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Abstract

The thresholds for mathematical epidemiology models specify the crit-
ical conditions for an epidemic to grow or die out. The reproductive
number can provide significant insight into the transmission dynamics
of a disease and can guide strategies to control its spread. We define
the mean number of contacts, the mean duration of infection, and the
mean transmission probability appropriately for certain epidemiologi-
cal models, and construct a simplified formulation of the reproductive
number as the product of these quantities. When the spread of the
epidemic depends strongly upon the heterogeneity, and the expressions
for the reproductive number become correspondingly more complex. In
this article we formulate a model with different heterogeneous struc-
tures and demonstrate how to define the mean quantities for an explicit
expression for the reproductive number. We derive an explicit formula
for the reproductive number employing the spectral radius of the next
generation operator.

Keywords: Reproductive number; Infection-free equilibrium; Spectral ra-
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1 Introduction

One of the fundamental questions of mathematical epidemiology is to find
threshold conditions that determine whether an infectious disease will spread
in a susceptible population when the disease is introduced into the popula-
tion. The threshold conditions are characterized by the so called reproductive
number, the reproduction number, the reproductive ratio, basic reproductive
value, basic reproductive rate, or contact number, commonly denoted by R0 in
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mathematical epidemiology [1, 5, 14]. The concept of R0, introduced by Ross
in 1909 [20], is defined in epidemiological modeling such that if R0 < 1, the
modeled disease dies out, and if R0 > 1, the disease spreads in the population.
There have been intensive studies in the literature to calculate R0 for a wide
class of epidemiological models of infectious disease [2, 3, 5, 6, 9, 10, 11, 12, 13].
In mathematical models, the reproductive number is determined by the spec-
tral radius of the next generation operator in continuous models and, in par-
ticular, is determined by the dominant eigenvalue of the Jacobian matrix at
the infection-free equilibrium for models in a finite-dimensional space [8]. It
can also be obtained, in certain models, by suitable Lyapunov functions [11].
In this article, we use the SIS and SIR models as a basis [4, 7] and formulate a
new heterogeneous models to demonstrate how different cases can be treated
so that an appropriate reproductive number can be estimated.

2 Disease Transmission Model with n Patches

In Fig. (1) we consider an new model with different heterogeneous structures
for HIV transmission in a population of individuals who are at high-risk for
HIV.
The following system of ODEs describes this new model,

dS1

dt
= μS0

1 − μS1 − δ1S1 − λ1S1 + α1I1,

dSi

dt
= μS0

i − μSi − δiSi − λiSi + δi−1Si−1 + αiIi ; 2 ≤ i ≤ n − 1,

dSn

dt
= μS0

n − μSn − λnSn + δn−1Sn−1 + αnIn,

dI1

dt
= λ1S1 − (μ + α1 + γ1 + ε1)I1, (1)

dIi

dt
= λiSi − (μ + αi + γi + εi)Ii + εi−1Ii−1 ; 2 ≤ i ≤ n − 1,

dIn

dt
= λnSn − (μ + αn + γn)In + εn−1In−1,

dRi

dt
= γiIi − μRi ; 1 ≤ i ≤ n,

where

λi = rβi
Ii

Ii + Si + Ri

(2)

Figure (1) illustrates the system (1). This system is nonlinear due to the form
of λ,

is.
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Figure 1: A schematic of system (1). Here S ,
is are the susceptibles, I ,

is are the
infectives, R,

is are the removeds, μ > 0, a constant, is the death rate, μS0
i > 0,

constants, are the migration terms, γi, constants, are the removal rate from
Ii to Ri, αi, constants, are the removal rate from Ii to Si, δi, constants, are
the removal rate from Si to Si+1, εi, constants, are the removal rate from Ii to
Ii+1, and λi = rβi

Ii

Si+Ii+Ri
are the infection rate.

2.1 Reproductive Number

We derive an explicit formula for the reproductive number of infection by
determining the spectral radius of the next generation operator of system (1)
with (2) as follows.
System (1) has an infection-free equilibrium, given by,

E0 = (S1, S2, S3, ..., Sn−1, Sn, I1 = 0, ..., In = 0).

Where S1 =
μS0

1

μ+δ1
, and Sn = μS0

n+δn−1Sn−1

μ
. Linearizing system (1) around the

infection-free equilibrium, we have the Jacobian matrix,

J =

[
A B
0 C

]
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where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−μ − δ1 0 0 · · · 0 0
δ1 −μ − δ2 0 · · · 0 0
0 δ2 −μ − δ3 · · · 0 0
...

...
. . .

. . .
...

...
0 0 0 δn−2 −μ − δn−1 0
0 0 0 · · · δn−1 −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

B =

⎡
⎢⎢⎢⎢⎢⎣

−rβ1 + α1 0 0 · · · 0
0 −rβ2 + α2 0 · · · 0
0 0 −rβ3 + α3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −rβn + αn

⎤
⎥⎥⎥⎥⎥⎦

and

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

rβ1 − a1 0 0 · · · 0 0
ε1 rβ2 − a2 0 · · · 0 0
0 ε2 rβ3 − a3 · · · 0 0
...

...
. . .

. . .
...

...
0 0 0 εn−2 rβn−1 − an−1 0
0 0 0 · · · εn−1 rβn − an

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

with ai = μ + αi + γi + εi ; 1 ≤ i < n and an = μ + αn + γn.

The stability of the Jacobian matrix at the infection-free equilibrium is
completely determined by the stability of C. Define matrices F and V as,

F = [A1]1×1 and V = [A2]1×1

where,

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

rβ1 0 0 · · · 0 0
0 rβ2 0 · · · 0 0
0 0 rβ3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · rβn−1 0
0 0 0 · · · 0 rβn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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and

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 · · · 0 0
−ε1 a2 0 · · · 0 0
0 −ε2 a3 · · · 0 0
...

...
. . .

. . .
...

...
0 0 0 −εn−2 an−1 0
0 0 0 · · · −εn−1 an

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Then F is a nonnegative matrix and V is a nonsingular M-matrix. Hence the
reproductive number, R0, is equal to the spectral radius of the next generation
operator FV −1 [15], R0 = ρ(FV −1). To determine the spectral radius of FV −1,
we first represent the inverse of V by the following lower triangular matrix,
V −1 = [A3]1×1, where

A3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
a1

0 0 · · · 0 0

m2,1
1
a2

0 · · · 0 0

m3,1 m3,2
1
a3

· · · 0 0
...

...
. . .

. . .
...

...
mn−1,1 mn−1,2 mn−1,3 · · · 1

an−1
0

mn,1 mn,2 mn,3 · · · mn,n−1
1
an

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

with

mi,j = −

i−1∏
k=j

εk

i∏
k=j

ak

.

Now we are ready to derive an explicit formula for the reproductive number
R0. Then we have, R0 = ρ(A4), where,

A4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

rβ1
1
a1

0 0 · · · 0 0

0 rβ2
1
a2

0 · · · 0 0

0 0 rβ3
1
a3

· · · 0 0
...

...
...

. . .
...

...
0 0 0 0 rβn−1

1
an−1

0

0 0 0 · · · 0 rβn
1
an

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Therefore

R0 = max
i=1,...,n

rβi

ai

= max
i=1,...,n−1

{ rβi

μ + αi + γi + εi

,
rβn

μ + αn + γn

}. (3)

In summary, we have the following theorem:
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2.1.1 Theorem

Define the reproductive number R0 as

R0 = max
i=1,...,n

rβi

ai

= max
i=1,...,n−1

{ rβi

μ + αi + γi + εi

,
rβn

μ + αn + γn

}. (4)

If R0 < 1 the infection-free equilibrium is locally asymptotically stable, and if
R0 > 1 the infection-free equilibrium is unstable.
For simple mathematical epidemiological models, the formula for R0 can be
interpreted as the product of the number of contacts per unit of time, the
infectivity of infection, and the duration of infection. For the more complex
model (1), the explicit formula (4) for the reproductive number R0 can also be
interpreted as the product of the mean number of contacts per unit of time, the
total mean infectivity of infection, and total mean duration of infection. We
define the mean duration of infection in each staged-progression-chain as, τ i =
1
ai

, i = 1, 2, ..., n. Then, the total mean duration of infection for the model (1)
is, τ̄ = max

i=1,...,n
τ̄i. Define the mean infectivity for each staged-progression-chain

as, βi = 1
τ i

βi

ai
. Then, the total mean infectivity for the model (2.1) is, β =

1
τ

max
i=1,...,n

βiτ i. Therefore, the reproductive number R0 can be written as, R0 =

rβτ.

2.1.2 Corollary

Suppose we do not have travel from i patch to i + 1 patch or we do not have
travel from Ii to Ii+1, then we have, R0 = max

i=1,...,n

rβi

μ+αi+γi
.

2.1.3 Corollary

Suppose we do not have travel from i patch to i + 1 patch and from Ii to Si,
then we have, R0 = max

i=1,...,n

rβi

μ+γi

2.2 Example

In this Example for explain formula (4) we use the following model parame-
ters, n = 4,S0

1 = 4000, S0
2 = 3000, S0

3 = 2000, S0
4 = 1000, S1(0) = 3500, S2(0) =

3000, S3(0) = 2500, S4(0) = 2000, I1(0) = 40, I2(0) = 30, I3(0) = 20, I4(0) =
10,R1(0) = R2(0) = R3(0) = R4(0) = 0, μ = 0.001, α1 = 0.04, α2 = 0.03, α3 =
0.02, α4 = 0.01, δ1 = 0.006, δ2 = 0.005, δ3 = 0.004,γ1 = 0.03, γ2 = 0.02, γ3 =
0.01, γ4 = 0.005, ε1 = 0.05, ε2 = 0.04, ε3 = 0.03, and β1 = 0.0012, β2 =
0.0009, β3 = 0.0006, β4 = 0.0006, for R0 < 1 and β1 = 0.014, β2 = 0.0012, β3 =
0.0008, β4 = 0.0007, for R0 > 1.
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Figure 2: (a): R0 = max{0.9917, 0.9890, 0.9836, 0.9836} = 0.9890 < 1 and (b):
R0 = max{1.1570, 1.3187, 1.3115, 1.1475} = 1.5770 > 1.

2.3 Example

Suppose in example (2.2) we have, ε1 = ε2 = ε3 = 0. We take, β1 =
0.0012, β2 = 0.0009, β3 = 0.0006, β4 = 0.0006, for R0 < 1 and β1 = 0.0014, β2 =
0.0012, β3 = 0.0008, β4 = 0.0007, for R0 > 1.
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Figure 3: (a): R0 = max{0.9859, 0.9804, 0.9677, 0.9836} = 0.9859 < 1 and (b):
R0 = max{1.1268, 1.1765, 1.2903, 1.1475} = 1.2903 > 1.
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3 Conclusions

One of the fundamental questions of mathematical epidemiology is to find
threshold conditions that determine whether an infectious disease will speared
in a susceptible population when the disease is introduced into this popula-
tion, and the threshold conditions are usually characterized by the reproductive
number R0. The reproductive number plays an important role in understand-
ing transmission dynamics of epidemics and predicting epidemics spread. In
this article we used the spectral radius of the next generation operator of
infection in finding a formula for the reproductive number.
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