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ABSTRCT. Ths paper is concerned with estiatig a mixing density using a random sample

from the mitue distrbutionj(x) = Jj(x 0)g(0) dO wherej(' 0) is a known discrete exponential

famiy of density functions. Recently two teclmques for estiatig have been proposed. The

fist uses Fourier analysis and the method of kernels and the seond uses orthogonal polynomials.
It is known that the fit teclmque is capable of yieldig estiators that achieve (or alost
achieve) the miax convergence rate. We show that this is tre for the teclmque base on
orthogonal polynomials as well. The practical implementation of thes estiators is also

addresd. Computer experiments indicate that the kernel estiators give somewhat disappoint-

ing fite sample results. However, the orthogonal polynomial estiators appear to do much

better. To improve on the finite sample performance of the orthogonal polynomial estiators, a

way of estiatig the optial trncation parameter is propose. The resuJtant estiators retai
the convergence rates of the previous estiators and a Monte Carlo fite sample study reveals
that they perform well relative to the ones based on the optial truncation parameter.

Key words: discrete exponential famly, mixing density, Monte Carlo simulation, orthogonal

polynomials, rate of convergence

1. Introduction

Let 

. . .

be independent observations from a mixture distribution with probability law

f(x; g) 

= Jo 

f(x O)g(O) dO, (I)

where is a mixing probability density function on (0 andf(' 10) is a known parametric

family of probability density functions with respect to a a-finite measure v. In particular we
assume that

f(x 0) C(O)q(x)fx "Ix = 0, 1

, . . .

(2)

where 000000 0* .: 00 q(x) )0 0 whenever = 0, 1 , . . . and v is the counting measure on
the set of non-negative integers. In this paper we are concerned with the estimation of using

the random sample 

. . .

Over the last few years, there has been a great deal of interest in the above problem and
over related mixture problems. Important advances have been made on the deconvolution

problem by Devroye & Wise (1979), Carroll & Hall (1988), Zhang (1990), Fan (1991) and
many others using Fourier techniques. In particular kernel estimators have been obtained
which achieve the minimax convergence rate.

In the context of mixtures of discrete exponential families, Tucker (1963) considered the
estimation of the mixing distribution of a Poisson mixture via the method of moments and
Simar (1976) approached the same problem using maximum likelihood. Rolph (1968),
Meeden (1972) and Datta (1991) used Bayesian methods to construct consistent estimators
for the mixing distribution.
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Quite recently, two techniques for the estimation of the mixing density 

g, 

as given in (I),
have been proposed. The first was proposed by Zhang (1995) which uses Fourier analysis
and the method of kernels. The second was proposed by Walter & Hamedani (1989, 1991)

which uses orthogonal polynomials. It has been shown by Zhang (1995) and Loh & Zhang
(1996) that the first technique is capable of yielding estimators that achieve (or almost
achieve) the minimax convergence rate with respect to local and integrated mean squared
error over various smoothness classes of mixing density functions.

Remark 1. During the revision of this paper , we became aware of Hengartner (1995) who
showed that for a Poisson mixture with 0* 00 00 , orthogonal polynomial mixing density
estimators can attain the minimax convergence rate with respect to integrated mean squared
error over the Sobolev space of mixing density functions with square integrable rth
derivatives.

The rest of this paper is organized as follows. We shall first very briefly review the kernel
mixing density estimators and their properties in section 2. In section 3 we shall show that
the technique based on orthogonal polynomials is also capable of yielding mixing density
estimators that achieve (or almost achieve) the minimax convergence rate with respect to
integrated weighted mean squared error over various non-parametric classes of mixing
density functions. However, even with this property the minimax convergence rates of these
estimators are logarithmic (not polynomial). This leaves us with the important question as to
how well can these estimators actually perform in practice.

Section 4 addresses the issue of the finite sample performances as well as the practical
implementation of these estimators. Computer experiments indicate that the kernel mixing
density estimators (for the particular kernel used here) give somewhat disappointing finite
sample results. On the other hand, the orthogonal polynomial mixing density estimators
appear to do much better. To improve upon the finite sample performance of the orthogonal
polynomial mixing density estimators further, a way of estimating the optimal truncation
parameter is proposed in section 5. The resultant estimators retain the convergence rates of
the previous estimators and a Monte Carlo finite sample study reveals that they perform well
relative to the ones based on the optimal truncation parameter.

All proofs in this paper have been deferred to the appendix. Finally we shall denote by
and the probability and expectation corresponding to respectively, by h(j

the jth derivative (if it exists) of any function with h(O) and the weighted LP-norm 

any measurable function by Ilh Ilw = CJ Ih(yWw(y) dy) lip VI 

':p 

00 00. If w(y) == 1 , we
denote 11..IIw, p by 11-p"

2. Kernel mixing density estimators

This section treats the case 0* 00 00 and , for completeness, gives a brief review of the kernel
mixing density estimators that we are concerned with here. We refer the reader to Loh &
Zhang (1996) for the proofs and a more detailed discussion for these estimators.

Let k: R 

-- 

be a symmetric function satisfying

L: 
key) dy = 1 (t) = 0, Vltl)o 1

L: y
jk(y) dy = 0 V':j 00 1X0, (3)
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and

L: Iy
""k(y) dy 00 00, ( 4)

for some positive number 1X0, where k* denotes the Fourier transform of that is

(t) 
= f"oo exp 

(ity) key) dy.

Define

O) 
1\0.: x.: d cn 

\(itY exp ( itO)jk*(t/c ) dt2nq(x)x! -Cn

where and are positive constants tending to 00 1\' ) denotes the indicator function and
(z) is the real part of the complex number z. Observing that

(5) .

, 0) C(O)g(O) -- 0, "1-00 00 00 00 (6)

as , d -- (00, (0) along a suitable path, we may estimate g(O) by the kernel mixing density
estimator

(O)=n L \K (Xj, O)/C(O)jI\OooOooa J, "10000000* (7)

where and are constants satisfying

+ max log (I/q(x)) Po log , C (O* e) - PI log (8)

and

SO*

10*

if C(O* )0 0

if C(O* = 0,
(9)

with absolute (independent of n) constants 000 Po 00 1/2, PI )o 0, and 000 00 00. The
performance of these estimators is investigated with respect to the following smoothness
classes of mixing density functions. Let be a measurable function on (0 ) with 

II 
will

finite. For IX )0 0 we define . e. , M) to be the set of all probability density functions g 01'

, 0* such that

Ilg
(a)o - + b) Ilw, 2 00 MIW' (10)

. where IX ' is the integer with 000 IX " = IX -IX ' .: 1, and is a constant such that . e. , M)
is non-empty.

We further assume that there exist constants , Cr, and C! such that

sup (0* - WIC(j(O) 1/\ C(O)j!) 00 
0", 0 

'" 

and

VO':j':p

(11)

(12)

sup (0* - OF/c(O) 00 
0", e.;e.

IC(P' )(O + b) C(p )(O)
I 00 

0 00 00 + boo (13)

where is a non-negative integer with 000 .: 1.

Theorem 1 below shows that the kernel mixing density estimators . n achieve (or almost
achieve) the minimax convergence rate with respect to a. e. , M) under reasonably mild
conditions,

~ Board of the Foundation of the Scandinavian Journal of Statistics 1997.
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Theorem 1

Suppose IX )0 0 and that (11) - ( 13) hold with y and p = IX + y, Let gK. n be given by (7) with

the kernel K , 0) in (5) such that 1X0 ~ IX 'Y irz (4). Let (8) and (9) hold with PI .: IX + y, Then

q(x)yoyf(x!)P "Ix 

for some constants, Yo, Y1, and P, we have

SO(I)(I/logn)" ifP=O,
ge(l. , M) Eg IlgK - gllw. 2 = 

10(1)(log log n/log n)" if 000 po: 00.

Furthermore, if go is an interior point of 

". 

e. M), then

Jim inf(Jog n)" inf sup Ilin kg (1, M), Ilg go 112

': 

(log n) J )0 0
n-co 

where the infimum runs over all possible estimators gn based on X

. . .

, M( is a positive
constant and (1, M) is given by (10) with w(O) 1\000 0 00 

3. Orthogonal polynomial mixing density estiators

In this section we introduce the class of orthogonal polynomial mixing density estimators
that we are concerned with and also establish upper and lower bounds for their convergence
rates with respect to various non-parametric classes of mixing density functions. Let
C: (0 ) --R+ be as in (2) and w: ) --R+ be a measurable function such that

II 
/w III 00 00. Let \PWO, o be a sequence of orthogonal polynomials on with

weight function

(O) (O)/w(O). (14)

In particular, we assume that these polynomials and normalized so that

Pwo. (O) L kwo. j, x Ox, (15)

with wo. )o 0 for all ~ 0, and 
S&" Pwo. ;

(O)ppoJO)wo (O) dO 
ij, 

where 
ij 

denotes the
Kronecker delta. We further assume that \PWO, o is complete with respect to 11. llwo, 2- Note
that this is always true if 0* 00 00 (see for example Szeg6 (1975) p. 40). Next define

,1 wo, /q(x)J x if 0 ':x ':j,
otherwise.

We write

h(O) w(O)g(O)/C(O), "1000000 (16)

and assume that the mixing density satisfies Ilg Ilw, 2 = Ilh Ilwo, 2 00 00. Then has the formal
orthogonal polynomial series expansion h(O) t"o hwo. jPwoJ (0), where

wo,
= f. 

h(O)PwoJO)wo (O) dO Vj = 0

, . , ..

( 17)

Observing that

JX1 L f(x; g),1 Jx) wo,
x=o

Vj = 0, 1

, . . .

~ Board of the Foundation of the Scandinavian Journal of Statistics 1997.
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we estimate wo, by wo,j =n 7~1 jX;) and g(O) by the orthogonal polynomial

mixing density estimator

gop (O) (C(O)/w(O)) wo, jPwo jO), "1000000 (J*
j=O

( 18)

where is a positive constant (truncation parameter) which tends to 00 as -- 00. The
following proposition gives an upper bound on the convergence rate of g , n'

Proposition 1

Suppose liC2/wll1 00 00 and Ilgllw 2 00 00, Let gop, n be as in (18). Then

llg gll ':n 1 L max(k
wo, /q(x)F+ L 

j=O j=mn

with kwo, j, x and hwo, j as in (15) and (17) respectively,

Remark 2. The motivation for (18) originates from Walter & Hamedani (1989) who
proposed a similar class of estimators. They also obtained a result analogous to proposition

We now study the performance of the estimators gop, n with respect to the following

non-parametric classes of mixing density functions. For positive constants IX and
= 1

, . . .

, we define ~(IX , M, wo to be the set of all probability density functions 

such that Ilg Ilw, 2 00 00 and J')
00 with wo, as in (17). We note that this

class implicitly depends on the discrete exponential family of interest, in particular on C(O).

This ellipsoidal class is chosen mainly for reasons of mathematical tractability, However
ellipsoid conditions can amount to the imposition of smoothness and integrability require-
ments, see for example Johnstone & Silverman (1990) p. 258. In our case, we have the
following characterization.

Proposition 

Let m ~ I and Wwo, J7~0 
be as in (15). Suppose there exist constants V j ~m and another

sequence of (normalized) complete orthogonal polynomials Ww L": 0 
with weight function WI

such that

(PWI jO)W1 (o))(m) 

= ( 

l)m j+m, mPwo, j+m (8)wo (O), Vj~O (19)

and

1X1 00 inf j, m Iii"

,: 

sup j, m Iii" 00 1X2,lpm j';m
(20)

where , 1X1 and 1X2 are positive constants, If Ilh(m) llwl, 2 00 00 and

0= lim h(m- (O)(pw . (O)W1 (O))(i- 1)= 
lim h(m- i)(O)(pw . (O)W1 (O))(i-6-0+ t. B-O"

(21)

for 0 00 

.: 

m and j then

00 1/2 00 1/2

1X1 .: W llw,, ': 1X2 
j2" (22)

where hwo,j is defined as in (17).

~ Board of the Foundation of the Scandinavian Journal of Statistics 1997.
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Remark 3. It is shown in the appendix that (19) and (20) satisfied by (i) the classical
orthogonal polynomials of Laguerre with 

IX = m/2 and (fJ) fJPe - fJ)o 0 and (ii)the classical orthogonal polynomials of Jacobi with 
IX = and (fJ) fJP (fJ* fJ)P2 where

)0 - 1 and 
Pj )0 - = 1 , 2. In general , IX and become functions of each other under (19)

and (20), although they are two independent parameters in the definition of ~(IX
, M, wo

For the rest of this section, we shall assume that is suffciently large so that
~(IX , M, wo is non-empty. The next two theorems and their corollaries establish upper
bounds on the convergence rate of 

gop over the class of mixing densities ~(IX , M, w

Theorem 2

Suppose I/C /Wl/1 00 00. Let gop
n be as in (18) and

max log (lkwO, j, x I/q(x)) 

.: 

Po log O::x )::mn

for some constant 000 Po 00 1/2 where W
o is as in (14). Then

(23)

sup g I/gop gllw

: g 

E ~(IX , M, w

)j 

O(1)(m;" (2P 1)/2

Coronary 1

Suppose fJ* = 00 w(fJ) e -PC (fJ)e e and wo
(fJ) fJPe- e withP 

:: -

1. Let Wwo,
))'==0 be the

sequence of (normalized) Laguerre polynomials on 
, (0) with weight function wo, goP

, n as in
(18) and

q(x)Yoyfex!) )0 1 "Ix ~O

for constants Yo and Y1' Then by choosing m = b log with 000 b .: Po /log (2yd and
000 Po 00 1/2 we have

sup g Ilgop, n I/w, 2 ~(m/2, m, M, Wo

)) 

0(1)(1/10g n)mI2

Theorem 3 is a specialization of theorem 2 which proves to be useful when 

fJ* 00 00.

Theorem 3

Let g OP
, n be as in (18) and that for some constant' 

)0 1

max . 
j, x 00 

,2j Vj ~ 0
X:!J (24)

where W
o is as in (14). Suppose further that

max log (1/q(x)) log' .: Po log x::mn (25)

with constant 000 Po 00 1/2. Then

sup g Ilgop n - gl/w

: g 

E ~(IX , M, wo

)) 

O(m;"

Coronary 2

Let gop
n be as in (18) and that (24) holds for some constant ')0 1. Suppose

q(x)YoYfex!)y)o "Ix ~ 0
(26)

for constants Yo, Y1 ~ I and y. Then

(a) if y = 0 by choosing m = b log n with 0 00 .: Po /log (Y1 and 0 00 Po 00 1/2 we have
sup 

g I/goP. n I/w. 2: E ~(IX , M, WO

)) 

O( 1)(1/10g n)"

~ Board of the Foundation of the Scandinavian Journal of Statistics 
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(b) if 0 00 00 00 by choosing m = t5 log n/loglog n with 000 t5 00 ly and 0 00 Po 00 1/2

have

sup g Ilgop, n gllw

: g 

E ~(IX , M, wo

)j 

= O(l)(log log n/log n)"

Remark 4, The negative bi,omial and Poisson mixtures satisfy (26) with = 0 and 1

respectively.

Remark 5. The classical orthogonal polynomials of Jacobi satisfy (24).

The next theorem complements the above results by establishing lower bounds on the local
minimax convergence rate over the class of mixing densities ~(IX , M, wo under the
condition that (19) and (20) hold.

Theorem 4

Let w: fJ*) --R+ be a measurable function such that 
Ilwlll 00 00 

and Ilwo 00 00 with Wo as

in (14) and \1wo,
L": 0 

be a sequence of (normalized) orthogonal polynomials with weight

function Wo such that (19) and (20) are satisfied. Suppose there exists an open interval where
w is strictly positive and m times continuously diferentiable, Then for sufficiently large M, we

have

lim inf(logn)m fsup Ilgn Ilw :g E ~(IX , M, wo

), 

Ilg go Ilw,

': 

M(logn) -m )0 0
n-oo 

for each interior point go of ~(IX , M, wo ), where the infmum runs over all possible estimators

gn based on X

' . " 

Following Hengartner (1995), the next theorem gives conditions for the sharpening of the
lower bounds of theorem 4 when fJ * 00 00.

Theorem 5

Let fJ* 00 00 w: fJ*

-- 

be a measurable function such that Ilw 111 00 00 
and Ilwo 111 00 00

with Wo as in (14) and \1wo,
L": 0 

be a sequence of (normalized) orthogonal polynomials with

weight function Wo such that (19) and (20) are satisfied. Suppose

q(x)(x!)' 00 'to 'tf, "Ix (27)

for strictly positive ' constants 'to, 't1 and't and that there exists an open interval where w is
. strictly positive and m times continuously differentiable. Then for suffciently large M, we have

lim inf (log nilog log n)m sup Ilgn Ilw, 2 E ~(IX , M, WO

)) 

)0 0
n-oo 

where the infmum runs over all possible estimators gn based on X

. . .

We close this section with the following consequence of corollary 2, remarks 3 and 5 and
theorems 4 and 5. Suppose fJ* 00 00. Let

w(fJ) (fJ)f-P' (fJ* fJ)fJ-P "1000 fJ 00 fJ*

with )o = 1 , so that (19) and (20) hold for (fJ) fJP'(fJ* fJ)P and the Jacobi
polynoITials \1wo, J.f' o.

If q(x)yoyf)o 1 "Ix ~ 0 for constants Yo an Y1, then the minimax convergence rate with
respect to Il-w, 2 loss is (l/log n)m for mixing densities in the class ~(m , m, M, wo where 

is as in (14).

~ Board of the Foundation of the Scandinavian Journal of Statistics 1997,
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On the other hand, if q(x)Yoyf(x!)Y)o 1 "Ix ~ 0 and q(x)(x!)' 00 "10"11 "Ix ~ 0 for constants

Yo, Y1, "10' "11 and 000 Y, "1 00 00 , then the minimax convergence rate with respect to Il-w, 2 loss
is (log log n/log n)m for mixing densities in the class ~(m , m, M, wo

), 

We note that both
minimax rates are attained by the orthogonal polynomial miing density estimators gop
cprollary 2,

4. Finite sample performance

A key consequence of the results of sections 2 and 3 is that both the kernel and orthogonal
polynomial mixing density estimators, that is gK, and gop respectively, are capable of
achieving (or almost achieving) the minimax rate of convergence. However, even with this
property the minimax convergence rate of these estimators is logarithmic (not polynomial).
This leads us to the following problem: typically how large must a sample be in order that
the desired asymptotics of these estimators (as described in the previous two sections) can
take effect.

1. Kernel mixing density estimators

In order to gauge typically how well the kernel mixing density estimators perform in practice
we focus on the problem of estimating the mixing density of a negative binomial mixture
with 0* = 1 and C(O) = 1 - with respect to integrated squared error, that is 

lin . To
construct the kernel mixing density estimator , n' we take

k(y)= sin( X, V-ooooyoooo,

Our motivation for such a choice of is its relative simplicity and that (3) and (4) hold with
1X0 = 2. We observe from (6) and (7) that an upper bound on the finite sample performance
of , n can be obtained by investigating how close

, O)/C(O))/\O 00 00 g(O) (28)

is to O. In this case we take g(O) = 1\000 00 1) and use

ERR = (1/10) L \E (X1' O. li 05)/C(0. li - 0,05)) -
i=1

as an approximation to (28).

Remark 6. The reason for such a choice of is that we feel that the uniform distribution
is arguably one of the distributions that any reasonable estimation procedure should be able
to estimate adequately well.

Computations show that in order to have ERR 0.1 , we need 17. Since 

(1/2) log this implies that the sample size must be astronomically large and is quite
impossible to obtain in practice.

This presents a disappointing setback for the practical implementation of n' However
it should be noted that this can be due to a possibly inappropriate choice of the kernel and
that it does not eliminate the possibility that there exist other kernels which give dramatically
better results.

~ Board of the Foundation of the Scandinavian Journal of Statistics 1997.
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2. Orthogonal polynomial mixing density estimators

We observe that the integrated mean squared error of the orthogonal polynomial mixing
density estimators has a simple closed form expression. In particular, we observe as in (32)
that

fO 

(gop (O) g(O)Fw(O) dO

= fO 

(O)W(O) dO 

O \E

(n n(E wo, )Fj,

The right hand side of (29) enables us to compute the integrated mean squared error of gop, n

in any given situation. We ilustrate this below with two examples.

(29)

Example 1. This example deals with the problem of estimating a mixing density of a

negative binomial mixture with 0* = 1 and C(O) = 1 - using integrated squared error loss.
In this case the orthogonal polynomial mixing density estimators are given as in (18) where

\Pwo,Jt~ o corresponds to the Jacobi polynomials with weight function (O) = (1 - 0)2

"10 00 00 1.

Tables 1 , 2 and 3 give the integrated mean squared error of gop for sample sizes

= 1000 , 10 000 and 100 000 as well as for truncation parameters 0 .: .: 4.

Example 2. This example deals with the estimation of the mixing density of a Poisson

mixture with 0* = 00 using integrated weighted squared error loss Ilgn , 2 where

Table 1. g(O) = 1

Truncation parameter 

Sample size 

1000 251 128 330 5.186 110, 752
10 000 250 113 089 555 11.00

100 000 250 065 091 1.35

Table 2. g(O) (n/2) sin (nO)

Truncation parameter 

Sample size 

1000 0.48445 02041 32504 16375 128.20208
10000 0.48378 00333 03352 61638 12, 82021

100 000 0.48371 00162 00437 06164 28202

Table 3. g(O) exp (O)/(e - 1)

Truncation parameter 

Sample size 

1000 558 291 0.431 701 126.007
10000 558 277 0.184 660 12, 663

100 000 558 275 159 0.156 1.29

~ Board of the Foundation of the Scandinavian Journal of Statistics 1997.
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Table 4. gee) exp (-

Truncation parameter 

Sample size 

500 08383 02271 01030 01426 03335 08570 22609
1000 08358 02177 00775 00778 01684 04289 0.11305

10000 08336 02093 00546 00195 00198 00436 01132
100 000 08334 02084 00523 00137 00049 00051 00115

w(O) e - "10)0 O. In this case 1Pwo,

j jj": 

0 corresponds to the Laguerre polynomials with

weight function (O) Table 4 gives the integrated mean squared error of the estimator

gap, n when g(O) "10)0 0 for sample sizes = 1000, 10 000 and 100000 as well as for
O':m .:6.

Remark 7. Examples 1 and 2 (plus other unreported ones) indicate that gop perform well
for sample sizes ~ 1000 as long as defined as in (16), can be reasonably approximated
by a low degree polynomial and that the optimal truncation parameter is used.

5. Estiatig the optial truncation parameter

In this section, a way is proposed to estimate the optimal truncation parameter for the

orthogonal polynomial mixing density estimator gop, n' as given in (18), where is defined
to be the value of the truncation parameter which minimizes 

Ilg , n II 2' We write

JX1 (n 1)(E JX1 Wj. (30)

We observe from (29) that o t

.: 

Lj~o t

j' 

for all 0, This implies that can be

determined if the sign of Lj~a t is known for each 

.: 

b, Let be the unbiased estimator
of based on 

,...

, t" =Li~i I' VO.:i.:j and (t" be the unbiased

estimator of the variance of i"
i, 

Let 0 00 IX * 00 1 and be the largest possible constant

satisfying the inequalities

max log (Ikwo, l/q(x)) ,:po logn ':P 10gn (31)

for positive constants Po 00 1/2 and Pl' Our algorithm for estimating is as follows:

Step 1, Set =0 and 

Step 2, Compute Y=t" nl, U(t" nl,

)' 

where 4i(z I-IX * and 4i denotes the
distribution function of the standard normal distribution.

Step 3. If Y 00 0 and ': B then set n2, n1 n2 + 1 and then set n2 n1' Let
Y=t" nl, u(t" nl,

,) 

and return to the start of Step 
Elseif Y ~ 0 and ': B n, then increase n2 by 1 , compute nl, n2 u(t", nl,
and return to the beginning of Step 3.

Elseif n )o Bn, then the estimate of the optimal truncation parameter is given

by 

Endif

Remark 8, The above algorithm can be thought of as a successive sequence of hypothesis
tests each at levellX* where the null hypothesis always has fewer terms than the alternative.

~ Board of the Foundation of the Scandinavian Journal of Statistics 1997.
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Remark 9. The constant can be chosen in the following manner. Under the conditions
of corollary 1 , take Po log n/log (2Yt). Under the conditions of corollary 2(a) and (b),
we take Po log n/log (Y1 0 and (Po log n/log log respectively.

Remark 10. The closer IX* is chosen to 0, the more likely it is that m: wil underestimate

m:. The previous section (see :rabies 1 to 4) indicates that the risk of g , n is asymmetrical
about m: and that there is a distinct possibility that the risk increases very dramatically with
overestimation. As such we recommend that IX * be chosen to be 0. , 0.05 or 0.10 , which are
in line with the usual values of IX* for classical hypothesis testing.

Let be as in (18) with replaced by m:. The following theorem gives an upper
bound to the convergence rate of 

Theorem 6

Let IIC2jwll1 00 00 and Bn be the largest possible constant satisfying (31). Then

sup g Ilg Ilw E ~(IX , M, wo

)j 

O(B;;"

Remark 11. By choosing in corollaries 1 and 2, we observe that the estimators
essentially retain the convergence rates of gop,

Example continued. Here we have applied the ab9ve algorithm to example 1. In
particular the algorithm is used to determne m: using IX* = 0.05 and = L! log nJ. For
convenience we use 50 bootstrap replications to approximate each a(t;, n 

I. 

)' 

The second

Table 5, grey = 1

Relative frequency of 

Sample size IMSE

1000 231

10 000 0.110
100 000 072

. Table 6. grey (n/2) sin (ne)

Relative frequency of 

. Sample size IMSE

1000 0552
10 000 00320 1.00

100 000 00158 1.00

Table 7, grey exp (e)/(e - 1)

Relative frequency of 

Sample size IMSE

1000 360 0.30
10000 263

100 000 0.142 1.00
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column of Tables 5 , 6 and 7 give the average value of

(1/10) L (g (O.1i 05) g(O. li 05)F,
i=1

for 100 independent replications of 

. .

n- T!1ese values approximate the integrated

mean squared error (IMSE) of the mixing density estimator

jO) (C(O)/w(O)) L hwo, jPwo '/O), "1000000 

We recall that in this case, we have 0* = 1 w(O) = 1 and C(O) = 1 - 

Example continued. The above algorithm is now applied in example 2 with IX* = 0.

=O, 710gn and 50 bootstrap replications to approximate each 8(t" nt,

)' 

As in example

, the second column of Table 8 gives the average value of

500

(1/10) L exp -(O.1i - 05)(g (0.1i 05) g(O.1i - 0.05)F,

for 100 independent replications of 

. .

These values approximate the integrated

weighted mean squared error (IMSE) of the orthogonal polynomial mixing density estimator

, n' namely Ilg n - gll 2 with w(O) Vf )0 0,

Table 8. g(O) exp (-

Relative frequency of 

Sample size IMSE

1000 0190
10000 00455

100 000 0011

Both of the above Monte Carlo studies indicate that the risks of the orthogonal
polynomial mixing density estimators g , n compare well to the ones based on the optimal

truncation parameter.

We conclude with the remark that in general the following two conditions do not hold:
jO) ~ 0, "10000 00 0* and 

. g

jO) dO = 1. As such the accuracy of estimate , n

can be further gauged by how close the above two conditions are to being satisfied.
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Appendix

Proof of proposition 1. We observe that

mn 

Jo 

p, neO) g(O)Fw(O) dO 

Jo L
wo, jPwo, (O) h(O) wo (O) dO

= I wo, wo, + f 0 j=mn (32)

The last equality follows from the completeness of \Pwo,Ji~ o' Since

1 "
wo,

'- 

i=1

the right hand side of (32) is bounded by

L E jXd) )=0 j=mn
':n max(k /q(X)J2+ L 

j=O ) j=mn
This proves the proposition.
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Proof of proposition 2. We observe from (19), (21) and repeated integration by parts that

Jo 

h(m)(fJ)pw,
.ifJ)W1 (fJ) dfJ 

= (-

l)m Jo h(fJ)(Pw, .ifJ)W1 (o))(m) dfJ

= Vj+m, m Jo h(fJ)Pw (fJ)WO (fJ) dfJ

= Vj+m, m wo, j+m' Vj ~ o.

From the completeness of tPw" J.io, 
we get Ilh(m)II 2 = EJ;"m vJ.m

j' 

Now (22) follows
immediately from (20).

Proof of remark 3. We begin with Laguerre polynomials.

Laguerre polynomials. Suppose (fJ) fJPe - with fJ)o 0 and p)o - , is the weight

function of the normalized Laguerre polynomials

Pwo .ifJ) 
r(p 

1/2 

f ( Vj ~O,
x=O \j 

For ~ 0 and ~ 1 , we write WI (fJ) fJP+me -

PWI .ifJ) rcP 

1/2 

x~o J x 
and

j+m

(j 

m)!
(rcp + l)f 

rlrcp + 

+ l)f + 

) Jl/2
Then (19) folios from the Rodrigues ' formula for Laguerre polynomials and (20) holds fot
IX = m/2.

Jacobi polynomials. Suppose !:o (fJ) = fJP'(fJ* fJ)P with PI )o -1 )o and
000 fJ 00 fJ. 00 00, Then the orthogonal polynomials with Wo as the weight function correspond
to the normalized Jacobi polynomials

(fJ)=C. 
j+P

(fJ*

)-j j(j-

l)"' (j-x+l) j+Pl
fJj-X(fJ- fJ*PWO,

) ),

Pl, P2 j 
/:'0 (P2 1)(P2 + 2)" . (P2 x) x 

where

(2j P1 P2 + l)r(j + l)r(j + P1 P2 + I) l/2 if 

~ IPI, P2 (fJ*)P, +P2+ 1 r(j PI + l)r(j + P2 + i)

and is equal to

r(PI P2 + 2) I/2 if 

= O.
(fJ*)Pl+P2+1

rcPI + l)r(P2

For ~ 1 , let PWl, , denote the set of normalized Jacobi polynomials with weight
function

WI (fJ) fJP' +m (fJ* fJ)P "10 00 fJ 00 fJ*

and

j+m m = (fJ*

(j 

m)IC;, 
PI +m, P2+m /U!Cj+m, p" P2
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Then (19) follows from the Rodrigues' formula for Jacobi polynomials and (20) holds for
IX =m.

Proof of theorem 2. We first observe from (23) that

max ..2 =O(mn 2PO-i. wo, l, x IJ 
)=0 x,!j

(33)

We also observe that

sup 

: g 

E ~(IX , M, wo O(m;
=mn

(34)

Now the theorem follows from (33), (34) and proposition 1.

Proof of corollary 1. From the properties of Laguerre polynomials, we have

(j 

+ P
1/2

wo, /q(x)I.:YoY\;-x 

Lr(P+l) 

l/2 1/2

= Yoyf . Il (1 + Pi- r(p + 1) fI (1 + Pi-l=x+1 1=1

1/2 1/2

.: 

YoY Il (1 + Pi- TCP + 1) Il (1 + Pi-l=x+1 1=1
(35)

Here we follow the convention that TIn'xl (1 + Pi- = 1 if )o X2' We further observe that
there exist positive constants cT and c~ such that

cTl.: 
Il (1 + Pi-

.: 

c!jP Vj ~ 1.
i=1

Thus it follows from (35) that

log (Ikwo, l/q(x)) =m (1 +0(1)) log(2Y1 )':P0 (1 +0(1)) logn,
OE;x J:Smn

This proves (23) and the corollary follows from theorem 2.

Proof of corollary 2, If = 0, we observe that

max log (1/q(x)) +m 10gC ':m (l +0(1)) log (YI C) ':Po (1 +0(1)) logn.

This proves (25) and (a) follows from theorem 3. The case of 0 00 00 00 is similar and is
omitted.

Proof of theorem 4, Let 000 00 0 00 00 00 00 0* be fixed constants such that 

strictly positive and times continuously differentiable on 

, ( ), 

Define

, v (O) 
1 exp( - vO)r(u),

gu, v (0) \Xo (O)ll, u, v (O) Xl (O)h , v (O) (0)12, u, vCO) Jfc(O),

where X/B) I\O

.: 

000 O .J and u, v' j = 1, , are polynomials each of degree (2m + 1)

such that gu, v is times continuously differentiable. Let go be an interior point of
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~(IX, , M, wo

), 

Define

3e fJ2 

gOn (fJ) (fJ) 

\j - 

\gun, Vn(fJ) goo (fJ) (WOn l)go (fJ)j,

fJ2 fJ W1n

gln (fJ) gOn (fJ) 

\j - 

Sil Un, Vn (fJ),

fJ2 fJ W2n

g2n (fJ) = gon (fJ) 

+\j - 

cos Un, (fJ),

where goo is a density in ~(IX , M, wo bounded away from 0 in (fJ , fJ ), Wjn are constants

determned by sr gjn (fJ) dfJ = 1 )0 0 = t5 log and with

t5 
SfJ /(fJ

= max 1 log 
(fJ /fJ , log (1 + /fJD /a - 1 - log (fJ fa) /a - 1 - log /a) S .

The rest of the proof is almost identical to steps 1 to 3 of the proof of tho 3 of Loh & Zhang
(1996). It remains only to verify that gjn E ~(IX , M, wo for = 0, 1 2. Motivated by (16),

define for 000 fJ 00 fJ*

3e fJ 
h(fJ)=

\j 

w(fJ)gu (fJ)/C(fJ).

Then using Leibniz rule we have IW ) II WI, 2 = eO( 1), where the O( 1) term does not depend

on e. Since (19) and (20) hold, we observe from proposition 2 that 

;: 

f"h";" 
1/2 eO(1),

where wo, = sr 
h(fJ)Pwo jfJ) dfJ. Writing

gOn, wo,
= Jo 

C(fJ)gOn (fJ)PwojfJ) dfJ Vj ~ 

it follows from Minkowski' s inequality that t=m
j2"

, w
) 1/2

00 M eO(I) as go is an

interior point of ~(IX , M, wo

). 

Thus we conclude that gOn E ~(IX , M, wo for sufficiently

small e. Likewise we have gjn E ~(IX , M, wo

), j 

= 1 , 2.

Proof of theorem 5. Let 0 00 00 00 fJ* and t5 )0 0 be fixed constants such that t5 and

times continuously differentiable on (fJ , fJ and go be an interior point of ~(IX , M, wo

which is also bounded away from 0 on (fJ , fJ

). 

Furthermore we write

= Ly log flog log 
(36)

where )0 0 is a suitably large constant to be determined later, and

mn +2m+2 fJ fJ 

(fJ) L a cos 2nj 
fJ 

\fJ. 00 fJ 00 J, "1000 fJ 00 fJ*

J~O 

where the coefficients are determined by the conditions that is times continuously

differentiable on (0 fJ* and

Jo 

(fJ) dfJ = 0

Jo 

(fJ)f(x fJ) dfJ = 0 "Ix = 0

, .. .

(37)

~ Board of the Foundation of the Scandinavian Journal of Statistics 1997.



Scand J Statist 24 Estimating mixing densities

We observe from DeVore & Lorentz (1993) pp. 98- 102 that

IIT
m) 

b.: 

2n(m + 2)

T11T

II 1100

': 

n O + 5)

11Tn 112'

(38)

(39)

Defie go and go where em;;m 
II 112

1 and e )0 
0 a suitably small

constant (independent of n) such that is a density on (0,

). 

Motivated by (16), define
h(O) w(O)Tn (0) jC(O) for 0 00 000 0* We observe from (38) that )llw!, 2 = eO(1), where
the O( 1) term does not depend on e. Hence arguing as in the proof of theorem 4, we
conclude that E ~(IX , M, wo for suffciently small e.

Next we observe from (I), (27), (36) and (37) that for A )0 1 and suffciently large

LTI

f(Xj;gn
.: II 

2 max ~lJ'Xj, l";J";n

1- O(I)n(O* 'tl )mnj(m

!)"

= 1 +0(1).

Finally we observe that Ilgn l - 11 2 ~ 
(et5 )(log log njlog n)m and now theorem 5

follows from lem. 1 of Zhang (1995).

Proof of theorem 6. Let E ~(IX , M, wo and wo, be as in (17). Defie for each )0 0

max U: O':j.: Bm h )o (log n)-P

(P) 

= 1. 0 
if U: O.:j 

.: 

n, h )0 (log n) -P oF cp,

otherwise.

We shall first show that

sup ooj (P)): g E ~(IX , M, wo

)j 

= O(l)(log n)2(1 +P) 2Po- (40)

Since (40) clearly holds when (P) = 0, it suffces to assume that (P) ~ 1. Let

, i ;~i t , I and' a(t" be the standard deviation of t"
i, 

We observe from (30) and the
definition of wo, that sup j,t(f)

: g 

E ~(IX , M, wo), O':j ':j (P)) .: - (log n) -P/2 for
. suffciently large n. Also

J"!(f)-
ooj (P))': L P (t" j+ l j,t(/I (t" j+ l j,t(f ~ 0)

j=O

J"!(f)- t. 8(t.
= L P J+l J,, (f n J+l (f) J+1 (/IO a(tn j+ l j,t(f)) a(tn,

j+ 

j,t 

.. 

j+1 j,(P) 

a(tn j+ l j,t(f

.: 8(1 +o(1))B (1 + 4z;. )(log n)2P sup \ (t",j+1 j,(f) ): O.:j ooj (P) J, (41)

uniformly over E ~(IX , M, wo

)' 

(40) now follows from (41) and the observation that

sup \ a 2(t" j,t(j

): g 

E ~(IX , M ), 0 .:j ooj (P)) O((log n)2
2PO-
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In a similar manner, we have

sup L h (,f ooj): g E (IX, m, M, o(B;;2"

J= 1

Next as in (32), we observe that

(42)

Jo 

(g!Jp, n
(fJ) g(fJ)Fw(fJ) dfJ

':E max.lk /q(x)F+ L 
j=O O xE;J 

j= 

Bn + 1

L h ./\m oojj .
j=(mA'+l)vm j=

(43)

Conditioning on whether or not 
(P), we observe using (40) that for suffciently large

p, 

the third term on the right hand side of (43) is 
bounded by

ooj (P)l + (log n)- 0(B;;
(44)

uniformly over g E ~(IX, m, M, wo as -- 00. The theorem now follows from (42), (43) and

(44).
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