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Abstract

Analytical solutions to transient heat conduction problems are often ob-
tained by superposition of a particular solution (often the steady-state solution)
and an eigenfunction series, representing terms that decay exponentially with
time. Here, we present a finite element realization of this method in which
conventional finite element discretization is used for the spatial distribution of
temperature and analytical methods for the time dependence. This leads to
a linear eigenvalue problem whose solution then enables a general numerical
model of the transient system to be created. The method is an attractive alter-
native to conventional time-marching schemes, particularly in cases where it is
desired to explore the effect of a wide range of operating parameters.

The method can be applied to any transient heat conduction problem, but
we pay particular attention to the case where the Biot number is small compared
with unity and where the evolution of the system is very close to that with zero
heat loss from the exposed surfaces. This situation arises commonly in machines
such as brakes and clutches which experience occasional short periods of intense
heating.

Numerical examples show that with typical parameter values the simpler
zero heat loss solution provides very good accuracy. We also show that good
approximations can be achieved using a relatively small subset of the eigenvec-
tors of the problem.

Keywords: modal analysis; brakes; clutches; fnite element method; eigenfunc-
tion series.

1 Introduction

Mechanical systems such as brakes and clutches experience transient periods
of intense heating, typically interspersed with much longer periods of cooling
[1,2]. Under these conditions, the heat lost by convection from the exposed
surfaces during a single engagement is often a negligible proportion of that
generated by frictional dissipation, so that the temperatures reached are largely



determined by the ratio between the total heat input and the thermal capacity
of the components. Heat loss by convection then occurs during the intervening
idle periods and a significant factor in the design of transmission clutches for
systems such as earth moving machines that experience frequent engagements is
that the temperature should not accumulate to excessive values over time [3,4].

If such a system were to be left engaged for an extended period of time,
for example by driving a vehicle with one of the brakes ‘dragging’, the bound-
ary temperature in the resulting steady state would need to be large enough
to establish an energy balance between the heat lost (proportional to boundary
temperature) and the heat generated. Of course brakes and clutches are not
designed to operate under such conditions and in most cases, the theoretical
steady-state temperature will far exceed the value at which irreparable damage
would occur. However, the steady-state solution is often used as one compo-
nent in the general solution of the heat conduction problem and if it is dispro-
portionately larger than the actual temperatures achieved, this can introduce
computational difficulties in numerical solutions.

In this paper, we shall develop a finite element formulation of the conduc-
tion problem, based on the superposition of a particular solution and the general
solution of the corresponding homogeneous problem in the form of an eigenfunc-
tion series. Although this method involves the solution of a linear eigenvalue
problem, it has the advantage that this need only be performed once for a given
geometry. The resulting set of eigenvectors can then be used to construct what
is essentially a general mathematical model of the thermal system.

2 Continuum statement of the problem

The general linear problem of transient heat conduction involves the solution of
the Fourier equation
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in some domain (z,y,2) € Q, where T is the temperature, ¢ is time, ¢ is the
rate of heat generation per unit volume and k, K are respectively the thermal
diffusivity and conductivity of the material. In addition, we must specify an
appropriate initial condition
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and boundary conditions which will typically be of the form
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where I' = I'r +I'y 4+ I'}, defines the boundary of €, n is the outward normal to
I, fr, fq, fn are prescribed functions on this boundary and & is a heat transfer
coefficient. In realistic heat transfer problems, there will always exist some
resistance to heat exchange with a reservoir and hence (3) could be thought of
as a limiting case of (5). In this paper, we shall therefore restrict attention to
the case where I'r is null.

2.1 Solution by eigenfunction expansion

Analytical solutions are often sought as the sum of a particular solution Tp that
satisfies the governing equation and the boundary conditions (but not generally
the initial conditions), and the general solution Ty of the homogeneous problem
defined by the equations
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For the homogeneous problem, we first seek solutions of the form ©(x, y, z) exp(—bt),
giving
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Solutions of this form generally exist only for certain eigenvalues b;, i = (1,00)
of the decay rate b, each of which is associated with a corresponding eigenfunc-
tion ©;(x,y, z). The general solution of the homogeneous problem can then be
written as an eigenfunction series [5]

TH(xvyaZat) = ZAz@l(xayvz) exp(_bit) ) (10)
i=1

where A; are a set of arbitrary constants. Notice that since the equations leading
to the eigenvalue problem are real, the eigenvalues and eigenfunctions must all
be either real or else occur in complex conjugate pairs. In the latter case, since
the temperature is necessarily also real, the constants A; must be taken to be
complex conjugate pairs.

When the solution (10) is added to the particular solution Tp, the constants
A; provide the degrees of freedom necessary to satisfy the initial conditions.



Numerous classical solutions to heat conduction problems can be expressed in
this form (see for example §7.6-§7.10 and §9.4, §9.11 of [6]).

In the continuum formulation, the eigenvalue problem defined by equations
(8-9) will generally lead to a transcendental characteristic equation whose roots
are the eigenvalues b;. Alternatively, if the solution is discretized using the finite
element method with N nodes, the problem will be reduced to a generalized
N x N linear eigenvalue problem.The particular solution Tp will then also be
obtained by the finite element method, either as a solution of a steady-state
problem, or if the boundary conditions vary in time, by a modal decomposition
method. We shall discuss finite element implementation in more detail in §3
below.

2.2 The particular solution

With the boundary conditions (7), the eigenvalues will all have positive real
part, implying that the effect of the initial conditions decays with time, so it
is clear that the particular solution also represents an asymptotic limit to the
temperature field at large values of time. If the functions fq, fs, ¢ are indepen-
dent of time, this will comprise the steady-state solution of the problem defined
by the equations
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2.3 Small but non-zero Biot number

In the steady state, an energy balance, or the application of the divergence
theorem to equations (11, 12), shows that the total heat input to

Q:///Q q(x,y,z)dQ—i—//Fq Fu(@,y, 2)dl (13)

must be balanced by heat exchanged through I';, and if the heat transfer co-
efficient h at this boundary is small, the temperature throughout £ must be
correspondingly large. In such cases, the dominant term in the steady-state
temperature will be approximately spatially uniform and given by

Q
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where Ay, is the area of the surface I'j,. Second order corrections to account for
the non-uniformity of temperature due to ¢, fp, f; can be determined but are



seldom needed. Notice that if i varies around the surface of the body, a similar
argument leads to the same result but with hAj, replaced by

hAh—>/ hdr . (15)
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The corresponding eigenfunction series (10) will be characterized by the real
part of the first eigenvalue by being much smaller that the next (assuming these
are arranged in ascending order) — i.e.

R(b1) < R(bs) .
If we define dimensionless parameters
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where a is a length representative of the domain 2, the problem (8, 9) can be
written in the form
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where Bi is the Biot number defined as
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If Bi = 0, it is clear that equations (16,17) are satisfied by the solution b; = 0
with ©7 any arbitrary constant, and this limiting case is approached asymptot-
ically as Bi — 0. In other words, for small Biot number, the first eigenfunction
O, will be approximately spatially uniform. Application of the divergence the-
orem to equation (16) shows that
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and hence, using (17) in the first term,
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Since the eigenfunction ©1(Z, g, Z) is approximately uniform, it can be cancelled
from this equation (with ¢ = 1), yielding
i BiAha hAh
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where V' is the volume of the domain Q. In fact, we could choose to make
b1 ~ Bi by defining the length scale a as the ratio V/A;, and this is appropriate
if 'y, comprises most of the surface I'. As in the steady-state solution, the case
where h depends on position can be accommodated by the substitution (15).

2.4 The Bi =0 approximation

If the Biot number Bi <« 1, the steady-state temperature (14) will be orders of
magnitude larger than those achieved during the actual transient process and
hence the eigenfunction series method discussed here will lead to the subtrac-
tion of two large quantities of similar magnitude, with a corresponding loss in
numerical accuracy. To avoid this difficulty, it is preferable in such cases to ap-
proximate the system by setting Bi = 0, implying that the unheated boundary
of the body is insulated. In effect, the entire boundary I is subsumed under the
category I'y.

However, in this case there is no time-independent steady state unless the
total heat generation rate @ is zero (which is clearly not the case for a brake).
In fact for @ # 0, the asymptotic solution at large values of time will then take
the form

Tp(z,y,z,t) =Ct+Op(x,y,2) . (20)

comprising (i) a uniform increase in temperature with time Ct and (ii) a time-
independent function of position © p. Furthermore, we can determine the con-
stant C' from the energy balance
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where p, ¢, are the density and specific heat of the material respectively.

This solution appears to be qualitatively different from that obtained when
Bi is small but non-zero, but it is in fact approached asymptotically as Bi — 0.
The sum of the steady state and the first eigenfunction for this case defines the
temperature field
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and since the initial temperature is ez hypothesi small compared with QQ/hAy,, we
must have A1 &~ —Q/hAy. At small values of time, equation (22) can therefore
be approximated as
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which is identical to the Ct term in (20). Notice however that in the limiting
solution, this term is subsumed into the particular solution, rather than forming
part of the homogeneous solution.

This expression also enables us to determine the range of conditions when it
is reasonable to approximate the boundary conditions by the simpler condition
Bi = 0, since this approximation is equivalent to replacing the exponential
exp(bit) in the first term of the eigenfunction series by the first two terms in its
power series expansion. This in turn is reasonable as long as the duration of the
transient heat conduction process lies in the range where b1t < 1 and hence
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This condition is likely to be satisfied during short-time brake or clutch engage-
ment cycles, but not during long engagements such as those used to maintain
speed during a long descent. The dimensionless time bit can be regarded as
the product of the Biot number and the Fourier number Fo= kt/a?, where the
characteristic length a is taken as V/Ay,.

3 Finite element implementation

The classical finite element approach to the solution of the heat conduction
equation is to use an implicit or explicit scheme to update the temperature at
a series of successive instants in time [7,8]. Here we shall develop an alternative
approach in which the finite element methodology is used to implement the
solution procedure defined in §2.1.

For the steady-state particular solution defined by equations (11, 12), we
define the discrete approximation

N
T*(wy,2) = Y Tv(,y,2) (24)

j=1

where T} are a set of nodal temperatures and v; are the corresponding shape
functions. We then approximate the formal solution of equation (11) in the
Galerkin sense [9] by choosing the T to satisfy the algebraic equations

///Q {VQT*(%Z/,Z) + %} vg(z,y,2)dQ2 =0, (25)

for k = (1, N). However, since the shape functions will generally have discon-
tinuous derivatives, we must first apply the divergence theorem to the first term
in the integral (25), obtaining

N
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Using the boundary conditions (12) in the integral over I' and substituting into
(25), we obtain the matrix equation

(B+C)T* =U, (27)

; I
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An essentially similar procedure, using the same shape functions, can be
used for the solution of the of eigenvalue problem (8, 9). We obtain the matrix
equation

where

By,

U,

(B+C)© = %D@ (30)
where B, C are defined in (28) and

Dy = ///Q vyoRdQ (31)

Equation (30) defines a generalized N x N linear eigenvalue problem for which
the eigenvalue is b/k.

Once equations (27, 30) have been solved, the general discrete solution of
the heat conduction problem can be written

N
T(t)=T% +> A;©;exp(-bit) , (32)
i=1
where b;, ®; represent the ith eigenvalue and eigenvector respectively, and A;
are a set of as yet unknown constants.

3.1 Orthogonality of the eigenvectors

It is clear from the definitions (28, 31) that the matrices B, C, D are all
symmetric, which implies that all the eigenvalues of (30) are real and also per-
mits efficient numerical algorithms to be used for the solution. Notice that the
symmetry of the matrices also implies that with a suitable normalization the
eigenvectors satisfy the orthogonality condition [10]

©/DO; =4, , (33)

where §;; is the Kronecker delta.
To make use of this condition, it is convenient to expand the particular
(steady-state) solution of (27) in terms of the eigenvectors @;. Thus, we write

N
T =) 50, (34)
i=1



so that
N N
T(t) = Z S;®; + Z A;®; exp (—b;t) . (35)
i=1 i=1

To determine the unknown constants S;, we first substitute (34) into (27) to

obtain
N

Y Si(B+C)@;=U.

i=1

We then use (30) to simplify the left-hand side of this equation, giving

N
> bfiD(ai -U.
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Finally, premultiplying by G);‘F and using (33), we have

ka :®jUa

which defines explicit values for the constants 5.

3.2 Satisfying the initial conditions

To complete the solution of the heat conduction problem, the constants A;
in (35) must be chosen so as to satisfy the initial condition (2), again in the
Galerkin sense by requiring that

///Q [T(2,y,2,0) — To(z,y, 2)] ve(z,y, 2)dQ2 = 0, (37)

for k € (1,N), or T(0) = T°, where the vector of initial nodal temperatures T

is defined through
1= [ [ | Ty 2)ep a0, (39)
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Substituting ¢ = 0 into (35), we obtain

N
T0) = Z (Si +4i) ©; , (39)

i=1
and the orthogonality condition (33) then gives the explicit solution
Aj=-8;+0,"DT°, (40)

for the constants A;.



3.3 Small Biot number

If Bi <« 1, the first eigenvalue by < bs and the coefficients S7 and A; will be
large relative to the remaining terms, and opposite in sign, because of equa-
tions (36, 40). If the above numerical method is used directly, we can therefore
anticipate numerical inaccuracies resulting from the subtraction of two approx-
imately equal large quantities. This difficulty can be overcome as in the ana-
lytical discussion of §2.3 by separating these terms from the series in (35) and
approximating their sum at small values of time ¢. We obtain

N
T(t) = [51 + Ay exp (—blt)] O+ Z [Sz + A; exp (—bﬂf)] O;
=2
2 3
~ [51 (blt— (b;) + (b;) - > + 0T DT  exp (—b1t)| O
N
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If Bi — 0, the leading eigenvalue by — 0, but S; — oo and equation (36)
shows that the product S1b; is bounded, being given by

Siby = kOTU . (42)

Using this result in (41), we obtain

T bit* | bt G —
N
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and in the limit Bi — 0,
N
T(t) — [®1T (Ukt + DTO)] ©1+ > [Si+ Aiexp (~bit)] ©; . (44)
i=2

Notice how this expression contains a term proportional to ¢ as in equation (20),
and as we should expect in this limit.

In this limit the first eigenvector corresponds to the uniform temperature
field ®; = ¢{1,1,1,...1} and substitution into the orthogonality condition (33)
using (31), shows that ¢ = 1/V. Using this result and (29), it can then be
shown that the linear term ©7 U®;kt in (44) corresponds to the temperature
field Qt/V pc,, agreeing with the energy balance equation (21).

3.4 Time-dependent boundary conditions

One of the strengths of the eigenfunction method is that we only have to solve
the eigenvalue problem once, after which the method can be used for problems in
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which the boundary values, defined through the vector U of equation (29), are
different. However, as stated so far, these boundary values must be independent
of time, because they are used in the construction of a steady-state solution.

Consider the case where the boundary values and the internal heating ¢ are
fairly general funcions of time, so that the vector U is also time-dependent.
Clearly, we cannot now define a steady-state solution, but we can define a par-
ticular solution which must satisfy equations (1, 4, 5). As in (24), we define a
discrete approximation to this particular solution as

T*(x,y,2,t) = ZTP vi(z,y,2), (45)

where we note that the time dependence is contained in the nodal tempera-
tures TjP , which are now functions of ¢. Using the Galerkin approximation to
determine the TjP , we obtain a modified version of equation (27) as
oT
(B+O)Tp(t)~ 1D =U(), (46)
kOt
where the additional term on the left-hand side comes from the time derivative
in equation (1) and the matrix D is defined in (31).
As before, we now expand the particular solution as the eigenfunction series

N
=> 5i(t)O; . (47)
i=1

Notice that the eigenvectors are not time-dependent. The time-dependence
of the solution is contained in the multiplying coefficients S;, which are now
functions of time. To determine these functions, we first substitute (47) into
(46), obtaining

N N s,
Y s Broe -2 oF (48)
=1

i=1

We then use (30) in the first term, to obtain

st t)DO; — Z D@_kU() (49)

Finally, premultiplying by G);‘F and using (33), we have
as,
dt
which defines a set of N uncoupled ordinary differential equations for the func-
tions S;(t). The solution can be obtained explicitly as

—b;8; =-kOJU , (50)

S;(t) = —kexp(bjt) / exp(—b;t)©] U (t)dt . (51)
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This solution is formally equivalent to the modal decomposition method used by

Zagrodki [11] for the related thermoelastic problem involving frictional heating.
Notice that for the special case where U is independent of time, we can

recover the steady-state solution of equation (36) by choosing the particular

case

k®TU
by

which is equivalent to choosing the implied arbitrary constant in the indefinite
integral (51) so as to make this integral go to zero at infinity.

S; = kexp(b;t) / exp(~b;t)O] Udt = (52)
t

3.5 Material convection

In problems involving moving media, such as brakes and clutches, it is impor-
tant to choose a frame of reference in which the essential geometry does not
change with time. For example, for a caliper disk brake, one would choose a
coordinate system fixed with respect to the brake pad, implying that the ma-
terial of the disk moves in the circumferential direction. This has no effect on
the problem if the system is axisymmetric, since there is then no temperature
gradient in the direction of motion. However, if there is such a temperature
gradient (as will indeed be the case for a caliper brake assembly), the relative
motion introduces a convective term into the heat conduction equation (1) and
corresponding additional matrices into the finite element discretization of §3.
This will generally render the system matrix unsymmetric, implying the pos-
sibility of complex eigenvalues. We do not pursue this question here, but the
related thermoelastic eigenvalue problem is discussed by Yi et al. [12].

4 Examples

To illustrate the method, we consider the axisymmetric clutch problem shown
in Figure 1, comprising a single stator/rotor pair with symmetry conditions
at the boundaries AA’, BB’ and radiation conditions at the inner and outer
boundaries AB, A’B’. Frictional heat is generated at the interface between the
disks at a rate that is proportional to the local sliding velocity and hence linearly
proportional to radius.

o
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|
|
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I
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[}
[}
~

all dimensions in mm

Figure 1: The example problem.
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This simple model could be regarded as an approximation to a disk pair near
the middle of a multidisk clutch, under the assumption that the heat generated
at all interfaces are equal. Since the example is for illustrative purposes only,
we make the further assumption that both the disks in Figure 1 are made of
steel, though in practice clutch interfaces will usually occur between a steel disk
and a friction material layer. With this assumption, the sliding interface also
becomes a symmetry plane, half of the frictional heat generated flows into each
disk, and it is only necessary to model half of the thickness of one disk. We
consider two cases: one with constant heat input at the frictional interface and
one in which the heat input decreases linearly with time, which is appropriate
if the relative rotational speed decreases linearly from an initial value to zero
during the engagement.

200
—h =100 W/m’K
* h=1000 W/m’K
150
—
S
>~ 100f
—
501
O n n n n
0 0.1 0.2 0.3 0.4 0.5
t, (s)
Figure 2: Temperature at the mean radius on the friction surface as a function

of time.

Figure 2 shows the evolution of the temperature at the mean radius on the
friction surface as a function of time during a typical engagement period of 0.5
s with constant heat input corresponding to a constant rotation speed of 250
rad/s and a uniform tangential frictional traction of 0.2 MPa. The number of el-
ements used in the discretization was increased until the predicted temperatures
were unchanged by mesh refinement in the first three significant digits. The two
curves correspond to the values h = 100 W/m? K and h = 1000 W/m? K which
are representative values for convection in air and oil respectively. They corre-
spond to Biot numbers of 0.012 and 0.12 respectively. However, we notice that
the results are essentially indistinguishable, showing that heat transfer from the
exposed edges has no significant effect on the heat transfer process in this time
scale.

Figure 3 shows the corresponding temperature distribution along the friction
surface at the end of the engagement period. Again, the heat loss from the
surfaces has almost negligible effect on the results and even for the oil-cooled case
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it would be generally sufficiently accurate to use the simpler boundary condition
h = 0. We also note that the steady-state solution for the air-cooled case involves
temperatures of the order of 6 x 10> K and hence a direct superposition using
(35) [rather than (43)] would lead to a loss of accuracy of 3 or 4 significant
digits.

200
) —h=100
) * h=1000
2 100 1
=
50¢ 1

0 1 1 1 1 1 1
0.044 0.046 0.048 0.05 0.052 0.054 0.056
r, (m)
Figure 3: Temperature distribution along the friction surface at the end of the
engagement.

To assess the degree of approximation in using the limiting solution (44) in
place of the exact solution [i.e. in replacing exp(—b1t) by (1 — b1t)], we plot in
Figure 4 the temperature distribution across the friction surface at the end of the
engagement period for Bi=0,0.1,1 and 10. In each case, the solid line represents
the exact solution and the points are obtained using (44). The results show that
increase in Biot number beyond 0.1 has a significant effect on the temperature
distribution, particularly near the cooled boundaries, but the approximation is
still extremely good, at least up to Bi=1.
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Figure 4: Temperature distribution at the friction surface at the end of the
engagement for various values of Bi.

Figure 5 shows the evolution of the temperature at three locations on the
friction surface for the case where the rotational speed and hence the heat input
decreases linearly from an initial value of 500 rad/s to zero. Equation (51) must
be used for this case, but the resulting integrals are elementary. The curve
shows the characteristic maximum temperature at around 2/3 of the engagement
period.
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Figure 5: Temperature at three locations on the friction surface when the heat
input decreases linearly from an initial value to zero.

5 Discussion

In conventional finite element solutions of the heat conduction equation, the
nodal temperatures are updated at a series of time steps using an appropriate
discrete form of the heat conduction equation [13]. In this case, care must be
taken to ensure that the chosen time step is sufficiently small to ensure numerical
accuracy and stability of the algorithm. The eigenfunction method developed
in this paper is not subject to this limitation, since it is essentially an analytical
solution in the time domain, the finite element methodology being used only for
spatial discretization.

Of course, with this methodology, we pay the computational price of solving a
linear eigenvalue problem, but the matrices involved are symmetric and efficient
solution methods exist for such cases. Furthermore, this eigenvalue solution
needs only to be performed once for any given geometrical system. If the set
of eigenvalues and eigenvectors is then stored, the transient solution for any
boundary conditions can be calculated extremely efficiently. Thus, the method
essentially develops a computational model for the heat conduction system. This
could be extremely useful for engineers wishing to explore the performance of
such a system under a range of operating conditions.

In this context, further reductions in computing time can sometimes be
made by eliminating the more rapidly decaying eigenvectors by truncating the
eigenfunction series [14]. To illustrate the effectiveness of this technique, we
resolved the problem of Figure 5 using just 1, 5 and 20 respectively of the 231
eigenfunctions in the original series and present the results in Figure 6. The
reduced order model with 20 nodes still shows significant deviation from the
exact result, but may be adequate for many computational purposes.
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Figure 6: Temperature at the mid-radius on the friction surface as predicted
by a reduced-order model with a truncated eigenfunction series.

6 Conclusions

In this paper, we present a finite element discretization of the eigenfunction
solution of the transient heat conduction problem. Using conventional finite
element discretization for the spatial distribution of temperature but analytical
methods for the time variation, we reduce the problem to the solution of a
linear eigenvalue problem followed by routine matrix operations to define the
coefficients in an eigenvector expansion. The method is an attractive alternative
to conventional time-marching schemes, particularly in cases where it is desired
to explore the effect of a wide range of operating parameters.

We pay particular attention to the case where the Biot number Bi < 1 and
where the evolution of the system is very close to that with zero heat loss from
the exposed surfaces. This situation arises commonly in machines such as brakes
and clutches which experience occasional short periods of intense heating.

Numerical examples show that with typical parameter values the simpler
zero heat loss solution provides very good accuracy. We also show that good
approximations can be achieved using a relatively small subset of the eigenvec-
tors of the problem, thus further improving computational efficiency for large
systems modelled with detailed CAE software.
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