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ABSTRACT. This paper is concerned with estimating a mixing density g using a random sample
from the mixture distribution f{(x) = | Ax | 6)g(6) d6 where - | 6) is a known discrete exponential
family of density functions. Recently two techniques for estimating g have been proposed. The
first uses Fourier analysis and the method of kernels and the second uses orthogonal polynomials.
It is known that the first technique is capable of yielding estimators that achieve (or almost
achieve) the minimax convergence rate. We show that this is true for the technique based on
orthogonal polynomials as well. The practical implementation of these estimators is also
addressed. Computer experiments indicate that the kernel estimators give somewhat disappoint-
ing finite sample results. However, the orthogonal polynomial estimators appear to do much
better. To improve on the finite sample performance of the orthogonal polynomial estimators, a
way of estimating the optimal truncation parameter is proposed. The resultant estimators retain
the convergence rates of the previous estimators and a Monte Carlo finite sample study reveals
that they perform well relative to the ones based on the optimal truncation parameter.
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1. Introduction

Let X, . . ., X, be independent observations from a mixture distribution with probability law

-
Sfx;8) = L fx | 0)g(6) 8, (1)

where gis a mixihg probability density function on (0, 6*) and f(: | 6) is a known parametric
family of probability density functions with respect to a ¢-finite measure v. In particular we
assume that

fGx | 6) = CO)q()0%, Vx=0,1,2,..., 2)

where 0 < 8 < 0* < o, g(x) >0 whenever x =0, 1,2, ... and v is the counting measure on
the set of non-negative integers. In this paper we are concerned with the estimation of g using
the random sample X7, ..., X,.

Over the last few years, there has been a great deal of interest in the above problem and
over related mixture problems. Important advances have been made on the deconvolution
problem by Devroye & Wise (1979), Carroll & Hall (1988), Zhang (1990), Fan (1991) and
many others using Fourier techniques. In particular kernel estimators have been obtained

- which achieve the minimax convergence rate.

In the context of mixtures of discrete exponential families, Tucker (1963) considered the
estimation of the mixing distribution of a Poisson mixture via the method of moments and
Simar (1976) approached the same problem using maximum likelihood. Rolph (1968),
Meeden (1972) and Datta (1991) used Bayesian methods to construct consistent estimators
for the mixing distribution.
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Quite recently, two techniques for the estimation of the mixing density g, as given in (1),
have been proposed. The first was proposed by Zhang (1995) which uses Fourier analysis
and the method of kernels. The second was proposed by Walter & Hamedani (1989, 1991)
which uses orthogonal polynomials. It has been shown by Zhang (1995) and Loh & Zhang
(1996) that the first technique is capable of yielding estimators that achieve (or almost
achieve) the minimax convergence rate with respect to local and integrated mean squared
error over various smoothness classes of mixing density functions.

Remark 1. During the revision of this paper, we became aware of Hengartner (1995) who
showed that for a Poisson mixture with 8% < co, orthogonal polynomial mixing density
estimators can attain the minimax convergence rate with respect to integrated mean squared
error over the Sobolev space of mixing density functions with square integrable rth
derivatives.

The rest of this paper is organized as follows. We shall first very briefly review the kernel
mixing density estimators and their properties in section 2. In section 3 we shall show that
the technique based on orthogonal polynomials is also capable of yielding mixing density
estimators that achieve (or almost achieve) the minimax convergence rate with respect to
integrated weighted mean squared error over various non-parametric classes of mixing
density functions. However, even with this property the minimax convergence rates of these
estimators are logarithmic (not polynomial). This leaves us with the important question as to
how well can these estimators actually perform in practice.

Section 4 addresses the issue of the finite sample performances as well as the practical

implementation of these estimators. Computer experiments indicate that the kernel mixing
density estimators (for the particular kernel used here) give somewhat disappointing finite
sample results. On the other hand, the orthogonal polynomial mixing density estimators
appear to do much better. To improve upon the finite sample performance of the orthogonal
polynomial mixing density estimators further, a way of estimating the optimal truncation
parameter is proposed in section 5. The resultant estimators retain the convergence rates of
| the previous estimators and a Monte Carlo finite sample study reveals that they perform well
relative to the ones based on the optimal truncation parameter.
All proofs in this paper have been deferred to the appendix. Finally we shall denote by
H P =P, and E = E, the probability and expectation corresponding to g respectively, by hD
j the jth derivative (if it exists) of any function 4 with 2© = A, and the weighted L?-norm of
any measurable function k by |k, , =] |H(»)Pw(y) dy)'P, Vi<p <oo. If w(p) =1, we
denote " ”w,p by ””p

2. Kernel mixing density estimators

This section treats the case 8* < co and, for completeness, gives a brief review of the kernel a

mixing density estimators that we are concerned with here. We refer the reader to Loh &
Zhang (1996) for the proofs and a more detailed discussion for these estimators.

Let k: .R — R be a symmetric function satisfying 1

|

r Ky)dy =1, k*@®) =0, Y||>1, 1

—0

'[ Yi(p)dy =0, V<j<a, 3)
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‘ and

J‘w [y*ok(p)| dy < o0, 4

-

for some positive number oy, where k* denotes the Fourier transform of 'k, that is

kH(0) = J " exp (ity) k() .

—

Define

K, (x, 0=

@@_@}f R{(i)” exp (—itB) Je*(tfc,) b, AR

2ng(x)x! —en

where ¢, and d, are positive constants tending to co, I{-} denotes the indicator function and
2(z) is the real part of the complex number z. Observing that

with absolute (independent of #) constants 0 < f,<1/2, §; >0, and 0<a* <oo. The
performance of these estimators is investigated with respect to the following smoothness
classes of mixing density functions. Let w be a measurable function on (0, 8*) with |w/,
finite. For a > 0 we define %, ,(w, M) to be the set of all probability density functions g on
(0, 6%*) such that

90—+ D). < Mgl ¥, | (a0

E K, (X;,0) — C(0)g(6) >0, V—o0 <8 <00, (6)
| as (c,, d,) — (00, c0) along a suitable path, we may estimate g(6) by the kernel mixing density
‘ estimator
w‘ Exn® =n"1Y {K,(X,0/CO}{0<b<a,}, YO<0<O* @)
! j=1
| where a,, c,, and d, are constants satisfying
i e+ max_ log (1/g(v) = fologn, ¢, =(0%)~(d, — f; log.c,), ®)
| <x<dp
f and

: ’ o o* if C(6*) >0, )
| " T )8% —a*jc, if C(6%) =0,
\
|
i
!

- where o' is the integer with 0 <a” =0 —a’ <1, and M is a constant such that &, . (w, M)
is non-empty.
We further assume that there exist constants y =0, C¥, C%, and C¥ such that

|

|

|

‘ sup (6% —0)/C(0) < C¥, (11)
t 0<f<o*

\

Jsup (0% — OY|COO|{CEY} <€, VO<j<p (12)
and
|6 + ) — C(P')(0)| <C¥6”, 0<B<B+38<b* (13)

where p’ is a non-negative integer with 0 <p”"=p —p’'<1.

Theorem 1 below shows that the kernel mixing density estimators g ,, achieve (or almost
achieve) the minimax convergence rate with respect to %, 5 (w, M) under reasonably mild
conditions.
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Theorem 1

Suppose o > 0 and that (11)—(13) hold withy 2 0 and p = « +y. Let §x ,, be given by (7) with
the kernel K, (x, 6) in (5) such that ag = o + y in (4). Let (8) and (9) hold with B, <o + y. Then
if

gx)oyixhf=1, Vx =0,
for some constants, y,, ., and B, we have

O(1)(1/log n)* ¥p=0,

sup Eg "gK,n _g"w,2= {O(l)(log log n/log n)a lf0<ﬂ < 0.

g€Yy, g+(w, M)

lim inf (log n)* i;lf sup {E, |8, —g|>: & €%, (1, M), |g — g0 2 < M, (log )~} >0,

where the infimum runs over all possible estimators g, based on X1, .. ., X,,, M, is a positive
constant and %, ¢(1, M) is given by (10) with w(6) =I{0 <8 < 6*}.

3. Orthogonal polynomial mixing density estimators

In this section we introduce the class of orthogonal polynomial mixing density estimators
that we are concerned with and also establish upper and lower bounds for their convergence
rates with respect to various non-parametric classes of mixing density functions. Let
C:(0,0*)> R* be as in (2) and w:(0,6*%) > R* be a measurable function such that
|C¥w|, <. Let {p,, ;}20 be a sequence of orthogonal polynomials on (0, §*) with
weight function

wo(6) = C*(6)/w(6). (14)

In particular, we assume that these polynomials and normalized so that

I

' Furthermore, if g, is an interior point of 9, ¢«(1, M), then
i

i

|

|

|

|

|

|

|

|

| ,-

| Puo. /O = T Ko, x0% (15)
| x=0

| with k,,, ;>0 for all j>0, and [§ p,, (O)p,, (O)we(0) d) =9, where &, denotes the
; Kronecker delta. We further assume that {p,,, ;};2, is complete with respect to ||, »- Note
« that this is always true if 0* < oo [see for example Szegd (1975) p. 40]. Next define

 kwesxla®) O<x <),
i) = {0 otherwise.
We write
 h6) = wO=O)/CO). ¥0<0 <, o

and assume that the mixing density g satisfies |g|, , = |||, » < 0. Then % has the formal
orthogonal polynomial series expansion 4(6) ~ % A4, ;P\, (6), where

0%

f B, ) =J HO)p,,,. (Owe(0)dB, Yji=0,1,2,.... 17
. 0
Observing that

Edy, (X)) =Y fx; 0y, () =h,,;» ¥=01,2,..,

x=0
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! we estimate A, ; by ﬁw y=n"'Z7_1 Ay, j(X,-) and g(6) by the orthogonal polynomial
mixing density estimator

‘ gAOP,n(G) = [C(e)/W(G)] Z ﬁwo,jpwg,j(o)y VO < 9 < 0*, (18)
j=0

| where m,, is a positive constant (truncation parameter) which tends to co as n—co. The

| following proposition gives an upper bound on the convergence rate of £op, ,.

Proposition 1
Suppose |C?|w||, < oo and |g|,,, < 0. Let op, , be as in (18). Then

E "gOP n g”w 2<n ! Z max [kwoj x/q(x)]2+ Z hwo J?

00< J=mp+1

with k and h as in (15) and (17) respectively.

wo,Js X wo,J
Remark 2. The motivation for (18) originates from Walter & Hamedani (1989) who
‘ proposed a similar class of estimators. They also obtained a result analogous to proposition
| 1.
We now study the performance of the estimators g,p , with respect to the following
non-parametric classes of mixing density functions. For positive constants «, M and
‘ =1,2, ..., we define ¥(a, m, M, w,) to be the set of all probability density functions g on
(0 0%) such that lgllw,2< oo and 2, k3, ; < M with h,, ; as in (17). We note that this
class implicitly depends on the dlscrete exponential family of interest, in particular on C(6).
This ellipsoidal class is chosen mainly for reasons of mathematical tractability. However,
ellipsoid conditions can amount to the imposition of smoothness and integrability require-
ments, see for example Johnstone & Silverman (1990) p. 258. In our case, we have the

following characterization.

! Proposition 2
Let m 21 and {p,,, ;}7>0 be as in (15). Suppose there exist constants v; ,,j = m and another
sequence of (normalized) complete orthogonal polynomials {p,,, ;}% ¢ wzth weight function w,

such that

[P0, JEOWLOI = (—=1)™) 4 1, mPrso, s+ m(OWo(6), Y] 20, (19)
and

o < nf [y, |[j* < sup vy |[f* < 2, (20)

where a, o, and a, are positive constants. If |h™|,,, , < co and
0=91if(§1 R =) p,,,, (Ow O]V = li;n R =) p,,, (O)w: (O] P (21
S0+ 0=

for 0<i<mandj=0, then

12
(8 2,) " << § ) @

where h is defined as in (17).

wo,J
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Remark 3. 1t is shown in the appendix that (19) and (20) satisfied by (i) the classical
orthogonal polynomials of Laguerre with « = mf2 and wy(6) =0%°% 6 >0 and (ii)
the classical orthogonal polynomials of Jacobi with & = m and wo(8) = 0P1(0* — 6)%2, where
B>~—land ;> ~1,j=1,2.In general, « and m become functions of each other under (19)
and (20), although they are two independent parameters in the definition of Yo, m, M, w,).

For the rest of this section, we shall assume that M is sufficiently large so that
%(o, m, M, w,) is non-empty. The next two theorems and their corollaries establish upper
bounds on the convergence rate of 8op, » OVer the class of mixing densities %(x, m, M, Wo).

Theorem 2
Suppose |C?[w||, < co. Let 8op,, be as in (18) and
ocmax  log (Ko, x 11(x)) < o logn, (23)
Jor some constant 0 < B, < 1/2 where Wy Is as in (14). Then
sup {Eg ”gAOP,n _g”w,Z: ge%Y(a,m M, wo)} = O(1)(m;* 4 m Y2 ko~ b2y,
Corollary 1
Suppose 0* = co, w(6) = 0-C2(6)e® and wo(0) =0%e~° with-f > —1, Let {Puo,j 120 De the

sequence of (normalized) Laguerre polynomials on (0, ©0) with weight function. w,, Bop,n as in
(18) and

gx)oyi(x!) > 1, Vx>0,

Jor constants y, and vy,. Then by choosing m, =81logn with 0<¢ < ,Bo/iog (2y,) and
0<B,<1/2, we have

Sllp {Eg ‘Ig\OP, n _g”w,Z: g € g(m/z; m, Ma wO)} = 0(1)(1/10g n)m/2.
Theorem 3 is a specialization of theorem 2 which proves to be useful when 8* < oo.

Theorem 3 :
Let §op,, be as in (18) and that Jor some constant ¢ > 1,

max k2 . <(¥ Vjizo0, (24)
ogxgy WO

where w, is as in (14). Suppose Surther that
max log (1/g(x)) + m, log ¢ < f, log n, (25)
O<x<m,

with constant 0 < B, < 1/2. Then

sup {Eg ”g\OP,n _g”w,Z: g€ g(a5 m, Ma Wo)} = O(mn_u)

Corollary 2
Let 86p,, be as in (18) and thar (24) holds for some constant { > 1. Suppose
gy’ >1, Vx>0, (26)

Jor constants y,, y, > 1 and y. Then
(@ ify =0, by choosing m, =6 logn with 0 < § < B,/log (10) and 0 < B, < 1/2, we have

sup {Eg ”gAOP,n _g”w,Z: g Gg(d, m, Ms WO)} = 0(1)(1/10g n)u,

© Board of the Foundation of the Scandinavian Journal of Statistics 1997,




Scand J Statist 24 Estimating mixing densities 21

(b) if 0 <y < o0, by choosing m, = 8 log nfloglogn with 0 <& < fo/y and 0 < B, <1/2, we
have

sup {E, |8or,n — &llw,2: & € G0, m, M, wy)} = O(1)(log log n[log n)“.

Remark 4. The negative binomial and Poisson mixtures satisfy (26) with y =0 and 1
respectively.

Remark 5. The classical orthogonal polynomials of Jacobi satisfy (24).

The next theorem complements the above results by establishing lower bounds on the local
| minimax convergence rate over the class of mixing densities %(a, m, M, w,) under the
! condition that (19) and (20) hold.

Theorem 4

Let w: (0, 0%) > R* be a measurable function such that |w|; < co and ||wo |, < co with w, as

in (14) and {p,,, ;}>0 be a sequence of (normalized) orthogonal polynomials with weight
 function wy such that (19) and (20) are satisfied. Suppose there exists an open interval where

w is strictly positive and m times continuously differentiable. Then for sufficiently large M, we

have

lim inf (log n)’"iélf sup {E, |8, — & ||w,2:& € G(c, m, M, w,), |g — &0 w,» < M(logn) ="} > 0

for each interior point g, of (e, m, M, w,), where the infimum runs over all possible estimators
g, based on X, .. ., X,

ne

Following Hengartner (1995), the next theorem gives conditions for the sharpening of the
lower bounds of theorem 4 when 0* < co.

Theorem 5 :

Let 0* < o0, w: (0, 0%) >R be a measurable function such that |w|, < o and |wo|; < oo
with wy as in (14) and {p,,, ;}>o be a sequence of (normalized) orthogonal polynomials with
weight function w, such that (19) and (20) are satisfied. Suppose

g)(xD* <77y, Vx>0, (27

for strictly positive constants 1y, T, and © and that there exists an open interval where w is
_strictly positive and m times continuously differentiable. Then for sufficiently large M, we have

lim inf (log n/log log n)™ inf sup {E, |8, — g |, 2: & € %(a, m, M, wy)} >0,
n—0 &n
where the infimum runs over all possible estimators §, based on X, . . ., X,,.
We close this section with the following consequence of corollary 2, remarks 3 and 5 and
theorems 4 and 5. Suppose 6* < 0. Let
w(B) = CHB)~F1(0* —0)0 P2, V0 <0 < 6%,

with ;> —1, j=1,2, so that (19) and (20) hold for wy(6) = 8%(6* — §)*2 and the Jacobi
polynomials {p,,, ;}iZo-

If g(x)yoyT>1Vx >0 for constants y, an y,, then the minimax convergence rate with
respect to |-|,,, » loss is (1/log #)™ for mixing densities g in the class ¥(m, m, M, w,) where w,
is as in (14).

© Board of the Foundation of the Scandinavian Journal of Statistics 1997.
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On the other hand, if g(x)yey¥(x!)?>1Vx >0 and g(x)(x!)* < 74t¥ Yx >0 for constants
Vo> ¥1» To» 71 and 0 <7y, T < 0o, then the minimax convergence rate with respect to |-,,, , loss
is (loglog nflog n)™ for mixing densities g in the class %(m, m, M, w,). We note that both
minimax rates are attained by the orthogonal polynomial mixing density estimators g4, of
corollary 2.

4. Finite sample performance

A key consequence of the results of sections 2 and 3 is that both the kernel and orthogonal
polynomial mixing density estimators, that is gx , and §,p , respectively, are capable of
achieving (or almost achieving) the minimax rate of convergence. However, even with this
property the minimax convergence rate of these estimators is logarithmic (not polynomial).
This leads us to the following problem: typically how large must a sample be in order that
the desired asymptotics of these estimators (as described in the previous two sections) can
take effect.

4.1. Kernel mixing density estimators

In order to gauge typically how well the kernel mixing density estimators perform in practice,
we focus on the problem of estimating the mixing density g of a negative binomial mixture
with 0* =1 and C(6) = 1 — 8 with respect to integrated squared error, that is |§, —g||3. To
construct the kernel mixing density estimator g ,, we take

62
e

Our motivation for such a choice of & is its relative simplicity and that (3) and (4) hold with
op = 2. We observe from (6) and (7) that an upper bound on the finite sample performance
of g5 , can be obtained by investigating how close

4
, V—oo<y<oo,

|1E, K, (Xy, )/ COU{0 <0 <a,}—gO)3 (28)

is to 0. In this case we take g(6) =I{0 <8 <1} and use
10
ERR, = (1/10) ¥ {E,[K,(X;, 0.1i —0.05)/C(0.1i —0.05)] —1}2
i=1
as an approximation to (28).

Remark 6. The reason for such a choice of g is that we feel that the uniform distribution
is arguably one of the distributions that any reasonable estimation procedure should be able
to estimate adequately well.

Computations show that in order to have ERR,~0.1, we need c,~ 17. Since ¢, <
(1/2) log , this implies that the sample size # must be astronomically large and is quite
impossible to obtain in practice.

This presents a disappointing setback for the practical implementation of g, ,. However,
it should be noted that this can be due to a possibly inappropriate choice of the kernel k£ and
that it does not eliminate the possibility that there exist other kernels which give dramatically
better results.

© Board of the Foundation of the Scandinavian Journal of Statistics 1997.
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4.2. Orthogonal polynomial mixing density estimators

We observe that the integrated mean squared error of the orthogonal polynomial mixing
density estimators has a simple closed form expression. In particular, we observe as.in (32)
that

o
E, J [op, n(0) — g(0)]*w(6) db

0

o my
= J gAOWO) db +n~' Y {E A% (X)) —(n+ 1')[Egle,j(X1)]2_}. 29)
o j=0

The right hand side of (29) enables us to compute the integrated mean squared error of §,p ,
in any given situation. We illustrate this below with two examples.

Example 1. This example deals with the problem of estimating a mixing density g of a
negative binomial mixture with 8* =1 and C(f) =1 — 6 using integrated squared error loss.
In this case the orthogonal polynomial mixing density estimators are given as in (18) where
{Pwo,; }20 corresponds to the Jacobi polynomials with weight function wo(6) = (1 —6)?,
V0 <0 <1.

Tables 1, 2 and 3 give the integrated mean squared error of g,p , for sample sizes
n = 1000, 10 000 and 100 000 as well as for truncation parameters 0 <m, <4.

Example 2. This example deals with the estimation of the mixing density g of a Poisson
mixture with 6* = oo using integrated weighted squared error loss |g, —g|3, . where

Table 1. g0) =1

Truncation parameter m,,

Sample size n 0 1 2 3 4
1000 0.251 0.128 - 0.330 5.186 110.752
10 000 0.250 0.113 0.089 0.555 11.100
100 000 0.250 0.111 - 0.065 0.091 1.135

"Table 2. g(8) = (n)2) sin (x6)

Truncation parameter m,,

" Sample size n 0 1 2 3 4
1000 0.48445 0.02041 0.32504 6.16375 128.20208
10 000 0.48378 0.00333 0.03352 0.61638 12.82021

100 000 0.48371 0.00162 0.00437 0.06164 1.28202

Table 3. g@) =exp 0)/(e — 1)

Truncation parameter m,,

Sample size n 0 1 2 3 4
1000 0.558 0.291 0.431 5.701 126.007
10 000 0.558 0.277 0.184 0.660 12.663
100 000 0.558 0.275 0.159 0.156 1.329

© Board of the Foundation of the Scandinavian Journal of Statistics 1997.
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Table 4. g(6) =exp (—0)

Truncation parameter m,,

Sample size n 0 1 2 3 4 5 6
500 0.08383 0.02271 0.01030 0.01426 0.03335 0.08570 0.22609
1000 0.08358 0.02177 0.00775 0.00778 0.01684 0.04289 0.11305
10 000 0.08336 0.02093 0.00546 0.00195 0.00198 0.00436 0.01132
100 000 0.08334 0.02084 0.00523 0.00137 0.00049 0.00051 0.00115

w(@) =e~% V0 >0. In this case {p,, ;}>¢ corresponds to the Laguerre polynomials with
weight function wy(8) = e %, Table 4 gives the integrated mean squared error of the estimator
Zor, . When g(0) = e~%, v¥8 > 0 for sample sizes n = 1000, 10 000 and 100 000 as well as for
0<m,<6.

Remark 7. Examples 1 and 2 (plus other unreported ones) indicate that £, p , perform well
for sample sizes n > 1000 as long as 4, defined as in (16), can be reasonably approximated
by a low degree polynomial and that the optimal truncation parameter is used.

5. Estimating the optimal truncation parameter

In this section, a way is proposed to estimate the optimal truncation parameter m} for the
orthogonal polynomial mixing density estimator ,p ,,, as given in (18), where m} is defined
to be the value of the truncation parameter s, which minimizes E, |£op. , — £ |, - We write

ty =n"H{EgALy (X)) — (n + DIEGA,, (X1))%. (30)

We observe from (29) that =7, ¢, . < X7, ,, for all m >0. This implies that m} can be
determined if the sign of Z¢_, ¢, ; is known for each a < b. Let i, ; be the unbiased estimator
of t,; based on Xi,..., X, f;, i =i t:,,,, VO0<i<j and az(t:,, ;;) be the unbiased
estimator of the variance of i, Let 0 <a* <1 and B, be the largest possible constant

satisfying the inequalities

n, i, j*

max lOg (lkwo,j, x |/q(x)) S 130 log n, Bn < ﬂl log n, (31)

0<x<j< B,

for positive constants f, < 1/2 and §,. Our algorithm for estimating m} is as follows:

Step' L Set ¥ =0and n,=n,=1.
Step 2. Compute Y = tA,,,,,I,,,2+ za‘é(ﬁ,,,,h,,z), where &(z,) =1 —a* dnd & denotes the
| distribution function of the standard normal distribution.
t Step 3. If Y <0 and n,<B,, then set mf =n,,n,=n,+1 and then set n,=n;. Let
\ Y =1, u, ny+ Ze26(by, n,.n,) and return to the start of Step 3.
' Elseif Y >0 and n, < B,, then increase n, by 1, compute ¥ = t:,,,,],,,z + 2z, 6(5;,,,,',,,2)
l‘ and return to the beginning of Step 3.
| Elseif n, > B,, then the estimate of the optimal truncation parameter m} is given
‘ by X,

Endif.

Remark 8. The above algorithm can be thought of as a successive sequence of hypothesis
tests each at level a* where the null hypothesis always has fewer terms than the alternative.
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Remark 9. The constant B, can be chosen in the following manner. Under the conditions
of corollary 1, take B, = B, log n/log (2y,). Under the conditions of corollary 2(a) and (b),
we take B, = B, log n/log (y,{) and (B,/y) log n/log log n respectively.

Remark 10. The closer a* is chosen to 0, the more likely it is that 7} will underestimate
m}. The previous section (see Tables 1 to 4) indicates that the risk of £,p , is asymmetrical
about m* and that there is a distinct possibility that the risk increases very dramatically with
overestimation. As such we recommend that «* be chosen to be 0.01, 0.05 or 0.10, which are
in line with the usual values of a* for classical hypothesis testing.

Let £%5,, be as in (18) with m, replaced by ##;. The following theorem gives an upper
bound to the convergence rate of £%p ..

Theorem 6
Let |C?/w|; < o and B, be the largest possible constant satisfying (31). Then

Sup {Eg ||gA*(‘)P,n _g”w,Z:g Eg(a’ m, M! WO)} = O(B;u)

Remark 11. By choosing B, =m, in corollaries 1 and 2, we observe that the estimators
£%p, n essentially retain the convergence rates of £op .

Example 1 continued. Here we have applied the above algorithm to example 1. In

particular the algorithm is used to determine #1* using «* =0.05 and B, =|}logn ]. For
convenience we use 50 bootstrap replications to approximate each 6(?,,,,,',,,2). The second

Table 5. g(®) =1

Relative frequency of i}

Sample size n IMSE 0 1 2 3 4
1000 0.231 084 016 000 000  0.00
10 000 0.110 000 098 002 000 000
100 000 0.072 000 020 071 000 000

"Table 6. g() = (r/2) sin (n8)

Relative frequency of i}

" Sample size n IMSE 0 1 2 3 4
1000 0.0552 0.08 0.92 0.00 0.00 0.00
10 000 0.00320 0.00 1.00 0.00 0.00 0.00

100 000 0.00158 0.00 1.00 0.00 0.00 0.00

Table 7. g(6) = exp @)(e — 1)

Relative frequency of i}

Sample size n IMSE 0 1 2 3 4
1000 0.360 0.30 0.70 0.00 0.00 0.00
10 000 0.263 0.00 0.94 0.06 0.00 0.00
100 000 0.142 0.00 0.00 1.00 0.00 0.00

© Board of the Foundation of the Scandinavian Journal of Statistics 1997.




26 Wei-Liem Loh and Cun-Hui Zhang Scand J Statist 24

column of Tables 5, 6 and 7 give the average value of
10
(1/10) Y [%p, (0.1 —0.05) — g(0.1i — 0.05)]?,
i=1

for 100 independent replications of X, ..., X,. These values approximate the integrated
mean squared error (IMSE) of the mixing density estimator

iy
£5p.u(0) =[COYWO) Y. Ao, Puo, ;0), VO <O <.
j=0
We recall that in this case, we have #* =1, w() =1 and C(6) =1—6.

Example 2 continued. The above algorithm is now _applied in example 2 with a* =0.05,
B, =0.7log n and 50 bootstrap replications to approximate each 6(ty . np)- As in example
1, the second column of Table 8 gives the average value of

5

(1 /10)_%0 exp —(0.1i — 0.05)[8%p, (0.1i —0.05) — g(0.1i — 0.05)]%,

i=1 N

for 100 independent replications of X, ..., X,. These values approximate the integrated
weighted mean squared error (IMSE) of the orthogonal polynomial mixing density estimator
8%p, n» namely E, |85, — g5, 2 with w(6) =e~% V6 >0.

Table 8. g@@) =exp (—0)

Relative frequency of iz}

Sample size n IMSE 0 1 2 3 4
1000 0.0190 0.00 0.75 0.24 0.01 0.00
10 000 0.00455 0.00 0.00 0.71 0.29 0.00
100 000 0.00111 0.00 0.00 0.00 0.66 0.34

Both of the above Monte Carlo studies indicate that the risks of the orthogonal
polynomial mixing density estimators £5p, , compare well to the ones based on the optimal
truncation parameter.

We conclude with the remark that in general the following two conditions do not hold:
8%5p n(0) 20, YO< 0 <0 and [ g¥p ,(6) db =1. As such the accuracy of estimate £%p ,
can be further gauged by how close the above two conditions are to being satisfied.
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Appendix

Proof of proposition 1. We observe that

* 0 { m, 2
! E, L [£5p, 2(0) —g(0))°w(6) db = E, L [,Zo B, iPowo./(6) — h(G)] wo(6) df

= _MZ"O Eg(ﬁww}' L. 1)2 + Z hWo 7 (32)

J=mp+1

The last equality follows from the completeness of {p,,, ;};2¢. Since

-~

hwvo,j = n -1 z ;Lwo,j(A,i)i
i=1
the right hand side of (32) is bounded by

n! Z E[}' OJ(Xl)]+ Z hWOJ

J=mp+1

‘E max [k, ; ./q(x)]*+ Z o
j=00<x<j J=my+1

This proves the proposition.
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Proof of proposition 2. We observe from (19), (21) and repeated integration by parts that

g

(d
L hO)p,,,, (O)w, (6) db =(—1)"’J; hO)[p.,, (O)w: ()] dO

9‘
v_/-+-m m J‘ h(e)pwo,j+m(e)w0(e) de
0

=y, h

J+mm

Vi 0.

wo,J+m?

From the completeness of {p,,, ;}2,, we get |A™|2 =22, v h2 . Now (22) follows
immediately from (20).

Proof of remark 3. We begin with Laguerre polynomials.

Laguerre polynomials. Suppose wy(0) = 0%¢~°% with 8 >0 and B> —1, is the weight
function of the normalized Laguerre polynomials

Puo,j(0) = [F(BH)(]J;B )]_mi Jj+h >( e)x, Vi =0.

For j >0 and m > 1, we write w,(0) = @¢+7e?,

Py,./0) = I:r(ﬁ +m+ 1)(j+f;+ m>]—1/2

and
_(j+m) G+B+m\ |2 : G+ B+m\ |12
e = [r(ﬁ (j+m )] [r(ﬂ+m+l)< j >] '

Then (19) follos from the Rodrigues’ formula for Laguerre polynomials and (20) holds for
o =m/2.

M~

<j+ﬂ+m>(—9)*
x=0 j_x X! ’

Jacobi polynomials. Suppose wy(0) = 0P1(6* —60)P2, with B,>—1, B,>—1 and
0 <0 < 6* < 0. Then the orthogonal polynomials with w, as the weight function correspond
to the normalized Jacobi polynomials '

) > j - ._1 Ve ._ 1 o« )
Pus /0 = ,mh(H;.ﬁz)(@*)"Z G- -G-x+1 (Jtﬁl)ej_x(o_e*)x’

w=o(Bat DB +2) (B2 + %)

where

o _[@+BEBEDIGHOIG+B+E+ D
b2 T @A RT(G + By + DIG + B+ D) 7z

and is equal to
(B, + B> +2) L
[(0*)"* B+ 1L(B, + DI(B, + 1-)] ity =0.

For m > 1, let p,,, ;,j 20, denote the set of normalized Jacobi polynomials with weight
function

wy(6) = R +m(O* — G)F2+m Y0 < 6 < 6%,

and
vj+m,m = (6*)’"(] + m)lq.ﬂ| +m,ﬁz+m/[j!c1j+m,ﬂ1,ﬂ2]'
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Then (19) follows from the Rodrigues’ formula for Jacobi polynomials and (20) holds for
o=m.

Proof of theorem 2. We first observe from (23) that
" j'go orgg’s(j (e, s, x /900" = Olmyn™o™). | (33)
We also observe that
sup{, i lhfvo,j:ge?(a, m, M, wo)}= Oo(m;%). (34)
s

Now the theorem follows from (33), (34) and proposition 1.

Proof of corollary 1. From the properties of Laguerre polynomials, we have

.., < 12(¥)| < yoyir(i: ii)[r(ﬁ + 1)(j -;- B)}—llz

] J 1/2 x
=vcv_’f(i)[ I1 (1+ﬁz‘“)] [F(ﬂ+l)11'11(1+ﬁi-‘)]

—-1/2

i=x+1
o Jj 1/2 x -1/2
S?o?ﬂ’[ H1(1‘+ﬁi“)] [I'(ﬂ+1)iﬂl(l+ﬂi“):| (35)

Here we follow the convention that IT}2 ., (1+ i~") =1 if x, > x,. We further observe that
there exist positive constants ¢} and c¢¥ such that

; :
AP <[TA+pN <t Yzl
i=1

Thus it follows from (35) that

max  log ([ku,, , x|/g(x)) = m,(1+ o(1)) log (2y,) < Bo(1 + (1)) log n.

0<x<jsm,

This proves (23) and the corollary follows from theorem 2.

Proof of corollary 2. If y =0, we observe that

max  log (1/g(x)) +m, log { <m,(1 + o(1)) log (y:0) < Bo(1 + o(1)) log n.

O<xsm

This proves (25) and (a) follows from theorem 3. The case of 0 <y < co is similar and is
omitted.

Proof of theorem 4. Let 0 <0, <0, <a <8, <0;<0* be fixed constants such that w is
strictly positive and m times continuously differentiable on [6,, 0,]. Define
by, ,(6) = v46*~ " exp( —vO)'(u),
8, o(0) = {xo(O)}1, ., L(0) + X2 (O, o (6) + 12(O)L;, o, o (8) }/ CO),

where x,(0) =1{0, <0 <8;,,} and L . v J=1,2, are polynomials each of degree (2m + 1)
such that g, , is m times continuously differentiable. Let g, be an interior point of

: © Board of the Foundation of the Scandinavian Journal of Statistics 1997.
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%(o, m, M, wy). Define
0 m
gOn(e) go(o) + 14 1/4 <_) {gu,, v,,(e) +g00(6) - (WOn + l)go(o)}

U,

& 02 “ . 9 —a Win
£1,(0) = gon(®) + 7 (u—n) l:Sln <un 9—2> "o, :|Eu,. 5. (6)s

| _ e [6,\" 0—a\ w,,
g2n(9) _gOn(B) + uylll4 (u"> |:C°S (un 02 ) wonjlgu,l v,,(e)

| where gq, is a density in %(a, m, M, w,) bounded away from 0 in [6,, 65], w;, are constants
! determined by [8'g,(6) d8 =1, £ >0, u, = & logn, and v, =u,/a, with

| 5 _ {02/(93—02) 2 ' 1 1 }
| 00 = MAX A o 05/6,) " log (1 + a2/03) 0,]a — 1 —log (6;]a)’ B,]a — 1 —log 6/a)

The rest of the proof is almost identical to steps 1 to 3 of the proof of th. 3 of Loh & Zhang
(1996). It remains only to verify that g;, € 9(a, m, M, w,) for j =0, 1, 2. Motivated by (16),
define for 0 < 6 < 6%,
3¢ (6,
(o) = W\ (9)gu 0/ C(6).

Then using Leibniz rule we have 4|, »=£0(1), where the O(1) term does not depend
on &. Since (19) and (20) hold, we observe from proposmon 2 that (T2, j2*h%,, ) ' = eO(1),
where h,,, ;= o h(O)p,,,, () d8. Writing

wo,J
01'

gOn, wo.j j C(g)gOn(g)pwo,J(o) des V.] > m,
0

it follows from Minkowski’s inequality that (X7, J#8% w, j)”2 <M +£0(1) as g, is an
interior point of %(x, m, M, wy). Thus we conclude that g, € %(x, m, M, wy) for sufficiently
small ¢. Likewise we have g, € %(a, m, M, w,), j=1,2.

Proof of theorem 5. Let 0 < 0, <0, < 0* and 6 > 0 be fixed constants such that w > 6 and
m times continuously differentiable on [0,, 6,] and g, be an interior point of %(a, m, M, w)
which is also bounded away from 0 on [6,, 6,]. Furthermore we write

m, =y lognfloglogn |, (36)

where y > 0 is a suitably large constant to be determined later, and

mpy +2m+2
T,0)= Y a,,’jcosl:an(e 0)]1{0,<9<92} V0 < § < 6%,
S, —

j=0

where the coefficients 4, ; are determined by the conditions that T,, is m times continuously
differentiable on (0, 6*) and

B‘
j T,(6) d6 =0,

0

r T,(0)f(x |0)d0 =0, ¥x=0,1,...,m,— L. (37)
0
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We observe from DeVore & Lorentz (1993) pp. 98-102 that

2n(m, + 2m + 2) |
m | g —2——— ~
1751 [ A ] (38)
2m,, + 4m + 5).J'2
7L< | 2ot 20 2 )

Define g, ; =g, and g, , = go+&,T, where &, =em;™||T,|;' and & >0 a suitably small
constant (independent of ») such that g, , is a density on (0, 6*). Motivated by (16), define
h(0) = &,w(0)T,(6)/C(H) for 0 < 6 < 8*. We observe from (38) that |2, ,=eO(1), where
the O(1) term does not depend on &. Hence arguing as in the proof of theorem 4, we
conclude that g, , € 9(x, m, M, w,) for sufficiently small e.

Next we observe from (1), (27), (36) and (37) that for 1 > 1 and y sufficiently large,

f( j,g"Z)\l]Zl_Pg <maxX;>m)
gn,l) l<jsn

=1 — O(Dn(@*1,)™|(m,, 1)
=1+ o0(1).

Finally we observe that [g, | — g, 2. 2 > (66 /y™)(log log nflog n)™ and now theorem 5
follows from lem. 1 of Zhang (1995).

Proof of theorem 6. Let g € 9(a, m, M, w,) and h,, ; be as in (17). Define for each § >0,

max {j:0<j<B,, hZ ;> (logn)~#}
jxB) = if {j20<j<B,, hZ,;>ogn)~#} # ¢,
| 0 otherwise.

We shall first show that
sup {P, [y <j¥(B)l: g € (o, m, M, wy)} = O(1)(log n)>* +Pp2ho=1, (40)

Since (40) clearly holds when j*(B) =0, it suffices to assume that j*(8) >1. Let
by =2i_;1,  and a(t,, ;,;) be the standard deviation of fos ;- We observe from (30) and the
definition of A, ; that sup {1, ; +u: 8 € Ha, m, M, w,), 0<j <j}(B)} < —(logn)~#/2 for
-sufficiently large n Also

GRS
Pg[’h: <]:(ﬂ)] Z P [tn LJ+ LB +zz“(tn Jj+1, j“‘(ﬂ)) >0]
J=
@) -
P

P

k4

I:tn.j+l.j:(ﬂ) Lo jt 1, ® 4, ("(’n”u:(ﬂ)) 1)

0t 41,0 ®) 0, j+1,526)

= —Zy-

RS 10 J
a(tnj+lj (ﬂ))

< 8(1+0(1)B,(1+4z5)(log m)*#sup (6L, 11, j2»): 0 <iX(B)},  (41)
uniformly over g € %(a, m, M, w,). (40) now follows from (41) and the observation that

SUp {07t ;4 1, 20): & € Flat, m, M, wp), 0 <j <j*()} = O((log n)2n?e~1),
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In a similar manner, we have

m—1 -
sup { K2, Pk <)): g € G ™, M:'Wo)} = o(B;™). (42)
1

j=

Next as in (32), we observe that

o
E, L 1855, .(0) —g(O)*w(6) db

N

By ©
E qn~! Y, max [kwo,j,x/q(x)]2+ Y ke
1

j=00Sx<j j=Bn+t

By m-—1
| + Y Mt X W, A <f}}- (43)

| j=0ht+)vm

Conditioning on whether or not m* = j¥(B), we observe using (40) that for sufficiently large
B, the third term on the right hand side of (43) is bounded by

MP, it <ji(B) + B,(log n) F = o(B;*) (44)

uniformly over g € %(a, m, M, wy) as n— ©. The theorem now follows from (42), (43) and

(44).
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