms for
minimizing finite sums of functions with, possibly, a reg-
ularization term (also known as, Regularized Empirical
Risk Minimization) also fall into our framework, e.g.,
Stochastic Average Gradient (SAG, (Schmidt et al., 2013)),
Stochastic Variance Reduction Gradient (SVRG, (John-
son & Zhang, 2013)), Stochastic Dual Coordinate As-
cent (SDCA, (Shalev-Shwartz & Zhang, 2013)), Stochas-
tic Dual Coordinate Ascent without Duality (SDCA with-
out duality, (Shalev-Shwartz, 2015)) and SAGA (Defazio
et al., 2014), to name a few, and as such, are subject to the
same lower bounds established through this framework.

In its full generality, the formulation of this framework is
too rich to say much. In what follows, we shall focus
on oblivious p-CLIs, which satisfy the realistic assump-
tion that the coefficients αj , βj do not depend on the spe-
cific function under consideration. Instead, they can only
depend on time and some limited side-information on the
function (this term will be made more precise in Defini-
tion 1). In particular, we show that the iteration complexity
of oblivious p-CLIs over L-smooth and µ-strongly convex
functions whose coefficients are allowed to depend on µ
and L is

Ω̃
(√
κ ln(1/ε)

)
, µ > 0 (7)

Ω̃(
√
L/ε), µ = 0.

Note that, in addition to being dimension-independent
(similarly to (3)), this lower bound holds regardless of
p. We further stress that the algorithms discussed earlier
which attain the lower bound stated in (3) are not oblivious
and require more knowledge of the objective function.

In the paper, we also demonstrate other cases where the
side-information available to the algorithm crucially affects
its performance, such as knowing vs. not knowing the
strong convexity parameter.

Finally, we remark that this approach of modeling the struc-
ture of optimization algorithms, as opposed to the more tra-
ditional oracle model, can be also found in (Polyak, 1987;
Lessard et al., 2014; Flammarion & Bach, 2015; Drori,
2014). However, whereas these works are concerned with
upper bounds on the iteration complexity, in this paper we
primarily focus on lower bounds.

To summarize, our main contributions are the following:

• In Section 2.1, we propose a novel framework which
substantially generalizes the framework introduced in

(Arjevani et al., 2015), and includes a large part of mod-
ern first-order optimization algorithms.

• In Section 2.2, we identify within this framework the
class of oblivious optimization algorithms, whose step
sizes are scheduled regardless of the function at hand,
and provide an iteration complexity lower bound as
given in (7). We improve upon (Arjevani et al., 2015) by
establishing lower bounds which hold both for smooth
functions and smooth and strongly convex functions, us-
ing simpler and shorter proofs. Moreover, in addition to
being dimension-independent, the lower bounds we de-
rive here are tight. In the context of machine learning
optimization problems, the same lower bound is shown
to hold on the bias of methods for finite sums with a reg-
ularization term, such as: SAG, SAGA, SDCA without
duality and SVRG.

• Some oblivious algorithms for L-smooth and µ-strongly
convex functions admit a linear convergence rate using
step sizes which are scheduled regardless of the strong
convexity parameter (e.g., standard GD with a step size
of 1/L. See Section 3 in (Schmidt et al., 2013) and Sec-
tion 5 in (Defazio et al., 2014)). In Section 4.1, we show
that adapting to ’hidden’ strong convexity, without ex-
plicitly incorporating the strong convexity parameter, re-
sults in an inferior iteration complexity of

Ω̃ (κ ln(1/ε)) . (8)

This result sheds some light on a major issue regarding
scheduling step sizes of optimization algorithms.

• In Section 4.2, we discuss the class of stationary opti-
mization algorithms, which use time-invariant step sizes,
overL-smooth functions and show that they admit a tight
iteration complexity of

Ω(L/ε). (9)

In particular, this bound implies that in terms of depen-
dency on the accuracy parameter ε, SAG and SAGA
admit an optimal iteration complexity w.r.t. the class
of stochastic stationary p-CLIs. Acceleration schemes,
such as (Frostig et al., 2015; Lin et al., 2015), are able to
break this bound by re-scheduling these algorithms in a
non-stationary (though oblivious) way.

2. Framework
2.1. Definitions

In the sequel we present our framework for analyzing first-
order optimization algorithms. We begin by providing a
precise definition of a class of optimization problems, ac-
companied by some side-information. We then formally
define the framework of p-CLI algorithms and the corre-
sponding iteration complexity.
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Definition 1 (Class of Optimization Problems). A class of
optimization problems C is an ordered pair of (F , I), where
F is a family of functions which defined over the same do-
main, and I : F → I is a mapping which provides for
each f ∈ F the corresponding side-information element in
some set I. The domain of the functions in F is denoted by
dom(C).

For example, let us consider quadratic functions of the form
x 7→ 1

2x
>Qx + q>x, where Q ∈ Rd×d is a positive

semidefinite matrix whose spectrum lies in Σ ⊆ R+, and
q ∈ Rd. Here, each instance may be accompanied with ei-
ther a complete specification of Σ; lower and upper bounds
for Σ; just an upper bound for Σ; a rough approximation
of Q−1 (e.g., sketching techniques), etc. We will see that
the exact nature of side-information strongly affects the
iteration complexity, and that this differentiation between
the family of functions under consideration and the type of
side-information is not mere pedantry, but a crucial neces-
sity.

We now turn to rigorously define first-order p-CLI opti-
mization algorithms. The basic formulation shown in (4)
does not allow generating more than one iterate at a time.
The framework which we present below relaxes this re-
striction to allow a greater generality which is crucial for
incorporating optimization algorithms for finite sums (see
Stochastic p-CLIs in Section 2.2). We further extend (4) to
allow non-differentiable functions and constraints into this
framework, by generalizing gradients to sub-gradients.

Definition 2. [First-order p-CLI] An optimization algo-
rithm is called a first-order p-Canonical Linear Iterative
(p-CLI) optimization algorithm over a class of optimiza-
tion problems C = (F , I(·)), if given an instance f ∈ F
and an arbitrary set of p initialization points x0

1, . . . ,x
0
p ∈

dom(C), it operates by iteratively generating points for
which

x
(k+1)
i ∈

p∑
j=1

(
A

(k)
ij ∂f +B

(k)
ij

)
(x

(k)
j ), k = 0, 1, . . .

(10)

holds, where the coefficients Akij , B
k
ij are some linear op-

erators which may depend on I(f).

Formally, the expression A(k)
ij ∂f in (10) denotes the com-

position of A(k)
ij and the sub-gradient operator. Likewise,

the r.h.s. of (10) is to be understand as an evaluation of
sum of two operators A(k)

ij ∂f and B(k)
ij at x(k)

j .

In this level of generality, this framework encompasses
very different kinds of optimization algorithms. We
shall see that various assumptions regarding the coef-
ficients complexity and side-information yield different
lower bound on the iteration complexity.

We note that although this framework concerns algorithms
whose update rules are based on a fixed number of points, a
large part of the results shown in this paper holds in the case
where p grows indefinitely in accordance with the number
of iterations.

We now turn to provide a formal definition of iteration
complexity. We assume that the point returned after k it-
erations is x

(k)
p . This assumption merely serves as a con-

vention and is not necessary for our bounds to hold.
Definition 3 (Iteration Complexity). The iteration com-
plexity of a given p-CLI w.r.t. a given problem class C =
(F , I) is defined to be the minimal number of iterations K
such that

f(Ex(k)
p )− min

x∈domC
f(x) < ε, ∀k ≥ K

uniformly over F , where the expectation is taken over all
the randomness introduced into the optimization process.

For simplicity, when stating bounds in this paper, we shall
omit the dependency of the iteration complexity on the ini-
tialization points. The precise dependency can be found in
the corresponding proofs.

2.2. Classification of First-order p-CLIs and Scope of
Work

As mentioned before, we cannot say much about the frame-
work in its full generality. In this paper, we restrict
our attention to the following three (partially overlapping)
classes of p-CLIs:

Stationary p-CLI where the coefficients are allowed to
depend exclusively on side-information (see Defini-
tion 3). In particular, the coefficients are not al-
lowed to change with time. Seemingly restrictive, this
class of p-CLIs subsumes many efficient optimiza-
tion methods, especially when coupled with stochas-
ticity (see below). Notable stationary p-CLIs are: GD
with fixed step size (Nesterov, 2004), stationary AGD
(Nesterov, 2004) and the Heavy-Ball method (Polyak,
1987).

Oblivious p-CLI where the coefficients are allowed to de-
pend on side-information, as well as to change in
time. Notable algorithms here are GD and AGD with
step sizes which are scheduled irrespectively of the
function under consideration (Nesterov, 2004) and the
Sub-Gradient Descent method (e.g., (Shor, 2012)).

Stochastic p-CLI where (10) holds with respect to Ex(k)
j ,

that is,

Ex(k+1)
i ∈

p∑
j=1

(
A

(k)
ij ∂f +B

(k)
ij

)
(Ex(k)

j ). (11)
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Stochasticity is an efficient machinery of tackling op-
timization problems where forming the gradient is
prohibitive, but engineering an efficient unbiased es-
timator is possible. Such situations occur frequently
in the context of machine learning, where one is in-
terested in minimizing finite sums of large number of
convex functions,

min
x∈Rd

F (x) :=

m∑
i=1

fi(x),

in which case, forming a sub-gradient of F at a given
point may be too expensive. Notable optimization al-
gorithms for variants of this problem are: SAG, SDCA
without duality, SVRG and SAGA, all of which are
stationary stochastic p-CLIs. Moreover, as opposed to
algorithms which produce only one new point at each
iteration (e.g., (4)), these algorithms sometimes up-
date a few points at the same time. To illustrate this,
let us express SAG as a stochastic stationary (m+ 1)-
CLI. In order to avoid the computationally demanding
task of forming the exact gradient of F at each itera-
tion, SAG uses the first m points to store estimates for
the gradients of the individual functions

yi ≈ ∇fi(x(k)
m+1), i = 1 . . .m.

At each iteration, SAG sets yi = ∇fi(x(k)
m+1) for

some randomly chosen i ∈ [m], and then updates
x

(k)
m+1 accordingly, by making a gradient step with a

fixed step size using the new estimate for∇F (x
(k)
m+1).

This implies that the expected update rule of SAG is
stationary and satisfies (11).

As opposed to an oblivious schedule of step sizes, many
optimization algorithms set the step sizes according to the
first-order information which is accumulated during the op-
timization process. A well-known example for such a non-
oblivious schedule is conjugate gradient descent, whose
update rule can be expressed as follows:

x
(k+1)
1 = x

(k)
2 ,

x
(k+1)
2 = (α∂f + (1 + β)I)x

(k)
2 − βx(k)

1 , (12)

where the step sizes are chosen so as to minimize
f(x

(k+1)
1 ) over α, β ∈ R. Other algorithms employ co-

efficients whose schedule does not depend directly on first-
order information. For example, at each iteration coordi-
nate descent updates one coordinate of the current iterate,
by completely minimizing the function at hand along some
direction. In our formulation, such update rules are ex-
pressed using coefficients which are diagonal matrices. In
a sense, the most expensive coefficients used in practice are

the one employed by Newton method, which in this frame-
work, may be expressed as follows:

x
(k+1)
1 = (I −∇2(f)−1∇f)x

(k)
1 (13)

The algorithms mentioned above: conjugate gradient de-
scent, coordinate descent and Newton methods; as well as
other non-oblivious p-CLI optimization algorithms, such as
quasi-Newton methods (e.g., (Nocedal & Wright, 2006))
and the ellipsoid method (e.g., (Atallah, 1998)), will not be
further considered in this paper.

3. Lower Bounds on the Iteration Complexity
of Oblivious p-CLIs

Having formally defined the framework, we are now in po-
sition to state our first main result. Perhaps the most com-
mon side-information used by practical algorithms is the
strong-convexity and smoothness parameters of the objec-
tive function. Oblivious p-CLIs with such side-information
tend to have low per-iteration cost and a straightforward
implementation. However, this lack of adaptivity to the
function being optimized results in an inevitable lower
bound on the iteration complexity:

Theorem 1. Suppose the smoothness parameter L and
the strong convexity parameter µ are known, i.e., I(·) =
{L, µ}. Then the iteration complexity of any oblivious, pos-
sibly stochastic, p-CLI optimization algorithm is bounded
from below by

Ω̃
(√
κ ln(1/ε)

)
, µ > 0 (14)

Ω(
√
L/ε), µ = 0,

where κ := L/µ.

As discussed in the introduction, Theorem 1 significantly
improves upon the lower obtained by (Arjevani et al., 2015)
in 3 major aspects:

• It holds for both smooth functions, as well as smooth
and strongly convex functions.

• In both strongly-convex and non-strongly convex
cases, the bounds we derive are tight for p > 1 (Note
that if the coefficients are scalars and time-invariant,
then for smooth and strongly convex functions a bet-
ter lower bound of Ω̃(κ ln(1/ε)) holds. See Theorem
8, (Arjevani et al., 2015)).

• It considers a much wider class of algorithms, namely,
methods which may use different step size at each it-
eration and may freely update each of the p points.

We stress again that, in contrast to (1), this lower bound
does not scale with the dimension of the problem.
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The proof of Theorem 1, including logarithmic factors and
constants which appear in the lower bound, is found in
(A.1), and can be roughly sketched as follows. First, we
consider L-smooth and µ-strongly convex quadratic func-
tions of the form

x 7→ η

2
x>x + η1>x, η ∈ [µ,L],

over Rd, all of which share the same minimizer, x∗ = −1.
Next, we observe that each iteration of p-CLI involves ap-
plication of A∂f + B, which is a linear expression in ∂f
whose coefficients are some linear operators, on the current
points x

(k)
j , j = 1, . . . , p, which are then summed up to

form the next iterate. Applying this argument inductively,
and setting the initialization points to be zero, we see that
the point returned by the algorithm at the k’th iteration can
be expressed as follows,

x(k)
p = (s1(η)η, . . . , sd(η)η)>,

where si(η) are real polynomials of degree k−1. Here, the
fact that the coefficients are scheduled obliviously, i.e., do
not depend on the very choice of η, is crucial (when analyz-
ing other types of p-CLIs, one may encounter cases where
the coefficients of s(η) are not constants, in which case the
resulting expression may not be a polynomial). Bearing in
mind that our goal is to bound the distance to the minimizer
−1 (which, in this case, is equivalent to the iteration com-
plexity up to logarithmic factors), we are thus led to ask
how small can |s(η)η + 1| be. Formally, we aim to bound

max
η∈[µ,L]

|s(η)η + 1|

from below. To this end, we use the properties of the well-
known Chebyshev polynomials, by which we derive the
following lower bound:

min
s(η)∈R[η],∂(s)=k−1

max
η∈[µ,L]

|s(η)η + 1| ≥
(√

κ− 1√
κ+ 1

)k
.

The proof of the smooth non-strongly convex case is also
based on a reduction from a minimization problem to a
polynomial approximation problem, only this time the re-
sulting approximation problem is slightly different (see
Equation (21) in Appendix A.2).

The idea of reducing optimization bounds to polynomial
approximation problems is not new, and is also found for
instance in (Nemirovsky & Yudin, 1983), where lower
bounds under the oracle model are derived. In particular,
both approaches, the oracle model and p-CLI, exploit the
idea that when applied on some strongly convex quadratic
functions 1

2x
>Qx + q>x over Rd, the k’th iterate can be

expressed as s(Q)q for some real polynomial s(η) ∈ R[η]
of degree at most k − 1. Bounding the iteration complex-
ity is then essentially reduced to the question of how well

can we approximate Q−1 using such polynomials. How-
ever, the approach here uses a fundamentally different tech-
nique for achieving this, and whereas the oracle model does
not impose any restrictions on the coefficients of s(η), the
framework of p-CLIs allows us to effectively control the
way these coefficients are being produced. The excessive
freedom in choosing s(η) constitutes a major weakness in
the oracle model and prevents obtaining iteration complex-
ity bounds significantly larger than the dimension d. To see
why, note that by the Cayley-Hamilton theorem, there ex-
ists a real polynomial s(η) of degree at most d − 1 such
that s(Q) = −Q−1. Therefore, the d’th iterate can poten-
tially be s(Q)q = −Q−1q, the exact minimizer. We avoid
this limited applicability of the oracle model by adopting
a more structural approach, which allows us to restrict the
kind of polynomials which can be produced by practical
optimization algorithms. Furthermore, our framework is
more flexible in the sense that the coefficients of s(η) may
be formed by optimization algorithms which do not neces-
sarily fall into the category of first-order algorithms, e.g.,
coordinate descent.

It is instructive to contrast our approach with another struc-
tural approach for deriving lower bounds which was pro-
posed by (Nesterov, 2004). Nesterov (2004) consider-
ably simplifies the technique employed by Nemirovsky and
Yudin (1983) at the cost of introducing additional assump-
tion regarding the way new iterates are generated. Specif-
ically, it is assumed that each new iterate lies in the span
of all the gradients acquired earlier. Similarly to (Ne-
mirovsky & Yudin, 1983), this approach also does not yield
dimension-independent lower bounds. Moreover, such an
approach may break in presence of conditioning mecha-
nisms (which essentially, aim to handle poorly-conditioned
functions by multiplying the corresponding gradients by
some matrix). In our framework, such conditioning is
handled through non-scalar coefficients. Thus, as long as
the conditioning matrices depend solely on µ,L our lower
bounds remain valid.

4. Side-Information in Oblivious
Optimization

4.1. No Strong Convexity Parameter, No Acceleration

Below we discuss the effect of not knowing exactly the
strong convexity parameter on the iteration complexity of
oblivious p-CLIs. In particular, we show that the ability
of oblivious p-CLIs to obtain iteration complexity which
scales like

√
κ crucially depends on the quality of the

strong convexity estimate of the function under consid-
eration. Moreover, we show that stationary p-CLIs are
strictly weaker than general oblivious p-CLIs for smooth
non-strongly convex functions, in the sense that stationary
p-CLIs cannot obtain an iteration complexity ofO(

√
L/ε).
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The fact that decreasing the amount of side-information in-
creases the iteration complexity is best demonstrated by a
family of quadratic functions which we already discussed
before, namely,

x 7→ 1

2
x>Qx + q>x,

where Q ∈ Rd×d is positive semidefinite whose spectrum
lies in Σ ⊆ R+ and q ∈ Rd. In Theorem 8 in (Arjevani
et al., 2015), it is shown that if Q is given in advance, but
q is unknown, then the iteration complexity of stationary
p-CLIs which follows (4) is

Ω̃( p
√
κ ln(1/ε)).

It is further shown that this lower bound is tight (see Ap-
pendix A in (Arjevani et al., 2015)). In Theorem 1 we show
that if both the smoothness and the strong convexity param-
eters {µ,L} are known then the corresponding lower bound
for this kind of algorithms is

Ω̃(
√
κ ln(1/ε)).

As mentioned earlier, this lower bound is tight and is at-
tained by a stationary version of AGD.

However, what if only the smoothness parameter L is
known a-priori? The following theorem shows that in this
case the iteration complexity is substantially worse. For
reasons which will become clear later, it will be convenient
to denote the strong convexity parameter and the condition
number of a given function f by µ(f) and κ(f), respec-
tively.

Theorem 2. Suppose that only L the smoothness parame-
ter is known, i.e. I(·) = {L}. If the iteration complexity of
a given oblivious, possibly stochastic, p-CLI optimization
algorithm is

Õ(κ(f)α ln(1/ε)), (15)

then α ≥ 1.

Theorem 2 pertains to the important issue of optimal sched-
ules for step sizes. Concretely, it implies that, in the ab-
sence of the strong convexity parameter, one is still able
to schedule the step sizes according to the smoothness pa-
rameter so as to obtain exponential convergence rate, but
only to the limited extent of linear dependency on the con-
dition number (as mentioned before, this sub-optimality in
terms of dependence on the condition number, can be also
found in (Schmidt et al., 2013) and (Defazio et al., 2014)).
This bound is tight and is attained by standard gradient de-
scent (GD).

Theorem 2 also emphasizes the superiority of standard GD
in cases where the true strong convexity parameter is poorly

estimated. Such situations may occur when one underesti-
mate the true strong convexity parameter by following the
strong convexity parameter introduced by an explicit regu-
larization term. Specifically, if µ̂ denotes our estimate for
the true strong convexity parameter µ (obviously, µ̂ < µ to
ensure convergence), then Theorem 1 already implies that,
for a fixed accuracy level, the worst iteration complexity
of our algorithm is on the order of

√
L/µ̂, whereas stan-

dard GD with 1/L step sizes has iteration complexity on
the order of L/µ. Thus, if our estimate is too conserva-
tive, i.e., µ̂ < µ2/L, then the iteration complexity of GD
is µ/

√
Lµ̂ ≥ 1 times better. Theorem 2 further strengthen

this statement, by indicating that if our estimate does not
depend on the true strong convexity parameter, then the it-
eration complexity of GD is even more favorable with a
factor of µ/µ̂ ≥ 1, compared to our algorithm.

The proof of Theorem 2, which appears in Appendix A.2,
is again based on a reduction to an approximation prob-
lem via polynomials. In contrast to the proof of Theorem 1
which employs Chebyshev polynomials, here only elemen-
tary algebraic manipulations are needed.

Another implication of Theorem 2 is that the coefficients of
optimal stationary p-CLIs for smooth and strongly convex
functions must have an explicit dependence on the strong
convexity parameter. In the next section we shall see that
this fact is also responsible for the inability of stationary
p-CLIs to obtain a rate of O(

√
L/ε) for L-smooth con-

vex functions.

4.2. No Acceleration for Stationary Algorithms over
Smooth Convex Functions

Below, we prove that, as opposed to oblivious p-CLIs, sta-
tionary p-CLIs (namely, p-CLIs with time-invariant coef-
ficients) over L-smooth convex functions can obtain an it-
eration complexity no better than O(L/ε). An interesting
implication of this is that some current methods for mini-
mizing finite sums of functions, such as SAG and SAGA
(which are in fact stationary p-CLIs) cannot be optimal in
this setting, and that time-changing coefficients are essen-
tial to get optimal rates. This further motivates the use of
current acceleration schemes (e.g., (Frostig et al., 2015; Lin
et al., 2015)) which turn a given stationary algorithm into
an non-stationary oblivious one.

The proof of this result is based on a reduction from the
class of p-CLIs over L-smooth convex functions to p-CLIs
over L-smooth and µ-strongly convex, where the strong
convexity parameter is given explicitly. This reduction al-
lows us to apply the lower bound in Theorem 2 on p-CLIs
designed for smooth non-strongly convex functions.

We now turn to describe the reduction in detail. In his semi-
nal paper, Nesterov (1983) presents the AGD algorithm and
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shows that it obtains a convergence rate of

f(xk)− f(x∗) ≤
4L
∥∥x0 − x∗

∥∥2

(k + 2)2
(16)

for L-smooth convex functions, which admits at least one
minimizer (accordingly, throughout the rest of this section
we shall assume that the functions under consideration ad-
mit at least one minimizer, i.e., argmin(f) 6= ∅). In ad-
dition, Nesterov proposes a restarting scheme of this al-
gorithm which, assuming the strong convexity parameter
is known, allows one to obtain an iteration complexity of
Õ(
√
κ ln(1/ε)). Scheme 4.2 shown below forms a sim-

ple generalization of the scheme discussed in that paper,
and allows one to explicitly introduce a strong convexity
parameter into the dynamics of (not necessarily oblivious)
p-CLIs over L-smooth convex functions.

SCHEME 4.2 RESTARTING SCHEME

PARAMETERS � SMOOTHNESS PARAMETER L > 0

� STRONG CONVEXITY PARAMETER µ > 0

� CONVERGENCE PARAMETERS α > 0, C > 0

GIVEN A p-CLI OVER L-SMOOTH FUNCTIONS P WITH

f(xk)− f∗ ≤
CL

∥∥∥x̄0−x∗
∥∥∥2

kα

FOR ANY INITIALIZATION VECTOR x̄0

ITERATE FOR t = 1, 2, . . .

RESTART THE STEP SIZE SCHEDULE OF P
INITIALIZE P AT x̄0

RUN P FOR α
√

4CL/µ ITERATIONS

SET x̄0 TO BE THE LAST ITERATE OF THIS EXECUTION

END

The following lemma provides an upper bound on the iter-
ation complexity of p-CLIs obtained through Scheme 4.2.

Lemma 1. The convergence rate of a p-CLI algorithm ob-
tained by applying Scheme 4.2, using the corresponding set
of parameters L, µ,C, α, is

Õ
(
α
√
κ ln(1/ε)

)
,

where κ = L/µ denotes the condition number.

Proof Suppose P is a p-CLI as stated in Scheme 4.2 and
let f be a L-smooth and µ-strongly convex function. Each
external iteration in this scheme involves runningP for k =
α
√

4CL/µ iterations, Thus, for any arbitrary point x̄,

f(x(k))− f∗ ≤ CL ‖x̄− x∗‖2

( α
√

4CL/µ)α
=
‖x̄− x∗‖2

4/µ
.

Also, f is µ-strongly convex, therefore

f(x(k))− f∗ ≤ 2(f(x̄)− f(x∗))/µ

4/µ
≤ f(x̄)− f(x∗)

2
.

That is, after each external iteration the sub-optimality in
the objective value is halved. Thus, after T external itera-
tions, we get

f(x(T α
√

4CL/µ))− f∗ ≤ f(x̄0)− f(x∗)

2T
,

where x̄0 denotes some initialization point. Hence, the it-
eration complexity for obtaining an ε-optimal solution is

α
√

4Cκ log2

(
f(x̄0)− f(x∗)

ε

)
.

The stage is now set to prove the statement made at the be-
ginning of this section. Let P be a stationary p-CLI over
L-smooth functions with a convergence rate of O(L/kα),
and let µ ∈ (0, L) be the strong convexity parameter of
the function to be optimized. We apply Scheme 4.2 to ob-
tain a new p-CLI, which according to Lemma 1, admits an
iteration complexity of O( α

√
κ ln(1/ε)). But, since P is

stationary, the resulting p-CLI under Scheme 4.2 is again
P (That is, stationary p-CLIs are invariant w.r.t. Scheme
4.2). Now, P is a p-CLI over smooth non-strongly convex,
and as such, its coefficients do not depend on µ. Therefore,
by Theorem 2, we get that α ≤ 1. Thus, we arrive at the
following corollary:

Corollary 1. If the iteration complexity of a given station-
ary p-CLI over L-smooth functions is O

(
α
√
L/ε

)
, then

α ≤ 1.

The lower bound above is tight and is attained by standard
Gradient Descent.

5. Summary
In this work, we propose the framework of first-order p-
CLIs and show that it can be efficiently utilized to derive
bounds on the iteration complexity of a wide class of op-
timization algorithms, namely, oblivious, possibly stochas-
tic, p-CLIs over smooth and strongly-convex functions.

We believe that these results are just the tip of the ice-
berg, and the generality offered by this framework can
be successfully instantiated for many other classes of al-
gorithms. For example, it is straightforward to derive a
lower bound of Ω(1/ε) for 1-CLIs over 1-Lipschitz (possi-
bly non-smooth) convex functions using the following set
of functions {

‖x− c‖
∣∣c ∈ Rd

}
.

How to derive a lower bound for other types of p-CLIs in
the non-smooth setting is left to future work.
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