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EP Based Optimization for Estimating Synchronizing and Damping Torque
Coefficients
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Abstract: This paper presents Evolutionary Programming (EP) based optimization technique for
estimating synchronizing torque coefficients, Ks and damping torque coefficients, Kd of a synchronous
machine. These coefficients are used to identify the angle stability of a system. Initially, a Simulink
model was utilized to generate the time domain response of rotor angle under various loading
conditions. EP was then implemented to optimize the values of Ks and Kd within the same loading
conditions. Result obtained from the experiment are very promising and revealed that it outperformed
the Least Square (LS) method and Artificial Immune System (AIS) during the comparative studies.
Validation with respect to eigenvalues determination confirmed that the proposed technique is feasible
to solve the angle stability problems.
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INTRODUCTION

Small signal stability analysis of power systems becomes more important nowadays. Under small
perturbations, this analysis is to predict the low frequency electromechanical oscillations resulting from poorly
damped rotor oscillations. These oscillations stability becomes a very important issue as reported in [Feilat et
al. (1999), Rouco et al. (1993),  Abu-AlFeilat (2000), El Naggar et al. (2002), El Naggar et al. (2004)]. The
operating conditions of the power system are change with time due to the dynamic nature, so it is need to
track the system stability on-line. To track the system, some stability indicators will be estimated from given
data and these indicators will be updated as new data received. Synchronizing torque coefficients Ks and
damping torque coefficients Kd are used as stability indicators. To achieve stable operation of the machine, both
Ks and Kd must be positive [Peter et al. (1998), Glover et al. (2002), Kundur ( 2004), Hadi (2004)].

Certain techniques have been proposed to estimate the value of Ks and Kd which involved optimization
technique. Some techniques have been explored by means of frequency response analysis [Shepperd (1961),
DeMello et al. (1968), deOliveria et al., (1994), Padiyar et al. (1991)]. [Glover et al. (2002)] decomposes the
change in electromagnetic torque into two orthogonal components in the frequency domain. The two equations
are expressed in terms of the load angle deviation then solved directly. Static and dynamic time domain
estimation methods were also proposed in this study. 

Least Square (LS) method can be one of the possible techniques in addressing this phenomenon. It has
been used as static parameter estimation [Alden et al. (1979)]. However, several disadvantages have been
identified with LS. Amongst them are the long computation time and the requirement of data updating. It also
requires monitoring the entire period of oscillation. Recently, evolutionary algorithms such as Evolutionary
Programming (EP) and Artificial Intelligent System (AIS) have received much attention for global optimization
problems. These evolutionary algorithms are heuristic population-based search methods that used both random
variation and selection. The search for an optimal solution is based on the natural process of biological
evolution and is accomplished in a parallel method in the parameter search space. EP-based method has been
applied in various researches in static and dynamic system stability [Dobson et al. (1992), Lai et al. (1998),
Jason et al. (1999), Fogel et al. (2000), Abido et al. (2002), Musirin et al. (2002), Rajan (2004), Hassim et
al. (2006), Talib et al. (2007)]. On the other hand, Artificial Immune System (AIS) approach to optimization
is more recent exploitation of natural phenomena in power system than EP. EP and AIS share many common
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aspects; EP tries to model the natural evolution while AIS tries to benefit from the characteristics of a human
immune system [Rahman et al. (2004), Dasgupta (2006), Liu et al. (2006), Hunjan et al. (2007), Wei et al.
(2008)].

This paper presents an efficient online estimation technique of synchronizing and damping torque
coefficients in solving angle stability problems. The method is based upon the population-based search methods
that use both random variation and selection. The method is used to estimate synchronizing torque coefficients,
Ks and damping torque coefficients, Kd from the machine time responses of the change in rotor angle ��(t),
the change in rotor speed ��(t) and the change in electromechanical torque �Te(t). The goal is to minimize
the estimated coefficient error and the time consumed. The proposed EP technique is used to find the best
solution of the formulated problem. Results obtained from the experiment using EP have been compared with
AIS and LS; resulting significant merit.

The System Model:
A simplified block diagram model of the small-signal performance is shown in Fig. 1. In this

representation, the dynamic characteristics of the system are expressed in terms of K constants with linearized
single machine infinite bus (SMIB) system, this model is represented with some variables such as electrical
torque, rotor speed, rotor angle and exciter output voltage.

Fig. 1: Block diagram model of small signal performance.

From the transfer function block diagram the following state-space form is developed. The system matrix
A is a function of the system parameters, which depends on the opening conditions. The perturbation matrix
B depends on the system parameters only.  Details of matrix A and matrix B are explained in Appendix.

The interaction among these variables is expressed in terms of the 4 constants K1, K2, K3 and K4. These
constants with the exception of K3, which are only a function of the ratio of impedance, are function of the
operating real and reactive loading as well as the excitation levels in the generator.

Concept of Synchronizing and Damping Torque:
A single machine connected to infinite bus system is considered. The system comprises a steam generator

connected via a tie line to a large system represented as infinite bus. The dynamic stability study is performed
by linearizing the power system under consideration around an operating point to represent the system is state
space model. The machine differential equations, the exciter equation and the block diagram can be found in
[Kundur (1994)].

The change of electromagnetic torque �Te(t) can be broken down into two components namely the
synchronizing torque Ks and damping torque Kd. The synchronizing torque component is in phase and
proportional with the change in rotor angle ��(t), and the damping torque is in phase and proportional with 

the change in rotor speed ��(t). The estimated torque              can be written as:� �êT t�

   (1)� � � � � �ê s dT t K t K t� �� � � � �

Where:
��(t) : Change in rotor angle
��(t) : Change in rotor speed
Ks : Synchronizing torque coefficients
Kd : Damping torque coefficients
Evolutionary Programming:
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The Evolutionary Programming (EP) is one of the evolutionary computing which uses the models of
biological evolutionary process for the solution of complex engineering problems. The search for an optimal
solution is based on the natural process of biological evolution and is accomplished in a parallel method in
the parameter search space. EP belongs to the generic fields of the simulated evolution and artificial life. It
is robust, flexible and adaptable and it can yield global solutions to any problem, whatever the form of the
objective function.

The advantages of EP over other conventional optimization techniques can be summarized as follows
[Dobson et al. (1992), Lai et al. (1998), Jason et al. (1999), Fogel et al. (2000), Abido et al. (2002), Musirin
et al. (2002), Rajan (2004), Hassim et al. (2006), Talib et al. (2007)]:
1. EP searches the problem space using a population of trials representing possible solutions to the problem

and not a single point. This will ensure that EP is less possibility getting trapped on local minima.
Therefore, EP can reach to a global optimal solution.

2. EP uses performance index or objective function information to guide the search for solution. Therefore,
EP can easily deal with non-smooth and non-continuous objective functions.

3. EP uses probabilistic transition rules instead of non-deterministic rules to make decisions. Moreover, EP
is a kind of stochastic optimization algorithm that can search a complicated and uncertain area to find the
global minimum. This makes EP more flexible and robust than conventional methods.

Algorithm for EP:
In the EP algorithm, the population has 2n candidate solutions with each candidate solution is an m-

dimensional vector, where m is the number of optimized parameters. The EP algorithm can be described as:

Step 1 (Initialization): Generation counter i is set to 0, and generate n random solutions                    . � �, 1,...,kx k n�

The kth trial solution Xk can be written as                     , where  the  lth  optimized  parameter pl is 	 
1,...,k mx p p�

generated by random value in the range of                    with  uniform  probability. Each individual is min max,l lp p� �
 �
evaluated using the objective function J. In this initial population, minimum value of objective function Jmin 
will be searched, the target is to find the best solution xbest with objective function Jbest
Step 2 (Mutation): Each parent xk produces one offspring xk+n. Each optimized parameter Pl is perturbed by 

a Gaussian random variable               . The  standard deviation      specifies the range of the optimized � �20, lN � l�

parameter perturbation in the offspring.       equation is as follows:l�

   (2)
� � � �max min

max

k
l l l

J x
p p

J
� �� � � �

where � is a scaling factor, and            is the objective function of the trial solution xk.� �kJ x

The value of optimized parameter will be set at certain limit if any value violates its specified range. The 

offspring         can be described as:k nx �

   (3)� � � �2 2
10, ,..., 0, , 1,...,k n k mx x N N k n� ��

� �� � �
 �

Step 3 (Statistics): The minimum objective function        , the maximum objective function         and the minJ maxJ

average objective function       of all individuals are calculated.aveJ

Step 4 (Update the best solution): If         is bigger than        , go  to  Step 5, or else, update  the best minJ bestJ
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solution,         . Set        as       , and go to Step 5.bestx minJ bestJ

Step 5 (Combination): All members in the population       are combined with all members from the offspring kx
        to  become  4n  candidates.  These individuals are then ranked in descending order, based on their k nx �

objective function as their weight.

Step  6 (Selection): The  first n individuals with higher weights are selected are selected  along  with  their 

objective functions as parents of the next generation. The generation counter will be  set  to             and 1i i� �
algorithm will start again from Step 2.
Step 7 (Stopping criterion): The search process will be terminated if one of the followings is satisfied:
1. It reaches the maximum number of generations

2. The value of                   is very close to 0.� �max minJ J�

The flow chart of EP is shown in Fig. 2.

Fig. 2: Flow chart of EP.

Application of EP:
The EP algorithm described before has been applied to search for optimal or near optimal values of Ks

and Kd. In our implementation, the search will terminate if the following occur:
It reaches the 1000 number of generations

The value of                         .� �max min 0.0001J J� �

Least Square Method:
All the data of ��(t), ��(t) and �Te(t) can be obtained from either offline simulation or online

measurements. Following a small disturbance, the time responses of these three items are recorded. The least
square (LS) technique is then used to minimize the sum of the square of the differences between the electric 

torque �Te(t) and the estimated torque             . The error is defined as: � �êT k�

         (4)� � � � � �ˆ
e eE t T t T t� � ��
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The torque coefficients Ks and Kd are calculated to minimize the sum of the error squared over the interval
of oscillation t, as given in Eq.(4), where t=NT (N is the number of samples and T is the sampling period).
For correct estimation of Ks and Kd, the interval t should be chosen adequately. The suitable value of t which
makes Ks and Kd constants during the oscillation period was found to be the entire period of oscillation. In
matrix notation, the above problem can be described by an over-determined system of linear equations as
follows:

       (5)� � � � � � � �ˆ
e eT t T t E t Ax E t� � � � � �

where                             , and                     . The estimated vector x is such that the function � � � �A t t� �� � �� �
 � 	 
Ts dx K K�

J(x) is minimized, where

   (6)� � 	 
 	 
T
e eJ x T Ax T Ax� � � � � �

In this case the estimated vector x will be given by:

   (7)
1T T t

e ex A A A T A T
�

� �� � � � �� � ��
 �

where      is  the  left  pseudo  inverse  matrix.  Solving  Eq.(7)  gives  the  values of Ks and Ks for the tA
corresponding operating point.

Artificial Immune System:
Artificial immune system (AIS) approach to optimization is more recent exploitation of natural phenomena

in power system than EP. EP and AIS share many common aspects, whereas EP tries to model the natural
evolution, AIS try to benefit from the characteristics of a human immune system. Basic algorithm for AIS-
based optimization is called the Clonal Selection Algorithm (CSA) and it works as follows [Rahman et al.
(2004), Dasgupta (2006), Liu et al. (2006), Hunjan et al. (2007), Wei et al. (2008)]:
1. Create N-antibodies (candidate solutions) randomly to form an initial population.
2. Determine the affinity (fitness or cost) of each antibody.

3. Select      fittest antibodies to form a group        bn bN
4. For each member of the group        , create a number of clones independently and proportionally to their bN

affinity values. The better the affinity the higher the number of clones generated for each of the selected
antibodies. The clones form a group C.

5. The clone group C undergoes an affinity maturation, in which the clones are mutated inversely
proportionally to their affinities: the better the affinity the smaller the mutation rate.

6. The affinities of the affinity-matured clones are calculated.
7. If an affinity-matured clone has a better affinity value than the parent antibody, replace the parent antibody

with the affinity-matured clone.
8. Replace the d lowest affinity antibodies with randomly created new antibodies.
9. Go to c) if run time constraints have not been met, otherwise exit.

A flow chart of AIS is shown in Fig. 3.
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Fig. 3: Flow chart of AIS.

Test System: 
In this study, performance evaluation of the EP for the estimation of Ks and Kd is compared with LS and

AIS estimation method. The evaluation is carried out by conducting several offline simulation cases on the
Linearized model of SIMB. In this study, block diagram as shown in Fig. 1 is used for offline simulation to 

generate the required ��(t), ��(t) and            samples in MATLAB Simulink environment. The parameters � �eT t�

of the SMIB system are given in Appendix. 
Stable and unstable study cases are simulated using different types of disturbances. Data size is set to 20 

second, while number of samples is set to 400 samples. Using ��(t), ��(t) and            as generated sample � �eT t�

data, 3 sets of MATLAB files: LS, EP and AIS based simulation are developed. The simulation diagram is
show in Fig. 4.

Fig. 4: Estimating Ks and Ks using LS, EP and AIS.
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During simulation, all parameters are adjusted until an optimal solution is obtained. The results of EP and
AIS are compared with the LS solution.

Fig. 5: Graph of ��(t) with P = 0.75 pu, Q = 1.0 pu

Fig. 6: Graph of ��(t) with P=-0.5 pu, Q=0.75 pu

       
Fig. 7: Graph of ��(t) with P = -1.0 pu, Q = -0.5 pu

Fig. 8: Graph of ��(t) with P = 0.5 pu, Q = 1.0 pu
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Fig. 9: Graph of ��(t) with P = 0.5 pu, Q = 1.25 pu 

Fig. 10: Graph of ��(t) with P = 1.5 pu, Q = 1.25 pu

Simulation Results:
In this study, 8 sets of ��(t), ��(t) and �Te(t) samples are generated using offline simulation of block

diagram implemented in MATLAB Simulink. 8 samples of ��(t) data in graph forms are shown in Fig. 5 until
Fig. 12. Different value of P and Q are used to simulate these cases. For verification, the eigenvalues for all
cases have been calculated and written below of each graph. For cases which all eigenvalues are negative, it
is stable. For cases which have positive eigenvalues, it is unstable. From the result of eigenvalues, the first
5 cases (Fig. 5~9) are stable and the other 3 cases (Fig. 10~12) are unstable.

Table 1 shows the results obtained for eight different study cases. The estimated constants obtained using
EP, AIS and LS methods are shown as well as the eigenvalues for each case. Results shown in this table for
the proposed method are the steady state values obtained at the end of the simulation. It is found that 400
samples within a data size of 20 seconds after the disturbance are sufficient to reach steady state solution.

As both values of Ks and Kd are positive, the result indicate that case 1, 2, 3, 4 and 5 are stable cases.
On the other hand, case 6, 7 and 8 are unstable cases as the value of Kd is negative. Eigenvalues shown in
the last column verify the result obtained.

In all cases, all 3 methods give accurate and close results. Although results using EP and AIS method are
close, difference of value between EP method and LS method is closer than different of value between AIS
method and LS method. These show that simulation results from EP method are more accurate and closer than
simulation results using AIS method.

Except for LS method, times consume to calculate the value of Ks and Kd until it reaches steady state
solution has been recorded for EP and AIS method. As the value of Ks and Kd calculated is same from first
iteration, the time consume for LS method is not been recorded. Comparing EP and AIS for all cases, the
average of time consume to calculate using AIS is about 48 seconds, while EP is about 30 seconds, the time
almost 40% longer compared to EP. As a result it shows that calculation method using EP is faster than AIS. 

For the effect of error-contaminated data on the accuracy of the estimated value of Ks and Kd , simulation
has been done by introducing about 10% of bad data (zeros) at different locations of ��(t), ��(t) and �Te(t).
For comparison, case 5 and 8 has been selected.
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Fig. 11: Graph of ��(t) with P = 1.0 pu, Q = 1.5 pu

Fig. 12: Graph of ��(t) with P =0.5 pu, Q = 2.0 pu

Table 2 shows the result of EP, AIS and LS method calculation with bad data. It shows that although bad
data were injected into the system, estimates for Ks and Kd using EP and AIS method are not affected as the
value is identical with the results obtained in Table 1. On the other hand, LS is affected with the 10% of bad
data which has been implemented. 

Table 1: Comparison Between Ep, Ais and Ls Method
Case Stability EP AIS LS Eigenvalues. �

------------------------------------- --------------------------------- ----------------------
Ks Kd Time Ks Kd Time Ks Kd

1 stable 0.3736 0.9303 41.9 0.3706 0.7117 47.9 0.3733 0.9352 -0.0670± j 4.4855, -0.3807
2 stable 2.1346 0.7733 29.5 2.1346 0.7733 48.1 2.1362 0.7657 -0.0547± j 10.7263, -0.6636
3 stable 0.6298 1.5979 30.6 0.6291 1.5950 49.0 0.6300 1.6101 -0.1153± j 5.8284, -0.2159
4 stable 0.4200 0.4277 28.8 0.4200 0.4280 47.9 0.4200 0.4108 -0.0294 ± J 4.7561, -0.4515
5 stable 0.2247 0.5779 29.0 0.2231 0.8734 47.3 0.2252 0.5334 -0.0382 ± J 3.4832, -0.4811
6 unstable 0.1805 -3.7254 30.1 0.1809 -3.8225 48.0 0.1805 -3.7221 0.2566 ± J 3.1477, -1.1027
7 unstable 0.1523 -1.9271 29.4 0.1535 -1.5854 47.2 0.1525 -1.8602 0.1302 ± J 2.8736, -0.8871
8 unstable 0.5523 -0.1238 28.8 0.5530 -0.0383 46.8 0.5531 -0.0799 0.0057 ± J 5.4576, -0.7594

Table 2: Comparison Between Ep, Ais and Ls Method with Bad 
Case Stability EP AIS LS Eigenvalues. �

------------------------------------- --------------------------------- ----------------------
Ks Kd Time Ks Kd Time Ks Kd

5 stable 0.2247 0.5779 29.0 0.2231 0.8734 47.3 0.2010 0.4474 -0.0382 ± j 3.4832, -0.4811
8 unstable 0.5523 -0.1238 28.8 0.5530 -0.0383 46.8 0.4940 0.0020 0.0057 ± j 5.4576, -0.7594

More than that, it also gives false result for case 8. Using LS method, the simulation gives positive value
of damping coefficient Kd that indicates the system is stable for case 8, but the results given by EP and AIS
method give negative value which indicates the system for case 8 is unstable. The result also can be confirmed
by the positive value of eigenvalues which verify that case 8 is unstable. As a result, estimates for Ks and Kd
using EP and AIS method are more accurate compare to LS method. Fig. 13 shows convergence process for
case 8 without bad data, while Fig. 14 shows convergence process for case 8 with bad data.
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Conclusion:
In this paper, three methods for accurate estimation of the synchronizing and damping torque coefficients,

Ks and Kd are presented. The performance of Evolutionary Programming (EP) is compared with the Artificial
Immune System (AIS) and Least Square (LS) method. Compared with AIS and LS, EP gives several
advantages. This includes better data accuracy and 60% shorter computing time compared to AIS. EP also
never affected with bad data consumed in the system compared to LS which give false decision on the
stability. The proposed method can be considered as a reliable and efficient tool in the area of power system
stability analysis.

Fig. 13: Comparison of (a) Ks and (b) Kd between EP method and LS method (without bad data)
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Fig. 14: Comparison of (a) Ks and (b) Kd between EP method and LS method (with bad data)
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Appendix
The system equations:

 X A X B U
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The parameters of  the SMIB system:

              ,                ,              ,               ,                 ,               ,            , 1.81dX � ' 0.30dX � 1.76qX � 0.16LX � 0.003aR � '
0 8.0dT � 3.5H �

              ,1 0.8T� �

                  ,                  ,             ,                 0.031satA � 6.93satB � 0.0eR � 0.65eX �

Constants are all given in Kundur (1994).
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