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Abstract
Using the method of separation of variables and a new approach to
calculations of the prolate spheroidal wavefunctions, we study the optical
properties of very elongated (cigar-like) spheroidal particles.

A comparison of extinction efficiency factors of prolate spheroids and
infinitely long circular cylinders is made. For the normal and oblique
incidence of radiation, the efficiency factors for spheroids converge to some
limiting values with an increasing aspect ratio a/b provided particles of the
same thickness are considered. These values are close to, but do not
coincide with, the factors for infinite cylinders. The relative difference
between factors for infinite cylinders and elongated spheroids (a/b � 5)
usually does not exceed 20% if the following approximate relation between
the angle of incidence α (in degrees) and the particle refractive index
m = n + ki holds: α � 50|m − 1| + 5, where 1.2 � n � 2.0 and k � 0.1.

We show that the quasistatic approximation can be well used for very
elongated optically soft spheroids of large sizes.

Keywords: light scattering, non-spherical particles, particle sizing and
shaping, atmospheric optics, particle diagnostics

1. Introduction

Rapid calculations of light scattering by non-spherical particles
are very important in many scientific and engineering
applications (see discussion in [1, 2]). The simplest model of
non-spherical particles—an infinitely long circular cylinder—
is not physically reasonable. However, it appears attractive
to find cases when this model could be useful because the
calculations for infinite cylinders are very simple. Therefore,
we compare the light scattering by elongated spheroids and
infinite cylinders. Previously, such a comparison was made
by Martin [3] and Voshchinnikov [4] for normal incidence
of radiation (perpendicular to the rotation axis of a particle,
α = 90◦).

Our consideration is based on the solution to the light
scattering problem for spheroidal particles by the separation of
variables method (SVM) (see [5,6] for details). A new type of

expansion of the prolate wavefunctions (Jaffé expansions [7])
opens a possibility to calculate the optical properties of very
elongated (cigar-like) particles.

In this paper, we study the optical properties of prolate
homogeneous spheroids with large aspect ratios and compare
them with those of infinite circular cylinders and of spheroids
in the quasistatic approximation.

2. Method

2.1. Prolate spheroid

A prolate spheroid is obtained by rotation of an ellipse around
its major axis. The shape of the particle is characterized by
the aspect ratio a/b where a and b are the major and minor
semiaxes. SVM solutions to the electromagnetic problem
for spheroids published by Asano and Yamamoto [8] and
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Farafonov [5] (see also [6]) are fundamentally distinct. In
the former, the authors used the Debye potentials to represent
the electromagnetic fields. This approach is similar to the Mie
solution for spheres. Farafonov chose special combinations of
the Debye and Hertz potentials, i.e. the potentials used in the
solutions for spheres and infinitely long cylinders, respectively.
All the electromagnetic fields were divided into two parts: the
axisymmetric part not depending on the azimuthal angleϕ, and
the non-axisymmetric part when the integration over ϕ gives
zero.

The computational efficiency of the Asano–Yamamoto
and Farafonov solutions can be compared in the following way
(see [6] for details). Let N be the number of terms in sums
which give the efficiency factors for extinction and scattering
Qext andQsca with a certain accuracy in the Farafonov solution.
Then, to obtain results with the same accuracy, the solution
of Asano and Yamamoto requires ≈2N and ≈5N terms if the
aspect ratio a/b ≈ 2 and a/b ≈ 10, correspondingly. Because
the computational time is proportional to N3 in this case and
t ∝ N2 for the Farafonov solution, the advantage of the latter
is evident, especially for large aspect ratios.

It should also be noted that the convergence of Farafonov’s
solution for spheroids follows that of the Mie solution for
spheres (see table 2 in [9]).

It must be emphasized that the previous calculations
for spheroidal particles with the Asano–Yamamoto solution
were restricted by the aspect ratios a/b � 5 (size parameter
2πa/λ � 30) [10] or a/b = 10 (2πa/λ � 10) [11].

The particle size can also be specified by the parameters
xV = 2πrV /λ (rV is the radius of a sphere of volume equal
to that of the spheroid, λ the wavelength of incident radiation)
or c = 2π/λd/2 (d is the focal distance of a spheroid). The
expressions relating different parameters have the form

2πa

λ
= cξ0 (1)

xV = 2πrV
λ

= 2πa

λ

(a
b

)−2/3
(2)

where r3
V = ab2. The parameter ξ0 depends only on the aspect

ratio a/b

ξ0 =
(a
b

) [(a
b

)2
− 1

]−1/2

. (3)

All cross-sections C (extinction, scattering etc) are
connected with the corresponding efficiency factors Q via the
relation

C = GQ (4)

where G is the ‘viewing’ geometrical cross-section of a
particle (the area of the particle shadow). The factors Q and
geometrical cross-sectionsG depend on the angle of incidence
α (the angle between the direction of radiation incidence and
the particle rotation axis, 0◦ � α � 90◦). The geometrical
cross-section of a prolate spheroid is

G(α) = πb(a2 sin2 α + b2 cos2 α)1/2. (5)

In the case of oblique radiation incidence (α �= 0◦), the
factors depend on the state of polarization of incident radia-
tion: QTM,TE. The superscript TM (TE) is related to the case
when the electric vector �E of the incident radiation is parallel

(perpendicular) to the plane defined by the rotation axis of a
spheroid and the wavevector. Expressions for the factors can
be found in [6].

In order to compare the optical properties of the particles
of different shapes it is convenient to consider the ratios of the
cross-sections for spheroids to the geometrical cross-sections
of the equal-volume spheres, C/πr2

V . They can be found as

C

πr2
V

= [(a/b)2 sin2 α + cos2 α]1/2

(a/b)2/3
Q. (6)

2.2. Infinite cylinder

The extinction, scattering and absorption cross-sections of an
infinite cylinder are, of course, infinite. In order to keep some
physical sense the infinite cylinder is replaced by a very very
long finite cylinder and the cross-sections are calculated per
unit length of an infinite cylinder (see [1], p. 203).

For the infinite circular cylinder, the efficiencies are
usually defined as the corresponding cross-sections per unit
length, ccyl, divided by 2acyl, the diameter of the cylinder [12].

For a finite cylinder of length 2L and radius acyl, Q is
the ratio of the cross-section Ccyl to the normally projected
geometric area of the cylinder, 2acyl2L.

The extinction efficiencies are considered for two cases of
polarization of incident radiation: the E case (TM mode) and
the H case (TE mode) [1, 12]

QE
ext = cEcyl

2acyl
= CE

cyl

2acyl2L
= 2

xcyl
Re

{
bE0 + 2

∞∑
n=1

bEn

}
(7)

QH
ext = cHcyl

2acyl
= CH

cyl

2acyl2L
= 2

xcyl
Re

{
aH0 + 2

∞∑
n=1

aHn

}
(8)

where xcyl = 2πacyl/λ. The coefficients aHn and bEn depend
on the complex refractive index m = n + ki, size parameter
xcyl and the angle α (0◦ < α � 90◦). The expressions for
coefficients are given in [12].

Because of different definitions of geometrical cross-
sections for spheroids and cylinders, the comparison of factors
requires the normalization

Q
TM,TE
sph = Q

E,H
cyl

sin α
(9)

where α �= 0◦.

3. Numerical results

In previous attempts to find the limits of applications of
the model of infinite cylinders [3, 4], particles of the same
thickness were considered, i.e. spheroids and cylinders had
equal parameters 2πb/λ = xcyl = 2πacyl/λ. Martin [3] notes
that the extinction factors for spheroids come to resemble those
for cylinders if a/b � 4 for the normal incidence of radiation
(α = 90◦). However, in order to align the peaks in extinction,
the x scale for cylinders was stretched by a factor of 1.13.

We suggest another method for comparison of the
efficiency factors: to put equal the volume and the aspect ratio
of a spheroid and a very long cylinder, respectively, i.e.

Vsph = Vcyl,
a

b
= L

acyl
. (10)
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Figure 1. Extinction efficiency factors (TM and TE modes) for prolate spheroids (Qext = Cext/G(α)) and infinite cylinders
(Qext = Cext/(2acyl sin α)) as a function of the size parameter 2πacyl/λ = 2πb/λ(2/3)1/3.

From equation (10), we obtain the relation between the size
parameters for an infinite cylinder and a prolate spheroid

2πacyl

λ
= 2πb

λ

(
2

3

)1/3

. (11)

Note that the scaling factor arising in equation (11) ((3/2)1/3 ≈
1.145) is close to that found empirically in [3].

3.1. Normal and oblique incidence of radiation

The extinction efficiency factors for spheroids and infinite
cylinders are plotted in figure 1 for the case of normal incidence
of radiation (perpendicular to the rotation axis, α = 90◦).
There is a similarity of the behaviour of the efficiency factors:
both TM and TE modes converge to some limiting values which
are close to those of infinite cylinders but do not coincide
with them. This occurs if the size parameter is defined by
the relation (11) and the aspect ratio a/b � 5 (a noticeable
difference in factors for a/b = 2 is seen in the bottom panels
of figures 1 and 2).

If we reduce the angle α (figure 2, top and middle panels),
the similarity in behaviour of factors remains although the
ripple-like structure changes. The likeness disappears if we
approach the grazing case: the first peak occurs at smaller size
parameters for cylinders than for spheroids (see also figure 5).
For refractive index m = 1.5 + 0.0i, it takes place if the angle
α becomes smaller than ∼30◦. Because the ripples reduce
with the decrease of the real part of refractive index n or the
increase of its imaginary part k, in these cases infinite cylinders
can be used instead of elongated spheroids at smaller values of
α. However, the difference becomes very large for α � 15◦.
If 1.2 � n � 2.0 and k � 0.1, a linear relation between the

angle of incidence α (in degrees) and the particle refractive
index m = n + ki occurs: α � 50|m − 1| + 5. Then the
relative discrepancy between factors for infinite cylinders and
elongated spheroids (a/b � 5) does not exceed 20% near the
first maximum.

In any case, we can expect resemblance of the extinction
properties of very elongated particles (spheroids and cylinders)
in the case of radiation incidence close to normal if the size
parameters are recalculated according to equation (11).

3.2. Parallel incidence of radiation

Figure 3 shows the extinction efficiency factors for very long
spheroids in the case of incidence of radiation along the
rotation axis of the particles. The behaviour of the factors
is rather regular, and their values smoothly reduce with the
size parameter. There are 25 maxima in the interval 2πa/λ =
0–300, that is totally distinct from the extinction by spherical
particles (cf figure 4). The positions of the maxima for large
particles are determined by the path of light inside the spheroids
(the phase shift of the central ray). Note that the ‘equivolume’
size of particles xV considered in figure 3 is moderate: from
equation (2) it follows that xV ≈ 13.92 if 2πa/λ = 300 and
a/b = 100. However, the path of rays inside a spheroidal
particle is 300/13.92 ≈ 21.5 times longer in comparison with
a spherical particle.

The values of factors in figure 3 are very large. This
is the result of normalization by geometrical cross-section,
which is small in this case and is equal to G(0◦) = πb2 (see
equation (5)). We note that the limiting value of extinction
factors for particles of any shape must be equal to two
(‘extinction paradox’), but as is seen from the inset in figure 3
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Figure 2. Extinction efficiency factors (TM mode) for prolate spheroids (Qext = Cext/G(α)) and infinite cylinders
(Qext = Cext/(2acyl sin α)) as a function of the size parameter 2πacyl/λ = 2πb/λ(2/3)1/3.
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Figure 3. Extinction efficiency factors for elongated spheroidal particles in dependence on size parameter 2πa/λ.

this condition is far from being satisfied, although the tendency
for reduction of Qext is observed.

Figure 4 shows the normalized extinction cross-sections
for spheres and prolate spheroids at parallel incidence of
radiation (α = 0◦). As follows from figure 4 spheres of
the same volume scatter more radiation than spheroids but

the situation changes in the case of another orientation of
spheroids. Note also the absence of ripple-like structure on
curves plotted for spheroids.

The ripple-like structure disappears from the extinction
curves for cylinders as well in the case of nearly grazing
incidence of radiation (figure 5). From figure 5, it is seen
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Figure 4. Normalized extinction cross-sections in dependence on the size parameter 2πrV /λ for spheres and prolate spheroids.

Figure 5. Extinction efficiency factors (TM mode) for prolate spheroids (Qext = Cext/G(α)) and infinite cylinders
(Qext = Cext/(2acyl sin α)) as a function of the size parameter 2πacyl/λ = 2πb/λ(2/3)1/3.

Figure 6. The extinction efficiencies for prolate spheroids and infinite cylinders. The results for spheroids were calculated using the exact
solution and the quasistatic approximation.

that the similarity between elongated spheroids and infinite
cylinders is absent. For tangentially incident radiation, the
positions and strengths of maxima for infinite cylinders do not
coincide with those for spheroids at α = 0◦.

3.3. Quasistatic approximation

The optical properties of extremely prolate and oblate
particles may be approximately calculated using the quasistatic
approximation. This is a generalization of the Rayleigh
and Rayleigh–Gans approximations when the electromagnetic

field inside a particle is replaced by the incident radiation
field (as in the Rayleigh–Gans approximation), taking into
account the polarizability of the particle (as in the Rayleigh
approximation). The expressions for the efficiency factors and
amplitude matrices were obtained in [13]. The range of validity
of the quasistatic approximation is discussed in [14].

Figures 6 and 7 show the extinction efficiency factors
for spheroids calculated with the exact solution and the
quasistatic approximation in the case of normal (α = 90◦)
and parallel (α = 0◦) incident radiation. As we consider non-
absorbing particles, the extinction efficiencies coincide with
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Figure 7. The extinction efficiency factors (left y-axis) for prolate spheroids (mmedium = 1.48 + 0.0i, mcavity = 1.49 + 0.0i, a/b = 10,
α = 0◦) in dependence on the size parameter 2πa/λmedium. The calculations were made using the exact solution and the quasistatic
approximation. The relative error of the calculations of factors in the quasistatic approximation is given by the right y-axis.

the scattering ones, which are in the quasistatic approximation

QTM
sca (0

◦) = c4ξ 2
0 (ξ

2
0 − 1)

9π
|α̃1|2

×
∫ 2π

0

∫ π

0
(sin2 ϕ + cos2 θ cos2 ϕ)G2(u) sin θ dθ dϕ (12)

QTM
sca (90◦) = c4ξ 2

0 (ξ
2
0 − 1)

9π
|α̃3|2

∫ 2π

0

∫ π

0
G2(u) sin3 θ dθ dϕ

(13)
where α̃1 and α̃3 are the polarizabilities,

G(u) = 3

u3
(sin u − u cos u) (14)

and

u = cξ0

√
(cos θ − 1)2 +

(a
b

)−2
sin2 θ (15)

if α = 0◦ and

u = cξ0

√
cos2 θ +

(a
b

)−2
(sin2 θ + 1 − 2 sin θ cosϕ) (16)

if α = 90◦.
Figure 6 shows an enlarged part of figure 2 (bottom

panel) for small size parameters. Here, the results for the
quasistatic approximation are also plotted. It is seen that
this approximation describes rather well the behaviour of
efficiencies for relatively large size parameters (the value
2πacyl/λ = 1 corresponds to 2πa/λ = 5.725 for a/b = 5
and 2πa/λ = 11.45 for a/b = 10).

The extinction efficiencies for optically soft particles are
drawn in figure 7. The results given here show the light
scattering by a spheroidal cavity (mcavity = 1.49 + 0.0i) in
glass (mmedium = 1.48 + 0.0i). As follows from figure 7, the
quasistatic approximation allows us to calculate the optical
properties with relative error smaller than ∼25% in a wide
range of particle sizes.

The range of validity of the quasistatic approximation is
discussed in [14]. It was found that a maximum parameter
xV , for which the quasistatic approximation and exact theory
yielded results coinciding within 1%, can be described by the
following approximate formulae:

xV � 0.02 ln(a/b) + 0.13

(n − 1)0.30
(17)

for prolate spheroids and α = 0◦,

xV � 0.10

(n − 1)0.13 ln(a/b)+0.29
(18)

for prolate spheroids and α = 90◦,

xV � 0.11

(n − 1)0.09 ln(a/b)+0.26
(19)

for oblate spheroids and α = 0◦,

xV � 0.06 ln(a/b) + 0.12

(n − 1)0.23
(20)

for oblate spheroids and α = 90◦.

4. Conclusions

We applied a new method of calculations of the spheroidal
wavefunctions to the study of the optical properties of very
elongated (cigar-like) spheroids. The new approach allowed us
to compare light scattering by prolate spheroids and infinitely
long circular cylinders and investigate the applicability of the
quasistatic approximation for very elongated spheroids.

It is found that the efficiency factors for spheroids and
cylinders have quite similar behaviour for normal and oblique
incidence of radiation, if the aspect ratio of spheroids a/b � 5.
The resemblance of factors arises provided spheroids and
very long cylinders of the same volume and aspect ratio are
considered. The following approximate relation between the
angle of incidence α (in degrees) and the particle refractive
index m = n + ki holds: α � 50|m − 1| + 5, where 1.2 �
n � 2.0 and k � 0.1. In this case, the relative discrepancy
between factors for infinite cylinders and elongated spheroids
(a/b � 5) does not exceed 20% near the first maximum.

It is shown that the quasistatic approximation rather
well describes the extinction by very elongated optically soft
spheroids of large sizes.
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