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Abstract 

 
The dynamic behavior of freely propagating premixed flames with large Lewis numbers was 

computationally simulated using a sixth-order central difference scheme and non-reflective 

boundary conditions.  Results in the linear stage of the instability growth show that the growth 

rate dramatically decreases with increasing Lewis number and that the large activation energy 

excites the pulsating instability and increases the growth rate of the hydrodynamic instability.  In 

the nonlinear growth stage, there exist regimes of stable cell propagation, periodic pulsating 

cellular flames, and irregular pulsating cellular flames as the activation energy is increased.  

Characteristics of these regimes were further studied for the effects of Lewis number on the 

flame front structure in the stable cell propagation regime; the effects of flame pulsation on the 

flow and flame cell structures in the periodic pulsating cellular flame regime; and the complex 

pattern formation in the irregular pulsating cellular flame regime.  It is further demonstrated that 

unsteady pulsating flames can propagate faster than the adiabatic flame when the local stretch 

rate is positive, implying that models based on quasi-steady flame propagation may not correctly 

predict the behavior of unsteady flames with large Lewis numbers.  
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INTRODUCTION 

 
There are two intrinsic instability mechanisms associated with premixed flame propagation, 

namely hydrodynamic instability due to the density jump across the flame front, and diffusive-

thermal instability induced by the disparities between the mass and thermal diffusivities of the 

combustible mixture.  

Hydrodynamic instability was first identified by Landau [1] and Darrieus [2], who treated 

the flame as an interface with a constant propagation speed, and showed that the flame is 

intrinsically unstable to perturbations of all wavelengths.  Since stable flames do exist in the 

laboratory, Markstein [3] reconciled the difference by taking into account of the flame structure 

which has a finite thickness due to molecular diffusion.  General descriptions of the effects of 

stretch on the flame speed and stability at near unity Lewis numbers (Le) were subsequently 

advanced by Clavin and Williams [4], Pelce and Clavin [5], and Sivashinsky [6], using large 

activation energy asymptotics and linear stability analysis.  

Diffusive-thermal instability was first theoretically investigated by Barenblatt et al. [7], 

and then rigorously analyzed by Sivashinsky [8] and Joulin and Clavin [9] for adiabatic and non-

adiabatic flames, respectively, based on the assumption of constant density. The dispersion 

relation obtained from the linear stability analysis shows that cellular instability occurs when the 

Le of the mixture is smaller than a critical value, which is slightly less than unity, while pulsating 

instability occurs when Le is larger than a critical value [8, 9] satisfying the criterion, Ze(Le-

1)>4(1+31/2)≈10.9 for the adiabatic flame, where 2/)( bub TTTEZe −= is the Zeldovich number. 

This criterion was extended by Joulin and Clavin [9] who showed that heat loss can significantly 

reduce the critical value. Furthermore, numerical simulation with constant density [10, 11] 

showed that Sivashinsky’s criterion underpredicts the onset of pulsation as Le increases or Ze 

decreases, which is reasonable.  Pulsating instability of 1D propagating flames was also studied 

for rich hydrogen/air [12] and lean heptane/air [13] flames, using detailed chemistry and 

transport.  Different pulsating modes, with single and double periods, as well as pulsating 

extinction, were identified.  

To understand the development of nonlinear flame instability, various numerical 

simulations based on the Navier-Stokes and the Kuromoto-Sivashinsky equations were carried 

out.  For flames with Le<1, nonlinear flame instability was studied by focusing on the cellular 
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structure formation [6, 14, 15, 16].  Recently, more complicated phenomena on the nonlinear 

flame dynamics including local extinction, cell splitting, and flame lateral movement, were 

identified [17] for small Le flames.  However, there have been very limited studies on the 

nonlinear instability development for flames with Le>1, which are of relevance to lean-burn 

situations involving hydrocarbons that contain more than two carbon atoms.  In Ref. 19, two-

dimensional Le>1 flames were simulated using the compressible Navier-Stokes equations, 

constant properties, and one-step reaction.  Formation of the cellular flame due to hydrodynamic 

instability was demonstrated.  However, neither pulsating instability nor traveling wave was 

observed.  The failure to observe these instabilities was somewhat puzzling because the Ze used 

in the computation, 8.6, was well above the critical Ze of the Sivashinsky criterion, 10.9/(3-

1)=5.45, for Le=3.0.  On the other hand, by using a larger Ze of 12, Rogg [10] showed through 

numerical calculations the existence of pulsating instability.  

Experimentally, the dynamic behavior of freely propagating premixed gaseous flame was 

studied recently for the large Le, lean butane/O2/He mixture [20, 21].  Steadily propagating, 

pulsating, traveling and spinning instabilities were found to develop as the equivalence ratio of 

the mixture approaches the lean flammability limit.  The underlying mechanisms governing such 

behaviors however remain unclear.  

In view of the above considerations, the goal of the present study was to investigate the 

linear/nonlinear flame instability development at large Le, particularly those involving the 

coupling between the hydrodynamic and diffusive-thermal instabilities.  In the following, we 

shall first simulate the linear growth of infinitesimal perturbations and determine the linear 

dispersion relation.  The effect of pulsation on the linear growth rate of the hydrodynamic 

instability is investigated.  Then, three different flame regimes resulting from the nonlinear 

coupling of the hydrodynamic and diffusive-thermal instabilities are examined.  

 
 

GOVERNING EQUATIONS AND NUMERICAL SPECIFICATIONS 
 

In this study, we simulate two-dimensional flames with one-step chemistry.  The computational 

domain is rectangular, with the x- and y-coordinates respectively designating the directions that 

are perpendicular and parallel to the initial planar flame.  The unburned gas is supplied from the 

left boundary and the flame propagates from right to left along the x coordinate.  Unless 
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otherwise stated, the unperturbed flame speed and flame temperature are fixed at 3.98 m/s and 

2,086 K respectively.  The large flame speed was chosen because it promotes the growth rate of 

hydrodynamic instability so that the required computation time is significantly reduced.  The 

activation energy normalized by the product of the universal gas constant and the unburned gas 

temperature (Tu = 298 K) is varied between 70 and 120, with the latter corresponding to lean 

combustion situations. The total length of the computational domain is 80 times of the flame 

thickness. The collision frequency of the chemical reaction is determined for the specified 

laminar flame speed as the eigenvalue of the 1D premixed propagating flame.  The width of the 

computation domain is dictated by the number of cells and the initial cell wavelength.  The 

above procedure in problem specification largely follows those of Kadowaki [16, 19] and Sharpe 

[18]. 

The above physical problem is modeled by the compressible N-S equations.  By 

neglecting viscous dissipation at low Mach number in the energy equation and assuming 

constant transport properties, the species, momentum and energy conservation equations can be 

written as [22]: 
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where t, x and y are respectively the time and spatial coordinates, U the vector of the 

conservative variables, E and F the convective flux vectors in the x, y directions, Ev and Fv the 

corresponding diffusive flux vectors, and S the vector of the reaction source term.  
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where ρ1 and ρ2 are, respectively, the densities of the reactant and the product, ρ  the total density, 

u and v the velocities in x and y directions respectively, E the total energy, p the pressure, Vix and 

Viy the diffusion velocity in x and y directions, 1ω the chemical production rate of the reactant, 

mnτ  the viscous stress, qm the flux of heat conduction in the m direction, Re the Reynolds number 

and Da the Damköhler number.  

The equation of state and the definition of enthalpy for the total energy are given by 
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Mass diffusion is modeled by the Fick’s law and thermal conduction is modeled by the Fourier’s 

law.  The diffusion fluxes and the chemical reaction rate take the following forms: 
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   (3.2) 
where fi is the mass fraction of the ith species, k the thermal conductivity coefficient, Di the 

coefficient of binary diffusion of species i into the mixture, h0,i the heat of formation of species i, 

B the collision frequency, Ea the activation energy, and Ro the universal gas constant.  

The reference quantities for nondimensionalization, designated by the subscript 0, are as 

follows: l0= 80δ is the length of the computational domain, where δ is the flame thickness. l0 is 

the reference length scale; ρ0 the density of the unburned gas and the reference density; 

c0=332m/s a characteristic sound speed; t0=l0/c0 the reference time scale; cp,0=1000 J/K-kg the 

reference specific heat; T0= c0
2/cp,0; µ0=1.0×10-4 J/m-s-K; B0= c0/l0 the reference collision 

frequency; λ0=δ the reference wavelength; Ω0= c0/l0 the reference growth rate; Re=l0c0ρ0/µ0  the 

Reynolds number, and Da= l0/(ρ0c0) the Damköhler number.  

Since the intrinsic flame instability is sensitive to diffusion processes, we adopt a sixth-

order compact central difference scheme [25] to evaluate the convective and diffusion fluxes in 

Eq. 1.  As such, numerical diffusion is negligible compared to physical diffusion.  The governing 

equations were solved by this sixth-order compact central difference scheme and a third-order 

Runge-Kutta scheme.  Pressure is calculated by the equation of state. On the upper and lower 

boundaries, periodic boundary conditions are applied.  On the inlet boundary, flow velocity, 

temperature and mass fractions are specified.  On the outlet boundary, non-reflective boundary 

conditions [26] are employed, and are briefly discussed here.  
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Following Refs. 23 and 27, the conservation equations 1 are first rewritten in the 

primitive form.  By simultaneously diagonalizing the coefficient matrixes, the local one-

dimensional inviscid (LODI) relations on the x boundary for non-conservative variables are 

obtained as,  
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The wave amplitude terms, W1~5, are given as,  

))((

))((

        )(

      )(

5

4

3

2
22

2

1
12

1

x
uc

x
pcuW

x
uc

x
pcuW

x
vuW

x
pf

x
cuW

x
pf

x
cuW

∂
∂

−
∂
∂

−=

∂
∂

+
∂
∂

+=

∂
∂

=

∂
∂

−
∂
∂

=

∂
∂

−
∂
∂

=

ρ

ρ

ρ

ρ

                                                 (5) 

 At the right boundary for the present subsonic combustion problem, there are four 

outgoing waves, W1~4, which are calculated by the above formulas.  There is one incoming wave, 

W5, which cannot be determined by the given physical boundary conditions, and is model by the 

formula [23], 

0
2
max5 /))(1(25.0 lcppMW ∞−−=                                        (6) 

where Mmax is the maximum Mach number in the computational domain, p∞ the pressure at the 

right infinity, c the local sound speed, and l0  the domain size.  

The above non-reflective boundary conditions for inviscid flows are different from those 

in [24].  Since the multi-species conservation equations and the flow equations were solved in an 

uncoupled manner in [24], the boundary conditions in [24] cannot recover the nonreflective 
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boundary conditions for the single species given by Poinsot and Lele [23].  However, in the 

present results, if there is only one species, the LODI relations are the same as the results of Ref. 

23.  

The computational domain is uniformly embedded with 801×255 grid points.  In our 

computation, since the grid is so dense that it can successfully resolve the flame structure, the 

computation is stable and robust.  We have carefully tested the convergence and accuracy of the 

current numerical method by doubling the grid density and halving the time step, and have 

observed that the result remained the same.  Therefore, we conclude that our simulation is 

accurate and robust.  

Computation is started by calculating the one-dimensional flame structure using the same 

code.  The two-dimensional simulation is then conducted by adding a small initial perturbation to 

the one-dimensional flame structure.  The influence of Le on flame evolution is studied by 

setting it to be 1.0, 1.5 and 3.0, respectively.  The Prandtl number is set to be unity. 

The initial perturbation is a small flame front displacement  

)sin(0 kyA=∆                                                                    (7) 

where A0 is the perturbation magnitude and k the wave number.  The global flame speed is 

computed as:  

∫∫−= dxdy
LY

S
yFu

ω
ρ

1                                                         (8) 

where uρ is the unburned mixture density, FY  the fuel mass fraction of the unburned mixture, yL  

the width of the computational domain, and ω the local fuel consumption rate. 

 
 

RESULTS AND DISCUSSION 
 

1. Validation of Numerical Method 

In this section, we tested and verified the numerical method in three aspects: the overall spatial 

accuracy, the acoustic wave propagation, and the reacting flow problems. 

For the overall spatial accuracy, we adopted the sixth-order compact central difference 

scheme for the first and second order spatial derivatives, as mentioned in the previous section.  

The numerical schemes for the interior points are the following:  

 When 3 < k < N-2 
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where k is the index of the grid, N the total number of the grid in either the x or y coordinate, and 

h the grid size.  When k=1, 2, 3 or N-2, N-1, N, the central difference scheme cannot be applied.  

We applied the third-order one-sided numerical differential scheme.  The detailed derivation on 

this scheme selection can be found in Ref. 25.  By applying Taylor expansion on Eq. 9, the local 

truncation errors are given by:  

For interior grid points: 

...6
1 +∆=′−′ xCff compact                                               (11) 

1loglog6log Cxff compact +∆=′−′                                          (12) 

For grid points at the boundaries:  

...3
2 +∆=′−′ xCff compact                                              (13) 

2loglog3log Cxff compact +∆=′−′                                           (14) 

To verify the above analysis, we first numerically computed the first order derivative of 

the function xf sin=  and compared the numerical result with the exact solution xf cos=′ .  

 In Figure 1, it is seen that when the grid size is reduced, the truncation error decreases.  

By measuring the gradient of the truncation error as a function of the grid size, the accuracy of 

the numerical method for the interior points is found to be between 4th and 5th order.  For the 

boundary points, it is a 4th order method.  Consequently, although the accuracy for the interior 

points is lower than that of the 6th order because of the effect of boundary conditions, the overall 

accuracy of the numerical method is still above 4th order.  

Secondly, we tested the code by a standard shock tube problem.  Here the gas in the 

shock tube is N2.  One half of the shock tube is filled with a high pressure N2 at 0.2MPa, while 

the other half is filled with a low pressure N2 at 0.1Mpa.  The diaphragm is at the center of the 

shock tube and is removed at time=0.  We solved this problem by using both the second-order 

non-MUSCL type Total Variation Diminishing (TVD) scheme and the current compact scheme, 

and then compare the pressure profiles at five different times (Figure 2).  The pressure profiles 
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agreed with each other very well.  This test validated that the current code can accurately 

compute acoustic wave propagation.  

Thirdly, the numerical code was tested by two reacting flow problems: the steady and 

unsteady propagation of a premixed flame.  For the steady premixed flame, the chemico-physical 

parameters for the flame are Le=3.0, Pr=1.0, Ea=70 and B=2.61×106.  We compared the flame 

structure represented by the fuel mass fraction profiles from the standard PREMIX code [29] 

with those from the current code.  In Figure 3, the profile of the fuel mass fraction of the large Le 

flame was compared for these two calculations because it is steeper and the computation is more 

challenging.  It is seen that the calculated profiles overlap very well.  Therefore we can conclude 

that the current code can compute the steady propagation of the premixed flame and predict the 

flame structure accurately.  

For the unsteady flame propagation, we computed the 1D unsteady pulsating flame using 

801 and 1601 grids, respectively.  The chemical and physical parameters used are Le=3.0, 

Pr=1.0, Ea=120 and B= 8.285×109.  Figure 4 shows that there is only very little difference in the 

calculated pulsating flame speed using the two grid sizes.  Figure 5 further shows that the flame 

structures at time=5, 10 and 14 with different grids agree well with each other.  Finally, these 

results remain unchanged with additional tests with further refining of the grid.  These 

validations therefore demonstrate that the current numerical simulation is convergent and robust.   

In the following simulations, we have monitored the global flame speed by Eq. 8 and 

adjusted the inflow boundary velocity to match the instantaneous flame speed.  In this manner 

we were always able to keep the flame in the middle of the computational domain and minimize 

the effect of the boundaries.  

 
2. Lewis Number Effect on Linear Dispersion Relation 

The linear dispersion relation, representing the growth rate of an infinitesimal perturbation as a 

function of wave number, has been theoretically derived through large activation energy 

asymptotic analysis.  When the activation energy is not too large as for most combustion 

reactions, the accuracy of the analytical results may decrease.  Instead, the linear dispersion 

relation can be calculated through numerical simulation [18, 19].  For example, in Ref. 18 a 

rigorous linear dispersion relation that includes the effects of finite activation energy and 

arbitrary Le was obtained by using a numerical shooting method, while in Ref. 19 the linear 
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dispersion relation was computed by measuring the growth rate of the applied perturbation.  By 

using the present numerical scheme which is more accurate, we have computed the dispersion 

relation following the approach of Ref. 19.  The flame front is defined by a nondimensional 

temperature contour of 13.52.  A small initial perturbation, set to be one tenth of the flame 

thickness, is superimposed on a stationary 1D flame structure.  The corresponding perturbation 

amplitude is measured as a function of time, with it growing exponentially (A~ teΩ ) with a 

constant growth rate Ω.  In Figure 6, we chose the same parameters, Pr=0.75, Le=1.0, Ea=70 and 

the thermal expansion ratio ρu/ρb=6, and used the same non-dimensional references as Figure 3 

of Ref. 18.  We computed the dispersion relation and compared it with that of Refs. 18.  It shows 

that the two results agree very well when the wave number is larger than the wave number 

corresponding to the maximum growth rate, the critical wave number.  When the wave number is 

smaller than the critical wave number, our results are slightly smaller than those of Ref. 18. 

Therefore, the present result can accurately compute the dispersion relation and predict the 

unstable wave number range.  

By varying Le, the effect of Le on the linear dispersion relation is obtained and shown in 

Figure 7.  It is seen that when the wave number approaches zero, the growth rate also decreases 

to zero for all Lewis numbers.  This result agrees with the theoretical prediction [6] that only the 

hydrodynamic effect plays an important role at small wave numbers.  The results further show 

that, for a given Le, the growth rate increases when the wave number increases from zero, 

reaches a maximum at the critical wave number, and then decreases monotonically until it 

becomes negative beyond a marginal wave number.  With increasing Le, the growth rate 

dramatically decreases while the critical and marginal wave numbers also decrease, implying the 

corresponding narrowing of the unstable range.   

In Figure 8, the critical wave numbers determined herein are compared with those of 

Kadowaki [19].  The comparison is close, with the present values being slightly smaller for Le>1.   

Our main interest here is on the effects of flame pulsating on the linear growth rate of 

hydrodynamic instability, which was not addressed by ref. 18 and 19.  We have increased the 

activation energy for the Le=3.0 flame from 70 to 82 (Ze=10.04) and simulated the small initial 

perturbation (0.1×flame thickness) growth process for the k=0.0629 flame (Figure 9).  Since Ze 

is above the onset of pulsating instability, the perturbation growth is expected to show the 

characteristics of both pulsating and hydrodynamic instabilities.  Specifically, Figure 9 shows 
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that the flame front does not linearly move forward when it enters a pulsating cycle.  Instead, the 

flame front is seen to move forward, stop, move backward, and then quickly move forward again.  

This quasi-steady cycle repeats as the bulk flame propagates forward.  We shall therefore call 

this regime as the periodic pulsating cellular flame regime, whose characteristics will be further 

discussed later.  The linear growth rate for the bulk flame by the dash line in Figure 9 is 

computed for different wave numbers and plotted in Figure 7 as open circles.  The result clearly 

demonstrates the distinct coupling between pulsating and hydrodynamic instabilities.  The 

growth rate with the pulsating mode coupling is larger than that of flames without the pulsating 

mode.  Therefore, at large Le pulsating instability enhances the growth rate of hydrodynamic 

instability. 

 Figure 10 shows the calculated Ze at the onset threshold of pulsating instability of the 

one-dimensional planar flame.  The pulsating boundary has also been numerically computed by 

Lasseigne  et. al [11] assuming constant density.  The result of Ref. [11] agrees with that of Rogg 

[10] when Le>1.5.  In Figure 10, we compare our results with those of Rogg [10] and 

Sivashinsky’s large activation energy asymptotic formula [8].  Both our and Rogg’s results show 

that Sivashinsky’s asymptotic formula underpredicts the onset threshold of pulsating instability. 

Furthermore, our results are consistently lower than those of Rogg [10] for Le varying from 1.5 

to 3.0, because we considered the variable density effect.  Therefore it can be concluded that the 

effect of variable density reduces the onset threshold of pulsating instability. 

 
3. The Stable Cell Propagation Regime 

Nonlinear effects play an important role in flame evolution.  Depending on the parameter, Ze(Le-

1), we have found that the resulting nonlinear evolution can be categorized into three flame 

regimes: stable cell propagation regime, periodic pulsating cellular flame regime, and irregular 

pulsating cellular flame regime.  

The focus of this section is to study the Le effect on flame evolution in the stable cell 

propagation regime.  The Le varies from 1.0 to 3.0 while the wave number is kept constant at 

0.0629.  The amplitude of the initial perturbation is 0.8 of the flame thickness in order to 

promote nonlinear effects.  Figure 11a shows the flame front evolution process for Le=1.0 from 

time 1 to 233.  It is seen that the initial perturbation quickly grows and at time=30, the flame 

front has evolved from the original small sine wave to a large cellular flame structure.  With 
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further increase in time, cell splitting occurs at the crest at time=50 due to the hydrodynamic 

instability. Finally, at time=233, the original perturbed two large cells split into four cells of 

approximately equal spacing.  The wave number of the stable cell is 0.1258, which is closer to 

the critical wave number of the Le=1.0 flame, k=0.1853 (Figure 7) than the initial perturbation 

wave number (k=0.0629).  

 Similar cell splitting process also occurs for flames with larger Le of 1.5 and 2.0. 

However, with the increase of Le, the growth rate decreases (see Figure 7); and consequently, the 

splitting process is much delayed.  In particular, no cell splitting occurs for Le larger than 3.0. 

For Le=3.0, there is no cell splitting because the initial wave number, k=0.0629, is closer to the 

critical wave number (0.0771) than 2k=0.1258.  To confirm this observation, the initial wave 

number was reduced to 0.0305.  In this case, cell splitting occurs for Le=3.0 and the final wave 

number is 0.0771.  Therefore, it is concluded that cell splitting is favored if the wave number 

after the cell splitting becomes closer to the critical wave number. 

After the instability development, the structures of the final stable cell for Le=1.0, 1.5, 

2.0 and 3.0 are shown in Figure 11b.  It is to be noted that for every stable cellular flame 

configuration, we continued our computation until the stabilization time of the final flame 

structure was larger than 100 and no visible change is observed.  Therefore, we conclude that the 

structure shown in Figure 11b is stable.  Since the final flame cells share the same wave number 

for Le=1.0, 1.5 and 2.0, we have compared the Le effect on the final flame structure.  Figure 11b 

thus shows that, when Le is increased from 1.0 to 2.0, the cell depth decreases.  Mechanistically, 

due to the converging flow at the trough, the local flame segment at the trough region has to 

propagate faster in order to balance the local flow speed.  When Le is unity, the two flame 

elements in the trough preheat the incoming flow, yielding an increase in the local flame speed.  

In addition to this preheating effect, the flame also burns stronger at the trough region for Le>1 

due to stretch effect.  Therefore, the depth of the flame cell is controlled by both preheating and 

Le number effects.   

 

4. The Periodic Pulsating Cellular Flame Regime  

Since the onset of pulsating instability depends on the parameter, Ze(Le-1), by increasing the 

activation energy to a certain value for flames with Le>1, pulsating instability will be excited.  In 

Section 2, Figure 9, we discussed the initial development of the hydrodynamic cells which are 
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also pulsating.  We now investigate the subsequent situation when the hydrodynamic and 

pulsating instabilities are fully developed.  This flame regime is designated as that of the periodic 

pulsating cellular flame.  

Figure 12 compares the histories of the pulsating global flame speed of the two-

dimensional fully developed cellular flame with that of the corresponding pulsating one-

dimensional planar flame, using Le=3.0 and Ea=82.  It is seen that although both flames pulsate 

in the periodic manner, the pulsating frequency of the 2D flame is smaller, while its mean 

propagation speed is larger than that of the 1D flame because its surface area is larger.  

We next study the detailed evolution of the cellular structure and the flame/flow 

interaction in a pulsating cycle.  Figure 13 illustrates the cellular flame front at time=181.1 (solid 

line) and 182.05 (dash line), which correspond to the lowest and highest global flame speeds in 

Figure 12 respectively.  It is seen that at time=181.1 (Figure 14), the converging flow in the 

trough and the diverging flow in the crest caused by the hydrodynamics instability is established.   

When the flame becomes stronger and suddenly propagates forward, the thermal expansion 

significantly changes the flow pattern ahead of the flame, as shown by the velocity vector plot at 

time=182.05 in Figure 15.  The flow in front of the flame crest changes its direction due to 

thermal expansion and this part of the flow is re-directed to the trough region.  Then the flame 

element in the trough region is elongated to balance the incoming flow and consume more fuel.  

This process changes the flame cell structure and the width of the trough periodically.  We also 

observed that the flow can even reverse its direction when the flame pulsates forward, for 

example at point A in front of the crest in Figure 15.  Although this flow pattern is impossible for 

a steady situation, it is the direct result of the unsteady motion of the flame which promotes 

strong interaction between the flow and flame.  It is an essential feature of the flow pattern in the 

flame pulsating cycle.  

The effect of flame stretch on the local flame speed in this flame regime is also examined.  

According to the conventional flame stretch theory, for Le>1 flames, the flame burns stronger if 

the stretch rate is negative and vise versa.  Figure 16a shows the computed local stretch rate [28] 

along the flame front defined at the constant temperature contour, 13.52, at three different times, 

181.1, 181.75, and 182.05, and demonstrates that, because of the converging-diverging flow 

structure, the local stretch rates are negative at the trough and positive at the crest. The 
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corresponding local flame speeds along the flame front at these three different times have been 

computed by the following definition (Figure 16b),  

∫−= ds
Y

S
Fu

ω
ρ

1                                                                 (15) 

where uρ is the unburned mixture density, FY  the fuel mass fraction in the unburned mixture, w  

the local fuel consumption rate, and s the direction normal to the local flame element.  Results 

show that at the trough the flame is the strongest and the stretch rate is negative, which is 

consistent with the conventional concept of stretched flames.  However, at time=182.05, 

although the local stretch rate becomes maximum and positive at the crest, the local flame speed 

is larger than the planar flame speed (0.012).  This result is contrary to the conventional concept 

of stretched flames.  These results therefore suggest that, since the dependence of the local flame 

speed on flame stretch is sensitive to the unsteady transport process, the conventional steady-

state relation between flame speed and flame stretch may not apply for strongly unsteady flames.  

Consequently, the extent of validity in the use of flamelet models based on quasi-steady flame 

description in turbulent combustion needs to be re-examined for strongly unsteady flames.  

 

5. The Irregular Pulsating Cellular Flame Regime 

When the activation energy is further increased, the local pulsation becomes so strong that it 

generates cellular structure and prevents stable cells from developing.  We call this type of flame 

as the irregular pulsating cellular flame.    

The flame dynamics in this regime is studied by setting the activation energy to be 120. 

Figure 17 compares the histories of the flame speeds between the 1D and 2D pulsating flames, 

showing for the 1D flame the characteristics of period doubling, which was observed and studied 

for rich H2/air flames numerically [12].  For the 2D flame, however, it is seen that while the first 

pulsating cycle still exhibits period doubling and overlaps with the 1D flame response, the global 

flame speed of the 2D flame in the later pulsating cycles is distinctively different from that of the 

1D flame. 

To understand the effects of cellular structure on flame pulsation, the detailed 2D flame 

pulsation process is shown in Figure 18 by the reaction contours at time=5.7, 5.9, 6.1 and 6.3, 

respectively.  It is seen that at time=5.7, the pulsation starts to develop.  However, unlike the 1D 

planar flame, it does not pulsate along the entire flame front.  Instead, the pulsation starts from 
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point (a) first, and forms one forward propagating cell at time=5.9.  This cell also travels along 

the lateral direction shown by the arrows.  Then the flame starts to pulsate at point (b) and 

another cell starts to develop.  The two cells collide and both stop the lateral motion.  The 

traveling waves are therefore susceptible to be annihilated by other waves propagating in the 

opposite direction initiated at other points.  Consequently, the traveling wave due to local 

pulsation is irregular and cannot form a continuous pattern.  Since the flame pattern depends 

strongly on the local condition and it changes in each pulsating cycle, the corrugated structure 

does not have a stable or periodic state pattern because the strong pulsating feature of the flame 

results in subsequent local bursts and renders the flame unstable.  Furthermore, because the 

irregularity of the flame pattern results from local pulsations, the regular double peak pattern of 

the global flame speed cannot last (Figure 17).  As such, we call this flame regime the regime of 

the irregular pulsating cellular flame.  

 

6. Experimental Evidence  

Experimentally, three distinct propagation regimes separated by two threshold equivalence ratios 

were experimentally observed for lean butane/O2/He flames (Le≈3.0) [20, 21].  Specifically, 

these three regimes were respectively characterized by steady flame propagation, radial pulsation, 

and rotating spiral waves, which were in turn observed for fuel concentrations larger than the 

first threshold (1.26%), below that of the first threshold and within the range 

1.21%<XC4H10<1.25%, and below the second threshold value of 1.21%<XC4H10<1.22%.  These 

experiment results qualitatively agree with the three regimes identified in the present study in 

that regular flame cells can develop in the periodic pulsating cellular flame regime because 

hydrodynamic instability dominates, while corrugated flame front forms in the irregular 

pulsating cellular flame regime because local pulsating instability dominates.  Furthermore, 

irregular, short time traveling wave pattern was observed in this regime because of local 

pulsation. 

 

CONCLUSIONS 

In this paper, the premixed flame dynamics with large Le was computationally studied, with 

emphasis on the coupling between the diffusive-thermal pulsating instability and the 

hydrodynamic cellular instability.  We first focused on the linear instability growth stage and 
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computationally obtained the dispersion relation for flames with different Lewis numbers. 

Furthermore, we found that the flame pulsation enhances the growth rate of the hydrodynamic 

instability, and variable density reduces the threshold values of the Ze for pulsating instability. 

Secondly, we identified that there are three distinct flame regimes with the increase of the 

activation energy, namely the stable cell propagation regime, periodic pulsating cellular flame 

regime, and the irregular pulsating cellular flame regime.  In the periodic pulsating cellular flame 

regime, the effects of pulsation on the flame cell structure were observed and explained by the 

dominant effect of hydrodynamic instability; while in the irregular pulsating cellular flame 

regime complicated cellular flame front formation and traveling waves along the flame front due 

to local pulsation were observed and explained.  Regimes with similar flame dynamic were also 

experimentally observed for freely propagating lean butane/O2/He flames.  
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Figure Captions 

 

Figure 1 The truncation errors for the compact central scheme at the interior points and 

boundary points 

Figure 2 The acoustic propagation in a shock tube computed by the compact central 

scheme and the TVD scheme. It shows the excellent agreements between the two 

schemes.  

Figure 3 The steady laminar premixed flame structure computed by the current code and 

the standard PREMIX. The results overlap with each other and show the excellent 

agreement.  

Figure 4 The comparison of the global flame speed trajectories of the 1D pulsating 

premixed planar flames. The 1D computational domain is embedded by 801 grids 

and 1601 grids, respectively. 

Figure 5 The comparison of the 1D planar flame structures at time=5, 10 and 14 (marked 

by squares in Figure 4) using two different grids of 801 points and 1601 points. 

The flame structures computed by two different grids overlap with each other.  

Figure 6 The comparison between the current dispersion relation and that from Ref. 18.  

Figure 7 The dispersion relations of the stable cell propagation flames with Le=1.0, 1.5 and 

3.0; Open circles are for Le=3.0, Ea=82 flame in the periodic pulsating cellular 

flame regime. 

Figure 8 The critical wave numbers as a function of Le. 

Figure 9 The perturbation evolution for a Le=3.0, Ea=82, k=0.629 flame in the periodic 

pulsating cellular flame regime at the linear growth stage. 

Figure 10 The comparison of the pulsating onset boundaries.  

Figure 11 (a) The cell splitting process of Le=1.0 flame. 

(b) The final stable cell structures of different Le flames at Le=1.0 (solid line), 1.5 

(dashed line), 2.0 (dotted line), 3.0(solid line). 

Figure 12 The comparison of the global flame speed pulsation patterns between 1D and 2D 

flames in the periodic pulsating cellular flame regime. 

Figure 13 The cell structures in a pulsating cycle for a Le=3.0 and Ea=82 flame. 

Figure 14 The flow stream lines at time=181.1 for a Le=3.0 and Ea=82 flame. 



 - 18 - 

Figure 15 The flow vector plot at time=182.05 for a Le=3.0 and Ea=82 flame. 

Figure 16 (a) The local stretch rates at time = 181.1, 181.75 and 182.05 of the Le=3.0, 

Ea=82 flame.  

(b) The local flame speeds at time = 181.1, 181.75 and 182.05 of the Le=3.0, 

Ea=82 flame. 

Figure 17 The comparison of the global flame speed pulsation patterns between 1D flame 

and 2D flame of the Le=3.0, Ea=120 flame in the irregular pulsating cellular flame 

regime. 

Figure 18 The local pulsation and the lateral traveling wave from time 5.7 to time 6.3 of the 

Le=3.0, Ea=120 flame. 
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