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1. Introduction

Over the past 10 years or so, a large number of papers

employ a set of techniques and methods that the authors

call ‘Adaptive Dynamics’. These techniques are used to

approach a number of interesting and important issues in

evolution and related subjects. These include investiga-

tions into the maintenance of genetic variation, coevo-

lution and sympatric speciation, i.e. subjects that both

puzzle and intrigue practising biologists. However, the

technical or mathematical nature of most papers on

Adaptive Dynamics makes it very difficult for a typical

biologist to understand the essence, usefulness or limi-

tations of this approach. At the outset, we considered

writing a review of the subject in a traditional format. We

are, however, talking about a subject that is still in a rapid

stage of development and which has not yet achieved a

mature form. Thus although a review might be appro-

priate for a mature subject, it seemed more appropriate to

us to frame a set of questions that someone newly

encountering the subject would like to ask – and have

answered – in plain language.

It should be noted that the authors of this review do

not come from the core of individuals that are

recognized as practitioners of Adaptive Dynamics, but

rather, from the much larger group of outsiders,

including population geneticists, who are interested in

this recent development in theoretical population bio-

logy. Indeed, when, below, we describe Adaptive

Dynamics, we do so from the perspective of population

geneticists, rather than following the interpretations

and emphases that have been adopted by practitioners

of Adaptive Dynamics.

This paper is arranged as a main body of 20 key

questions. Despite the often highly theoretical/technical

content of papers in this area, we have endeavoured to

answer the questions with an absolute minimum of

mathematical formalism.

Much of the exposition presented here closely follows

that of Geritz et al. (1998) and this paper is a good starting

point for readers interested in a more technical intro-

duction to the subject.

We begin with a description of the methods and

concepts of Adaptive Dynamics. After establishing the

basics of Adaptive Dynamics, we discuss connections

with previous work.

2. General description

2.1 What is Adaptive Dynamics all about?

Adaptive Dynamics is a theoretical approach for studying

some of the phenotypic changes that take place, over

time, in evolving populations.
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Abstract

Adaptive Dynamics is an approach to studying evolutionary change when

fitness is density or frequency dependent. Modern papers identifying them-

selves as using this approach first appeared in the 1990s, and have greatly

increased up to the present. However, because of the rather technical nature of

many of the papers, the approach is not widely known or understood by

evolutionary biologists. In this review we aim to remedy this situation by

outlining the methodology and then examining its strengths and weaknesses.

We carry this out by posing and answering 20 key questions on Adaptive

Dynamics. We conclude that Adaptive Dynamics provides a set of useful

approximations for studying various evolutionary questions. However, as with

any approximate method, conclusions based on Adaptive Dynamics are valid

only under some restrictions that we discuss.
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It grew out of early work of game theorists (e.g. Eshel

& Motro, 1981; Eshel, 1983; Taylor, 1989; Hofbauer &

Sigmund, 1990; Nowak & Sigmund, 1990), population

geneticists (e.g. Christiansen, 1991; Abrams et al.,

1993a,b) and theoretical ecologists (e.g. Schaffer, 1977;

Reed & Stenseth, 1984; Metz et al., 1992) seeking simple

tools to study evolutionary change when fitnesses are

density or frequency dependent. It is based on the

assumption that mutations occur rarely, and cause very

small changes in existing phenotypic values.

In most applications, organisms are assumed to be

asexual and the initial population – termed the resident

population – consists of phenotypically identical individ-

uals, i.e. is monomorphic. Most calculations are per-

formed in terms of a specific fitness function, which is

termed the invasion fitness.

To the best of our knowledge, the term ‘Adaptive

Dynamics’ was first introduced in the papers of Hofbauer

& Sigmund (1990) and Nowak & Sigmund (1990).

2.2 How are fitness functions derived in Adaptive
Dynamics?

The most basic models in evolutionary population

genetics involve fitness functions that depend only on

the phenotypic trait values under selection. In reality,

fitness depends on far more than just trait values

including (i) the frequencies of individuals with different

trait values; i.e. fitness is frequency dependent, (ii) the

density of the population, as measured, e.g. by the

number of individuals/unit area; i.e. fitness is density

dependent, and (iii) the absolute number of individuals

in the population. Investigations involving such quanti-

ties are typically the domain of ecology, where absolute

numbers or densities are the focus of attention. One of

the really interesting features of Adaptive Dynamics is

that its practitioners have attempted to provide a frame-

work where interactions and fitnesses originating from

explicitly ecological considerations are incorporated into

population genetic models of evolutionary dynamics.

Thus, for example, some of the Adaptive Dynamics

literature, explicitly refers to quantities such as fitness – a

primarily population genetics concept – while also

directly employing a model of ecological dynamics, for

example that of Lotka Volterra.

2.3 What is invasion fitness?

Much of the work on Adaptive Dynamics has centred

around a concept known as ‘invasion fitness’. To under-

stand invasion fitness, it is easiest to think of a population

of asexual organisms that have discrete generations and

are characterized by a single, continuously varying,

phenotypic trait. We assume this population – the

resident population – initially consists of individuals that

all possess the same phenotypic value x (i.e. is mono-

morphic). Mutations that differ from the monomorphic

resident population are randomly and recurrently gen-

erated, and these can be thought of as attempting to

‘invade’ the initial population. The fitness function of

very rare mutations of phenotype y, in an (almost

monomorphic) resident population, with phenotype x,

is just a function of x and y and it is and is usually written

as s(y,x) (or sx(y)). This function is referred to as the

invasion fitness and the precise form of s(y,x) depends on

the specific biological situation under consideration. The

invasion fitness governs the dynamics of the frequency of

the mutants, while they are at low frequency. As the

resident population is stable over the long term in the

absence of mutation, the residents have a fitness of unity,

i.e. s(x,x) ¼ 1. Neglecting stochasticity associated with

genetic drift (which is discussed in the answer to

Question 4.3), mutant types will usually initially exhibit

near exponential growth or decay in their frequency,

depending on whether s(y,x) > 1 or s(y,x) < 1. Invasion

fitness can be (and sometimes is) defined for a poly-

morphic population of residents (e.g. see Question 2.9).

2.4 What is an invasion fitness landscape?

The problems that density and frequency-dependent

fitnesses create for predicting evolutionary change can

be envisaged by thinking about fitness landscapes. The

notion of fitness (or adaptive) landscapes was introduced

by Wright (1932, 1988) and has proved to be extremely

useful in evolutionary biology (e.g. Provine, 1986;

Gavrilets, 1997, 2004; Fear & Price, 1998; Arnold et al.,

2001). In the case of continuously varying traits, a fitness

landscape is often visualized as a three-dimensional plot

containing a surface of individual fitness that lies above a

horizontal plane. The coordinate axes of the plane

correspond to the values of two phenotypic characters.

Although we believe that there are usually more than

two characters affecting fitness, fitness is, in such plots,

represented as a function of only two phenotypic

characters because we cannot plot a graph with more

than three axes.

As long as fitness depends only on the trait values of an

individual, the fitness landscape remains rigid and

unchanging. However, if fitness is density or frequency

dependent, then instead of remaining fixed, the fitness

landscape heaves and bulges as the population moves

over it.

There is, however, something intuitively appealing and

useful about visualizing fitnesses in terms of a fixed

landscape. We therefore introduce the notion of an

‘invasion fitness landscape’ which, despite sounding

similar to a traditional fitness landscape, is fundamentally

different. An ‘invasion fitness landscape’ is a three-

dimensional plot where invasion fitness, s(y,x), is plotted

as a surface above a horizontal plane. In this case, one

coordinate axis of the plane is determined by possible

values of the phenotypic character of the resident

population, whereas the other axis is determined by the
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values of the same character, in mutation bearing individ-

uals. Notice that our definition implies that the invasion

fitness landscape does not change shape as evolutionary

change occurs – even when fitnesses are density or

frequency dependent. Invasion fitness landscapes also

differ from traditional fitness landscapes in the way the

population moves over the landscape during evolution-

ary change. Instead of moving uphill, the population

tracks a path among the hills of the landscape, along a

line where fitness has the value of unity, as the answer to

the next question shows.

2.5 How does the population move on the invasion
fitness landscape?

To answer this question we make the assumption that

the vast majority of mutant phenotypes are very close to

the phenotype of the monomorphic resident population;

this is the standard assumption that most mutations are

of small effect. In a population of large size, where

deleterious mutations have a negligible chance of fix-

ation, only mutants that have higher fitness than the

residents will invade.

Figure 1 illustrates some of the processes associated with

adaptive evolution on the invasion fitness landscape. An

adaptive mutation occurs to a member of the resident

population, whose phenotypic value is represented by the

x coordinate of the point p. The mutation is represented by

a dashed line, from p to q, that is parallel to the y axis and

corresponds to the instantaneous phenotypic change

associated with the mutation. In order to be successful, a

mutant must have greater fitness than that of a mutant, so

successful mutational change is always in an ‘uphill’

direction. Fixation results in the mutant phenotype (y)

becoming the new resident phenotype (x), and is repre-

sented by the solid line that is parallel to the x axis and runs

from q to r. This line shows the resident phenotype, x, being

reset to equal the mutant phenotype, y (the thin line, on

which p, rand t lie, is the line y ¼ x). The move is effectively

in a ‘downhill’ direction, so that the point r has the same

value of s(y,x), namely unity, as the starting point, p. The

movement downhill does not imply that the population

experiences any fitness loss but rather reflects the resetting

of fitnesses so that new resident population has a fitness of

unity. The dashed line from r to s represents the change

caused by another adaptive mutation (again uphill) and

the line from s to t represents fixation of the mutant (again

downhill). Over the course of time the population can be

thought of as performing many such jagged steps (of the

form p fi q fi r) and if the mutational effects are very

small, as assumed, then the population closely traces out a

trajectory along the diagonal line y ¼ x. The overall effect

is that the population does not ascend the invasion fitness

landscape over time.

In Figs 2a and 3a the population’s trajectory, as a

result of many tiny mutational steps, followed by

resetting of the resident phenotype to that of the

mutant, is well approximated by the smooth line from

point p to close to point q. This line remains horizontal.

Figures 2 and 3 will be repeatedly used, below, to

illustrate various issues. The picture, just given, of the

dynamics of the population applies, as long as there is a

well defined ‘uphill’ direction for the mutants to take.

We discuss next, a measure of the steepness or slope of

the invasion fitness landscape so that we can recognize

and deal with the important case where this is not so

and the slope vanishes.

2.6 What is the local fitness gradient?

The fitness gradient, D(x), is a measure of the steepness of

the invasion fitness landscape as experienced by a small-

effect mutation, when the resident population has

phenotype x. Mathematically, D(x) is the slope along

the y direction: D(x) ¼ [¶s(y,x)/¶y]y¼x. If D(x) is positive

(as it is in Figs 2a and 3a, in the vicinity of the point p)

then mutants with larger trait values than that of the

residents will invade. Conversely, if D(x) is negative,

mutants with smaller trait values will invade. Such

gradient-type dynamics are analogous to those studied in

standard population genetics (e.g. Wright, 1935; Lande,

1976; Barton & Turelli, 1987).

If initially successful mutants completely supplant the

residents then the local fitness gradient determines not

just which mutants are adaptive, but also the direction of

change of phenotypes, via substitution. However, although

initial invasion occurs when the frequency of mutants is

small and the resident population monomorphic, during

the time when substitution occurs the mutant frequencies

do not remain small and the population is far from a

monomorphic state. In recent work, Mylius & Diekmann

(2001) questioned the assumption that initially successful

mutants completely supplant the residents, whereas

Geritz et al. (2002) explored its validity. However, the

Fig. 1 Evolution on an invasion fitness landscape. For a description

of the dynamics illustrated in this figure, see the answer to Question

2.5.
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set of conditions required for fixation of initially successful

mutants remains an open question.

Typically, the local fitness gradient changes with phe-

notype, x. Under some circumstances, a sequence of

successful substitutions results in the magnitude of the

local fitness gradient, |D(x)|, becoming progressively

smaller. An example of this is illustrated in Figs 2a and

3a, where the population traces a trajectory, from p to q. At

point q in both figures, the local fitness gradient vanishes:

D(0) ¼ 0. Figures 2 and 3 show some subtly different

features in the vicinity of the point q. These features turn

out to be highly significant for the subsequent dynamics of

the population, once it has approached close to point q. To

deal further with this requires some additional analysis:

see the answers to Questions 2.7 and 2.8.

2.7 What are pairwise invasibility plots?

Not all the information in the invasion fitness landscape

is needed to predict the outcome of invasion in a

monomorphic population. The necessary information

can be summarized in a ‘pairwise invasibility plot’

(Christiansen & Loeschcke, 1980; Matsuda, 1985; van

Tienderen & de Jong, 1986). This is a horizontal slice of

the invasion fitness landscape, that is taken at the level

where s(y,x) equals 1. Parts of the slice that pass under

the solid hillside are indicated by ‘+’ signs along the

region where the slice first enters the hillside. Parts of the

slice that pass into the ‘thin air’ above the hillside are

indicated by ‘)’ signs where the ‘thin air’ above the

hillside first begins. (In some publications this conven-

tion is replaced by dark shading in the parts of the slice

passing through the hillside.)

Figure 4 shows the pairwise invisibility plot taken from

the invasion fitness landscape in Fig. 1. Along the line

y ¼ x, where mutants are phenotypically identical to

residents, there is no fitness difference of mutants and

residents. It may be the case that the fitness difference

s(y,x))s(x,x) is equal to zero for other combinations of y

and x other than just y¼x.

In Fig. 5, it is assumed that in addition to the diagonal

line y ¼ x, where s(y,x) ) s(x,x) ¼ 0, there is another line

1
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Fig. 2 (a) An example of an invasion fitness landscape and illustration of the trajectory of a population. The many jagged steps that make up

the recurrent processes of mutation, followed by resetting the residents to the mutant phenotypic value, are approximated by the trajectory

along the solid line from p to q. (b, c) Only sections of the invasion fitness surface have been plotted to illustrate the behaviour of this surface.

(d) The dashed line corresponds to the invasion fitness along the line y ) x* ¼ )(x ) x*). It is apparent that the point q corresponds to a local

maximum along the y direction (b), to a local minimum along the x direction (c), and a local minimum along the line y ) x* ¼ )(x ) x*) (d).
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where s(y,x) ) s(x,x) ¼ 0. This additional line is deter-

mined by the detailed properties of the invasion fitness

and, as there is no general mathematical reason why it

should be straight, it will typically be curved. This line

intersects the diagonal line, y ¼ x, at a resident pheno-

typic value denoted x*. As D(x) changes sign as x passes

through x*, D(x) is zero at x ¼ x*.

Phenotypic trait values where the fitness gradient

vanishes are given very special significance in Adaptive

Dynamics and such a value is called an ‘Evolutionarily

Singular Strategy’ or a ‘Singular Point’. Many people

would call such a point an ‘equilibrium point’, irrespective

of whether it is stable or not. For the case depicted in the

pairwise invasibility plot of Fig. 5, the population evolves

(by successively fixations of beneficial mutations), until

it reaches a neighbourhood where D(x) is zero – the

neighbourhood of an Evolutionarily Singular Strategy.

The approach to the same Evolutionarily Singular Strategy

is indicated by the line from p to q in Fig. 2a, which shows

the invasion fitness landscape corresponding to the pair-

wise invasibility plot given in Fig. 5. The Evolutionarily

Singular Strategy in Fig. 2a is the point q.

In general, an Evolutionarily Singular Strategy is only

a single point on an invasion fitness landscape. A priori, it

might be considered an improbable phenotype that is of

little relevance to the dynamics of a population. How-

ever, considerations, such as those given above, make it

clear that the population may be driven to such a point

by its intrinsic substitutional dynamics.

2.8 What Evolutionarily Singular Strategies are
possible?

In general, a population will not start off at a singular

strategy (a point with D(x) ¼ 0) and the dynamical

significance of any such singular strategy (phenotype)

has to be determined by its stability properties.

An analysis of invasion fitness, close to a singular

strategy, indicates that ordinarily, there are only a limited

number of different types of Evolutionarily Singular

Strategies. Furthermore, each singular point belongs to

only one of these types and each of these has a unique

form of pairwise invasibility plot. Mathematically, as the

fitness gradient and, it can be shown, the derivative

Fig. 3 (a) The trajectory of a population in a different invasion fitness landscape to that of Fig. 2a. The trajectory of the population is along the

solid line p to q. (b, c) Only sections of the invasion fitness surface have been plotted to illustrate the behaviour of this surface. (d) The dashed

line corresponds to the invasion fitness along the line y ) x* ¼ )(x ) x*). It is apparent that the point q corresponds to a local minimum along

the y direction (b), to a local minimum along the x direction (3c), and a local minimum along the line y ) x* ¼ )(x ) x*) (d).
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¶s(y,x)/¶x, both vanish at a singular strategy, i.e. when

x ¼ x* and y ¼ x*, an Evolutionarily Singular Strategy is a

stationary point of s(y,x). It is thus intuitively reasonable

that the first nonvanishing derivatives – generically

second-order derivatives – are the means of telling

different types of singular strategy apart. It is not

immediately obvious, and it requires some detailed

reasoning to infer that, to quadratic deviations from a

particular Evolutionarily Singular Strategy, x*, we have,

with A and B constants (Metz et al., 1996).

sðy; xÞ ’ 1 þ A

2
ðx � x�Þ2 � Aþ B

2
ðx � x�Þðy� x�Þ

þ B

2
ðy� x�Þ2:

ð1Þ

The classification of the Evolutionarily Singular Strategy

can thus be completely achieved from knowledge of just

two second-order derivatives, namely

A ¼ @2sðy; xÞ
@x2

� �
x¼x� ;y¼x�

; B ¼ @2sðy; xÞ
@y2

� �
x¼x�;y¼x�

ð2Þ

which are evaluated at the singular strategy and which,

generally, do not vanish.

Let us introduce the convenient mathematical notation

sign(x) to represent a step function that has the value )1

(+1) when x is negative (positive):

signðxÞ ¼ þ1; when x > 0,

�1; when x < 0.

�

We then define

a ¼ signðAÞ; b ¼ signðBÞ; c ¼ signðjAj � jBjÞ: ð3Þ
The coefficient a tells us whether the Evolutionarily

Singular Point sits at the bottom of a valley (a ¼ 1) or top

of a hill (a ¼ )1) when viewed by cutting the invasion

fitness landscape parallel to the x axis. The coefficient b

tells us the same thing when the Evolutionarily Singular

Point is viewed by cutting the invasion fitness landscape

parallel with the y axis. The coefficient c tells us whether

the curvature of the invasion fitness landscape at the

Evolutionarily Singular Point is larger along the x (c ¼ 1)

or y (c ¼ )1) direction. It turns out that the different

types of Evolutionarily Singular Strategy can be charac-

terized by the triplet of numbers (a,b,c). One virtue of this

labelling scheme is that we can easily count the number

of different singular strategies. As a, b and c can each

independently take on two different values (namely ±1),

it follows that there are 2 · 2 · 2 ¼ 8 different types of

Evolutionarily Singular Strategy.

The important properties of an Evolutionarily Singular

Strategy, that hold in a very small range of phenotypes

around the strategy, are as follows (Eshel, 1983; Taylor,

1989; Christiansen, 1991; Geritz et al., 1998).

(i) An Evolutionarily Singular Strategy, x*, is not

invasible, if a resident population consisting solely of x*

Fig. 5 A pairwise invasibility plot, where mutant phenotypes are

denoted by y and resident phenotypes by x. The diagonal corres-

ponds to the line y ¼ x. The point of intersection of the two solid

lines, corresponds to x ¼ x* and at this point there is a vanishing

fitness gradient: D(x*) ¼ 0. The point, x* is termed an ‘Evolutionarily

Singular Strategy’.

Fig. 4 A very simple pairwise invasibility plot, where mutant

phenotypes are denoted by y and resident phenotypes by x. Only in

regions marked with ‘+’ signs do mutants have a fitness that is larger

than that of the residents and therefore can invade. In the regions

with ‘)’ signs, the residents have higher fitness than any mutants

and invasion is not possible. The differences between mutant and

resident phenotypes, y ) x, are assumed small, so all attention can be

restricted to a narrow band along the diagonal line y ¼ x. To use a

pairwise invasibility plot to determine which mutants will invade

(i.e. increase in frequency), when initially rare, given a resident

population with specific phenotype, say x0, one simply looks along a

vertical line passing through the specific resident phenotypic value,

at x ¼ x0, on the x axis. The mutant phenotypes along this vertical

line that are above the diagonal line, y ¼ x, have y > x, whereas

those below the diagonal line have y < x. Only those mutant

phenotypes lying in a ‘+’ region can invade. This figure shows a case

where only mutants with y > x0 can invade.
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phenotype individuals cannot be invaded by any nearby

mutant. This is the case if s(x*,x*) > s(y,x*) for all y close to

x*. Geometrically, this implies that at the singular point

the invasion fitness landscape s(y,x) has a local maximum

with respect to y. Mathematically, this corresponds to

B < 0. Conversely, if B > 0, then x* is not locally stable,

and it can be invaded by any nearby mutant. Note that at

the singular point q of Fig. 2b, the invasion fitness

landscape has a local maximum with respect to y (B < 0),

whereas in Fig. 3b, s(y,x) has a local minimum (B > 0) at

this point. Thus, in Fig. 2, the singular point q is not

invasible, whereas in Fig. 3, the singular point q is

invasible.

(ii) Another important property of an Evolutionarily

Singular Strategy is the ability of rare mutants, with

phenotype x*, to invade a population whose phenotype

differs from x*. This is the case if s(x*,x) > s(x,x) for all x

close to x*. Geometrically, this implies that at the singular

point the invasion fitness landscape s(y,x) has a local

minimum with respect to x. Mathematically, this corres-

ponds to A > 0. Reversal of the inequality indicates the

inability of rare mutants with phenotype x*, to invade a

population of different phenotype. Note, in both Figs 2c

and 3c, that at the singular point q, the invasion fitness

landscape has a local minimum with respect to x (A > 0)

and thus the singular strategies, depicted in these figures,

are able to invade another nearby strategy, when rare.

(iii) An Evolutionarily Singular Strategy, x*, possesses

the property of being the stable end-point of a sequence of

successive successful substitutions – i.e. possesses conver-

gence stability – if a resident population’s phenotype, x, can

only be invaded by mutants with a phenotype closer to x*

than x is itself. This is the case if the fitness gradient, D(x),

is positive for x < x* and negative for x > x*. This implies

that at the singular point the fitness gradient D(x) is a

decreasing function of x. Expressed mathematically, this

corresponds to A ) B > 0 and if the inequality is reversed,

then successive substitutions will move the population’s

phenotype progressively further away from x*. Figures

2a and 3a exhibit the property that along the trajectory of

the population (the line from p to q), the slope of the

invasion fitness surface in the y direction, i.e. the fitness

gradient, decreases with x. Thus, the point q in both of

these figures is convergence stable.

(iv) Lastly there is the possibility of the existence of a

protected polymorphism. A protected polymorphism arises if

two strategies, say y1 and y2, making up the polymorphism

can mutually invade, i.e. if s(y1,y2) > 1 and s(y2,y1) > 1.

The set of all pairs of mutually invasible traits is given by

the overlapping parts of the ‘+’ regions in the pairwise

invasibility plot and its mirror image taken along the main

diagonal. Geometrically, these conditions imply that

along the secondary diagonal, that is, on the line

y ) x* ¼ )(x ) x*), the invasion fitness landscape s(y,x)

has a local minimum at x*. Expressed mathematically, this

corresponds to A + B > 0. Reversal of the inequality

signals that a protected polymorphism does not exist.

Note that both in Figs 2d and 3d, at the singular point q,

the invasion fitness landscape has a local minimum on the

line y ) x* ¼ )(x ) x*). Thus, protected dimorphism can

exist near the singular point q in both cases.

We have not provided the detailed considerations of

how the local properties of any of the Evolutionarily

Singular Strategies are related to A and B , or equival-

ently (a,b,c) because these have been clearly presented

elsewhere (Geritz et al., 1998). We have, however,

summarized the eight possible Evolutionarily Singular

Strategies in Table 1.

2.9 What are Evolutionary Branching Points?

In Table 1, Evolutionarily Singular Strategy no. 8 has the

features of being (i) invasible, (ii) able, when rare, to

invade another nearby strategy, (iii) convergence stable

and (iv) has protected polymorphisms. Such an Evolu-

tionarily Singular Strategy is termed an Evolutionary

Branching Point (see Fig. 3 for an example of the

invasion fitness landscape in a neighbourhood of a

branching point).

As the population evolves towards a branching point x*

by a sequence of small effect mutational substitutions, at

some moment a mutant will be produced that has its trait

value y on the opposite side of x* to the resident trait x.

From property (iv) above, the mutant y and the resident x

will not oust each other but will coexist. For consistency

we rename their trait values as x1 and x2 (the rationale

for this will become apparent below).

What happens as new mutants are introduced? To

answer this question one has to consider the (invasion)

fitness function of a rare mutant y introduced into a

dimorphic resident population with phenotypes x1 and x2.

We will write this function as s(y; x1, x2). It turns out

(e.g. Geritz et al., 1998) that s(y; x1, x2) can be

approximated as 1 + B(y ) x1)(y ) x2)/2. Because B > 0,

Table 1 Different possible Evolutionarily Singular Strategies.

No. Labels (a,b,c)

x* locally

stable

(noninvasible)

x* can

invade

x*

convergence

stable

Protected

polymorphism

1 ()1,)1,)1) 4 · 4 ·
2 ()1,)1,+1) 4 · · ·
3 ()1,+1,)1) · · · 4

4 ()1,+1,+1) · · · ·
5 (+1,)1,)1) 4 4 4 ·
6 (+1,)1,+1) 4 4 4 4

7 (+1,+1,)1) · 4 · 4

8 (+1,+1,+1) · 4 4 4

A listing of the eight different generic Evolutionarily Singular

Strategies that are possible, along with their key invasion properties,

as outlined in the main text. The listing is made in terms of the triplet

of parameters a, b and c given in eqn 3. Note that Fig. 2 is an

example of strategy no. 6 in this table, whereas Fig. 3 corresponds to

strategy no. 8.
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it follows that only mutants outside the two resident

types can invade (i.e. if y > x1 and x2 or y < x1 and x2).

After invasion, the (former) resident in the middle is

ousted. Therefore, with each successful invasion, the two

remaining trait values will be more and more different.

This process of phenotypic divergence is called ‘Evolu-

tionary Branching’.

From eqn 1, the invasion fitness of a mutation of a

population that has been driven very close to the

Evolutionarily Singular Strategy is s(y,x*) . 1 +

B(y ) x*)2/2. The fact that at the branching point B > 0

means that this function has a minimum in the vicinity of

y ¼ x*. For an example of this, see Fig. 3b, where s(y,x*) is

plotted as a function of y. In a sense, one can say that the

population in driven towards a fitness minimum where it

subsequently undergoes the process of branching.

Branching points do seem especially interesting, as

they are the points near which genetic variation becomes

protected. Moreover, some practitioners of Adaptive

Dynamics have identified branching points with the

process of sympatric speciation because in asexual mod-

els, or sexual models with, e.g. assortative mating, the

clusters of individuals associated with the two branches

remain distinct and may dynamically diverge from each

other, thereby inducing strong differentiation (see also

Question 5.3).

In Fig. 6 we present an example of branching observed

in numerical simulations.

As a concrete example of an Evolutionary Branching

Point, let us consider a classical model of intraspecific

competition (Christiansen & Loeschcke, 1980). In this

model there are two important functions that influence

fitness: a function cðx; yÞ ¼ exp �ðx � yÞ2=ð2r2
CÞ

� �
, char-

acterizing competition between individuals with pheno-

types x and y, and a phenotype-dependent carrying

capacity KðxÞ ¼ K0 exp �x2=ð2r2
KÞ

� �
. Here K0 > 0 is the

maximum possible carrying capacity, r2
C and r2

K are

positive parameters characterizing the strength of com-

petition and stabilizing selection, respectively. The inva-

sion fitness of rare, y phenotype, mutants in a resident

population with phenotype x is s(y,x) ¼ 1 + V[K(y) )
c(y,x)K(x)] where V is a constant that lies in the range

1 > V > 0. From this invasion fitness it can be shown that

x* ¼ 0 is a branching point when B ¼ r2
K � r2

C

� �
VK0=ðr2

Cr
2
KÞ is positive. Other conditions required in order

for x* to be a branching point – which correspond to x*

being able to invade when rare, x* being convergence

stable and x* being a protected polymorphism – are

satisfied for all parameter values. Thus x* ¼ 0 is a

branching point when r2
K > r2

C . This inequality corres-

ponds to competition between individuals being stronger

than the stabilizing selection that individuals are subject

to. Figure 3 illustrates the invasion fitness landscape

corresponding to this case. The Adaptive Dynamics pre-

diction is that an asexual population first evolves towards

the point x ¼ 0 where it then splits into two clusters of

distinct phenotype (see Fig. 6). If, on the other hand,

stabilizing selection is stronger than competition, i.e. if

r2
K < r2

C , then the population evolves to the monomor-

phic state x* ¼ 0 and stays there. Figure 2 illustrates the

invasion fitness landscape corresponding to this case.

The phenomenon of Evolutionary Branching is a

general process for the origin and amplification of genetic

heterogeneity within populations experiencing fre-

quency-dependent selection. The word ‘branching’

implies that only very well defined and differentiated

strategies (or trait values) are observed in the population.

However, Evolutionary Branching as defined by Adap-

tive Dynamics (i.e. in terms of the conditions on A and B)

is quite compatible with continuous and/or unimodal

distributions of the trait value in the population,

if mutations are not extremely rare or have appreciable

effects (see Question 4.2). Therefore, the term ‘branch-

ing’ may be somewhat misleading, when the Adaptive

Dynamics assumptions are not met or their validity

cannot be checked. The appropriate way to interpret the

conditions for ‘Evolutionary Branching’ generally needs

to be wider than the interpretation it receives in Adaptive

Dynamics, namely as conditions for the maintenance of

genetic variation.

3. Relation to previous work

3.1 What is the relation to theoretical population
genetics?

Theoretical population genetics is a general quantitative

theory of evolutionary change whose emergence and

formation in the first half of the last century allowed

what is now known as the modern synthesis of the 1930s

and 1940s (e.g. Provine, 1971). Although models of

constant selection are most advanced in population

genetics, analyses of frequency-dependent selection have

a long history. There have been numerous approaches to

Fig. 6 An illustration of Evolutionary Branching, where an initially

monomorphic population splits into two distinct branches. Darker

areas correspond to higher frequencies of the corresponding trait

values in the population.
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building models incorporating changes in both allele (or

genotype) frequencies and population sizes (e.g. Kostit-

zin, 1937; Ludwig, 1950; Roughgarden, 1979; Ginzburg,

1983). In studies of frequency-dependent selection

fitnesses have been defined both phenomenologically

and from explicit ecological considerations (e.g. Bulmer,

1974, 1980; Roughgarden, 1979; Slatkin, 1979a,b, 1980;

Christiansen & Loeschcke, 1980; Asmussen, 1983; Wil-

son & Turelli, 1986; Bürger, 2002a,b). Adaptive Dynamics

continues and extends these traditions (although, unfor-

tunately, often without acknowledging their existence).

To illustrate the differences between standard popula-

tion genetics approaches (see e.g. Crow & Kimura, 1970)

and those employed by Adaptive Dynamics, let us

consider a simple model of a haploid population

experiencing frequency-dependent selection. Assume

that the population has no more than two distinct

phenotypes simultaneously present. Let variables x and y

specify the two phenotypes present. To develop a model

describing this system the standard population genetics

approach is to (i) specify the frequencies of the

phenotypes in the population, say px and py, (ii) specify

a frequency-dependent fitness function, say W(y,x; py),

that gives the fitness of phenotype y, with frequency py,

in a population that also has phenotype x present, at

frequency px, (iii) derive dynamic equations governing

how px and py change in time, and (iv) analyse the

transient and steady-state dynamics predicted by these

equations. In contrast, the Adaptive Dynamics approach

attempts to predict evolutionary change on the basis of

two invasion functions: s(y,x) ¼ W(y,x; 0) – the fitness of

individuals of phenotype y that are at very low frequency

(py � 0) in a resident population where phenotype x is

almost fixed (px � 1), and s(x,y) ¼ W(x,y; 0) which is the

fitness of individuals of phenotype x that are at very low

frequency (px � 0) in a resident population where

phenotype y is almost fixed (py � 1). Transient dynamics

are disregarded, as the focus is only on equilibrium states

and on ‘long-term evolution’. So, basically, steps (i) and

(iii) above, are skipped altogether, whereas step (ii) uses

a ‘truncated’ version of fitness (i.e. the invasion fitness).

Using the invasion fitnesses instead of full, frequency-

dependent, fitnesses is often sufficient to gain significant

insight. However, the range of possible applications is

narrower because a number of assumptions (discussed

throughout this paper) have to be satisfied. In this regard,

Adaptive Dynamics is less general.

Specifying the number and the types of possible

genotypes is often a standard step in building a popula-

tion genetics model. By contrast, models in Adaptive

Dynamics always specify a range of possible phenotypic

values that organisms can have. In this regard, Adaptive

Dynamics may be considered more general. We note,

however, that in the context of the modelling of the

genetics of quantitative traits, the continuum-of-alleles

model (Crow & Kimura, 1964) is an example where a

range of effects is also specified.

3.2 What is the relation to alternative approaches to
Adaptive Dynamics?

The methods of Adaptive Dynamics are heavily based on

(and extend) those developed within a sub-area of

population genetics that studies the dynamics of inva-

sions as well as different attempts to generalize the

Evolutionarily Stable Strategy approach (e.g. Eshel &

Motro, 1981; Eshel, 1983; Vincent & Brown, 1988;

Taylor, 1989; Christiansen, 1991; Abrams et al., 1993a,b;

Matessi & DiPasquale, 1996; Abrams, 2001). Some of

these previous approaches derive the dynamic equations

from population genetics considerations, explicitly

accounting for sex, diploidy, etc. Some of them use more

general mutation schemes which, in particular, do not

require smallness of mutations (e.g. Matessi et al., 2001).

We note that it is possible to identify two major classes of

alternative methods: ‘quantitative genetic methods’ and

‘Evolutionarily Stable Strategy methods’ (Abrams, 2001).

The ‘quantitative genetic methods’ use quantitative

genetic equations for the evolution of mean trait values,

commonly assuming that the corresponding genetic

variances remain constant (but for a recent example

where this assumption is not made, see e.g. Waxman &

Peck, 1999). The ‘Evolutionarily Stable Strategy meth-

ods’ concentrate on finding a complete set of evolutio-

narily stable phenotypes, given a set of fitness functions.

3.3 What is the relation of Evolutionarily Singular
Strategies to Evolutionarily Stable Strategies?

In game theory, which may be viewed as a formulation

of phenotypic evolution with frequency-dependent fit-

nesses, a key concept is the notion of an Evolutionarily

Stable Strategy (see e.g. Maynard Smith, 1989), where a

strategy or behaviour – more generally a phenotype –

cannot be invaded by any other nearby phenotype. It is

natural to ask whether there is any connection between

an Evolutionarily Stable Strategy and the notion, intro-

duced in the answers to Question 2.7, of an Evolutio-

narily Singular Strategy.

We have been discussing matters in the context of a

population that experiences the recurrent appearance of

new beneficial mutations, thereby introducing new

phenotypes into the population. Such populations are

sometimes driven to Evolutionarily Singular Strategies by

their intrinsic dynamics. Clearly, some (but not all)

Evolutionarily Singular Strategies are prime candidates

for identification with Evolutionarily Stable Strategies.

Local stability of the game theoretic strategies allow us to

firmly identify these with the singular strategies num-

bered 1, 2, 5 and 6 in Table 1, as they have the same

noninvasibility property.

Although a purely Static Equilibrium Analysis might

determine a particular Evolutionarily Stable Strategy, this

is not the whole story. A population will generally start

some ‘distance’ from such a point, and local stability does
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not guarantee that the population will actually be driven

to the singular strategy by its intrinsic dynamics. For this

to occur, the requirement of convergence stability is also

required and strategies numbered 1, 5 and 6 have both of

these properties. These singular strategies are both locally

and convergence-stable and strategies with this feature

are called ‘Continuously Evolutionarily Stable’ (Eshel &

Motro, 1981; Eshel, 1983). An initially monomorphic

population, in the vicinity of a strategies 1, 5 or 6, will,

ultimately, end up in a monomorphic state from which no

further evolutionary change occurs. Note that although a

protected polymorphism can exist near strategy 6, this

polymorphism is unstable to the introduction of mutants

with the trait value closer to the singular point than both

residents, so that the population will eventually end up at

a monomorphic equilibrium (Geritz et al., 1998).

Overall, Adaptive Dynamics is more general than the

theory of Evolutionarily Stable Strategies in that it

studies the convergence to singular strategies and allows

for more complex dynamics.

3.4 Is there a need for Adaptive Dynamics?

Using standard population genetics approaches for ana-

lysing frequency-dependent selection is notoriously dif-

ficult. Any approximate approaches that make analysis

tractable are definitely welcome. Approximate methods

and models of quantitative genetics and of the theory of

Evolutionarily Stable Strategies have been successful in

answering this requirement to a certain extent. Adaptive

Dynamics provides a new and general way for analysing a

variety of interesting problems that would be difficult to

approach using standard approaches. In this regard, the

advent of Adaptive Dynamics has been very useful from a

theoretical point of view – which is one of the reasons it

has generated so much interest. Adaptive Dynamics has

already had a significant impact on theoretical evolution-

ary research, e.g. by stimulating a new round of heated

discussions on the plausibility and generality of sympatric

speciation. Ultimately, though, the biological community

will only maintain their interest in Adaptive Dynamics if

this approach turns out to be useful in some conceptual or

predictive aspects. It is up to the practitioners of Adaptive

Dynamics to make a convincing case for this.

We note that the simplicity of the approach has to have

some price which one should always keep in mind. This

is what we consider in the following few questions.

4. Major assumptions and the
consequences of their violation

4.1 What features of fitness are assumed?

The fitness functions used in Adaptive Dynamics are of a

wide sort, that cover populations that are subject to

density and frequency-dependent processes as well as

to selection on trait values. They are implicitly assumed

to be smooth functions of mutant frequency. More

details of fitness are contained in the answers to Ques-

tions 2.2, 2.3 and 2.6.

Although continuity of fitness functions may be an

implicit assumption of Adaptive Dynamics, it may not

actually be a feature of the fitness functions actually

realized in nature. Thus in the event that fitness

functions are not continuous functions of mutant fre-

quency, the frequency of mutant phenotypes cannot be

neglected – even initially – and may have a significant

influence on the dynamics of the population. We know,

however, of no concrete examples of this and it might be

interesting to see this pursued further.

4.2 What features of mutation are assumed?

There are a number of assumptions made about mutation

in Adaptive Dynamics that include the following:

(i) A continuum of possible phenotypic effects is

assumed (cf. Crow & Kimura, 1964), where a mutation

of phenotype x results in the phenotype x + n where n is a

random number that is drawn from a continuous

distribution (the distribution of mutant effects). Conti-

nuity of the distribution has the immediate consequence

that all mutations are unique, i.e. have never previously

appeared in the population. Furthermore, the phenotype

of a mutation can take on any possible value and thus

can range from ¥ > x > ) ¥.

(ii) Staying with continuum-of-alleles models, we note

that in most calculations it is either implicitly or explicitly

assumed that the distribution of the deviation of the

mutant from the parental phenotype is independent of

the parental phenotype. This is the original continuum-

of-alleles model of mutation (Crow & Kimura, 1964).

See, however recent work (Matessi et al., 2001), where

an alternative model of mutation, namely the House of

Cards model has been employed. In the House of Cards

model the trait value of a mutant is independent of the

trait value of the parent (Kingman, 1978). There is yet

another model of mutation that interpolates between the

original mutation model of Crow & Kimura (1964), and

the House of Cards model (Kingman, 1978), namely the

regression model of mutation (Zeng & Cockerham,

1993). We are not aware of this somewhat flexible

mutation model having been employed in an Adaptive

Dynamics context.

Last, we consider two assumptions that are crucial for

the conclusions of Adaptive Dynamics to be justified.

These assumptions are easily violated in natural popula-

tions.

(iii) A third assumption about mutations is that the

typical range of a mutation (i.e. the difference between

mutant and resident phenotypes) is small. If mutations

are not of small effect, then some conclusions may break

down. For example, Adaptive Dynamics methodology,

based on using eqn 1, predicts that polymorphism cannot

be maintained when the singular point is locally stable.
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In terms of the parameter B, that characterizes the

Evolutionarily Singular Strategy (see eqn 2), this

requires B < 0. However, the exact results of Christian-

sen & Loeschcke (1980) show that in their model there

exist cases where polymorphism, i.e. genetic variation,

can be maintained despite B < 0. Also, if mutations are

not of small effect, the population does not necessarily

approaches a convergence stable equilibrium but can ‘get

stuck’ at a polymorphic equilibrium away from the

singular point.

The question ‘How small must the effect of a mutation

be, for the Adaptive Dynamics results to accurately

apply?’, cannot be answered a priori.

(iv) A fourth assumption about mutations is that their

rate of occurrence is very small, so that no more than two

or three alleles are segregating in the population at any

time. In this case the phenotype distribution has a few

‘spikes’ representing the discrete phenotypes present. If

there are many mutations segregating, the distribution

will be continuous, with no single phenotype at an

appreciable frequency. It is possible to construct biolo-

gically meaningful mathematical models where such a

continuous distribution of phenotypes may be estab-

lished at equilibrium (e.g. Roughgarden, 1972). We are

not familiar with general analytical results on this topic

and continuous distributions were observed in our

simulations under generic conditions. The existence of

such solutions, even for vanishingly small mutation

rates, indicates that mutation rate alone is not an

indicator of the applicability of Adaptive Dynamics

techniques.

4.3 What features of genetic drift are assumed?

In virtually all of the Adaptive Dynamics literature we

have read, we have seen little or no treatment of genetic

drift. See, however, Metz et al. (1996), where branching

processes are briefly mentioned in Section 2.1. See also

Dieckmann & Law (1996) where the average rate of

change in a trait value is approximated under the

common assumption that the rate of fixation of new

alleles equals the product of the number of new mutants,

per unit time, and the probability of fixation of a mutant.

The particular aspect of genetic drift we are talking

about concerns the fate of new mutations in a large

population. In the Adaptive Dynamics literature to date,

it has been implicitly assumed that beneficial mutations,

i.e. those with a positive selection coefficient, will always

initially increase in frequency, irrespective of the size of

the selection coefficient, and irrespective of the copy

number at which they occur. Well established calcula-

tions (Haldane, 1927) have shown that in large popula-

tions, the probability of a rare mutant surviving the

initial highly stochastic dynamics is approximately twice

the selection coefficient when the selection coefficient is

small and positive. The mutations originally considered

significant for adaptation in single-step adaptive walks

(Fisher, 1930) were, for geometric reasons, inferred to be

only those of very small effects. More recent work,

however (Kimura, 1983; Orr, 1998, 1999; Welch &

Waxman, 2003) indicates, in the context of Fisher’s

geometric model (Fisher, 1930), that once genetic drift is

taken into account, the most significant mutations, as far

as adaptation is concerned, may be those with interme-

diately sized effects. Thus beyond simply adding a

stochastic component to the system, drift is likely to shift

the emphasis away from very small-effect mutations.

It thus requires further investigation to fully appreciate

the effects of incorporating the stochastic aspects of

mutation establishment in an Adaptive Dynamics con-

text, particularly in the light of the answer to Question

4.2.

4.4 What features of sex are assumed?

In much of the literature on Adaptive Dynamics, it is

assumed that individuals are asexual. Such populations

have relatively simple dynamics, as there is no ‘mixing’

of different types within the population. In particularly,

under circumstances where Evolutionary Branching

occurs, the two branches diverge, due to the disruptive

effects of the fitness function (see Fig. 2). By contrast, in

a randomly mating sexual population, Evolutionary

Branching (in the sense of formation of discrete bran-

ches) will not occur in the absence of dominance or other

effects, as the offspring resulting from any mating will

have an intermediate phenotype to that of the parents,

nullifying any tendency to discrete branching. Thus in

order for Evolutionary Branching to occur in a sexual

population, mating must be nonrandom, e.g. because of

assortative mating (Dieckmann & Doebeli, 1999). Impli-

cations of assortative mating are covered in the answer to

Question 5.2. At the present time, there are few analyt-

ical results for the Adaptive Dynamics of sexual popula-

tions.

In sexual populations, organisms are characterized by a

number of genes which are reshuffled by recombination

and segregation and which can interact nonlinearly in

controlling the phenotypic value(s). In general, these

features make Adaptive Dynamics inapplicable to sexual

populations. However, there are exceptions. For exam-

ple, if mating is random and selection is in the form of the

differences in viability, then the state of a one-locus,

multi-allele diploid population is uniquely defined by the

set of allele frequencies. For such a one-locus model, let

us assume that the diploid phenotype, zij, is uniquely

defined by the contributions zi and zj of the correspond-

ing two alleles. In this case, the diploid model (which

may incorporate frequency-dependent selection) is

mathematically equivalent to an asexual haploid model.

The role of the fitness of a haploid organism will be

played by the induced fitness of an allele in a diploid

organism. All Adaptive Dynamic results will then be

applicable to the diploid case. Note that the assumption
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that a diploid phenotype is uniquely defined by the

corresponding two alleles is, implicitly, a statement that

the degree of dominance is not subject to evolutionary

change. For example, it will be satisfied if the trait is

assumed to be additive so that zij ¼ zi + zj. This assump-

tion has been made in various studies of diploid popu-

lations (Christiansen & Loeschcke, 1980; Kisdi & Geritz,

1999; Geritz & Kisdi, 2000; Matessi et al., 2001). How-

ever, if dominance is allowed to evolve, then the two

variables zi and zj are not enough to uniquely specify the

three diploid phenotypes zii, zij and zjj, and the methods

considered above will not apply. We note that similar

conclusions have been arrived at from consideration of

invasion fitnesses (van Dooren, 2005). As far as the

maintenance of genetic variation is concerned, we also

expect the Adaptive Dynamics approximations to work in

the case of a polygenic trait controlled by equivalent loci

and experiencing weak selection. In this case, linkage

disequilibria can be neglected and alleles at different loci

will experience similar forces and have similar dynamics.

5. Applications

The more or less standard approach in Adaptive Dynam-

ics for answering questions about biological systems is to

use the analytical techniques outlined above supporting

their conclusions with numerical simulations. Here we

consider three applications of Adaptive Dynamics that we

personally find particularly interesting.

5.1 What does Adaptive Dynamics teach us about
polymorphism?

The standard population genetics approach for studying

polymorphism would be to fix parameters of an appro-

priate model and then to identify the region(s) in the

parameter space where genetic variation is maintained. If

these regions are relatively small, a natural conclusion is

that conditions for polymorphism are rather strict. For

example, this approach was applied to the case of

constant fitnesses (Lewontin et al., 1978; Turelli &

Ginzburg, 1983) and it was concluded that it is very

unlikely that substantial genetic variation can be main-

tained by selection. However, later it was shown that

populations experiencing constant viability selection

(Spencer & Marks, 1988, 1992; Marks & Spencer, 1991)

can evolve towards the narrow area of parameter space

where variation is maintained by fixing mutant alleles. In

this case, even very narrow areas of parameter space can

become important if populations are ‘attracted’ to these

areas by the joint action of mutation and selection.

The ability of frequency-dependent selection to main-

tain genetic variation under certain conditions is well

appreciated (e.g. Cockerham et al., 1972; Udovic, 1980;

Asmussen & Basnayake, 1990; Altenberg, 1991). Adap-

tive Dynamics extends both these previous results on

frequency-dependent selection and the findings about

constant selection for the case of frequency-dependent

selection (Spencer & Marks, 1988, 1992; Marks &

Spencer, 1991). Adaptive Dynamics has provided con-

vincing examples showing that under certain types of

ecological interactions (e.g. competition, multiple

niches), biological populations naturally evolve, through

a sequence of fixations of mutations, towards the area of

parameter space where genetic variation is maintained

(e.g. Kisdi & Geritz, 1999; Geritz & Kisdi, 2000). Adaptive

Dynamics has indicated that polymorphism can be

maintained under more general conditions than those

identified by standard population genetics methods, thus,

uncovering important limitations of the standard meth-

ods.

5.2 What does Adaptive Dynamics teach us about
assortative mating?

There are two major points we would like to make. The

first is that Adaptive Dynamics supports and extends the

notion that frequency-dependent selection often creates

conditions in which ‘intermediate’ genotypes (or pheno-

types) are present at appreciable frequencies, in spite of

the fact that they have reduced fitness. This situation

favours the evolution of positive assortative mating,

which would reduce production of intermediate geno-

types. One has to realize, however, that selection against

intermediate types would favour any mechanism that

would result in a reduced production of intermediate

genotypes. Positive assortative mating is but one such

mechanism. Production of the intermediates can also be

avoided by other mechanisms including the evolution of

dominance, epistasis, phenotypic plasticity or sexual

dimorphism (e.g. van Dooren, 1999; Matessi et al.,

2001; Bolnick & Doebeli, 2003).

The second point is that in certain situations the

evolution of assortative mating can be understood (and

modelled) in terms of a chain of successful invasions

leading to stronger assortative mating (e.g. Matessi et al.,

2001) or to the establishment of polymorphism (i.e.

‘branching’) in alleles controlling mating (van Doorn &

Weissing, 2001; Gavrilets & Waxman, 2002). An illumi-

nating observation (van Doorn & Weissing, 2001) is that

competition among males for access to females (and,

potentially, the competition among females for access to

males) can be modelled and understood by analogies

with ecological competitions for a resource. In particular,

‘branching’ in the male trait is expected if the competi-

tion among males is sufficiently strong relative to the

breadth of the distribution of the female trait.

Unfortunately, much less is currently known about the

dynamics of assortative mating than about ecological

traits dynamics and some existing results are contradict-

ory. For example, it has been shown (Matessi et al., 2001)

that invasion of alleles for stronger assortative mating

does not necessarily lead to ever increasing assortative-

ness; if disruptive selection is not extremely strong, the

1150 D. WAXMAN AND S. GAVRILETS

J . EVOL . B I OL . 1 8 ( 2 0 0 5 ) 1 1 39 – 1 1 54 ª 2 00 5 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IOLOGY



population reaches a polymorphic state with partial

assortativeness that is stable to the invasion of further

alleles. By contrast, it has been claimed (Dieckmann &

Doebeli, 1999) that assortative mating evolves to become

very strong under very broad conditions.

However, a more careful reading of the paper of

Dieckmann and Doebeli reveals that the two alternative

alleles at each locus were present at frequency 1/2 at the

beginning of the simulations. Therefore, this paper does

not actually consider the invasion of new alleles for

assortativeness but merely their ability to survive com-

petition in a highly heterogeneous population.

5.3 What does Adaptive Dynamics teach us about
sympatric speciation?

The evolution of complete (or very strong) assortative

mating is one of the possible scenarios of sympatric

speciation. Therefore, the conclusions from the previous

question, on assortative mating, are directly applicable to

sympatric speciation. That is, Adaptive Dynamics shows

that certain types of ecological interactions create condi-

tions favouring the maintenance of genetic variation

under disruptive selection which in turn favour sympatric

speciation. Whether sympatric speciation actually occurs

is a different issue. The overwhelming majority of papers

on sympatric speciation written under the umbrella of

Adaptive Dynamics are based on numerical simulations

(for a rare exception, see van Doorn & Weissing, 2001)

the most interesting of which are actually modifications of

standard population genetics models. The numerical

nature of these studies makes generalizations difficult.

The overall conclusions following from our analysis of

numerical studies of sympatric speciation using Adaptive

Dynamics models parallel previous results obtained

within the standard population genetics approaches

(e.g. Crosby, 1970; Dickinson & Antonovics, 1973;

Caisse & Antonovics, 1978; Moore, 1979; Udovic,

1980; Felsenstein, 1981; Rice, 1984; Diehl & Bush,

1989; Gavrilets & Waxman, 2002; Gavrilets, 2003,

2004). That is, sympatric speciation is most plausible if

disruptive selection is strong, if both viability and mating

preferences are controlled by the same set of loci so that

recombination does not prevent splitting of the popula-

tion, if initial population variation and/or rates of

mutation are very high, and if there is no selection for

mating success so that choosy organisms pay no costs.

Although to a certain degree it is a matter of personal

interpretation, nothing in the recent Adaptive Dynamics

results seriously challenges the common wisdom that

conditions for sympatric speciation are rather specific

(as listed above).

Common claims about a ‘wide’ range of conditions

favouring sympatric speciation are, in our interpretation,

usually based on models incorporating unrealistic

assumptions or using unreasonable initial conditions

and numerical values of parameters. For example, Geritz

& Kisdi (2000) claim that sympatric speciation in their

model does not require very strong selection against

hybrids. Careful examination of the parameter values

used by these authors reveals that in their model for

sympatric speciation to be possible assortative mating had

to be extremely strong from the start (with individuals

mating with their own type with a probability 80–90%).

van Doorn et al. (2001) claim that speciation in their

model ‘occurs for a wide range of parameters’. Careful

examination of the parameter values used by these

authors reveals that they assumed that a single mutation

occurring with probability 10)4 per locus per generation

in any of 120 loci reduces the probability of fertilization by

75%, whereas two mutations reduce it by almost 94%.

This is, obviously, extremely strong assortative mating.

In the widely cited paper of Dieckmann & Doebeli

(1999), initial genetic variation was set at the maximum

possible level (the two alternative alleles at each locus

were present at frequency 1/2), all females had equal

mating success no matter how rare their preferred mates

were, and the rate of mutation was set at least at two

orders of magnitude higher than common estimates.

None of these conditions are biologically justified. Our

intuition tells us that introducing costs of choosiness and

starting the population at a realistically low level of

genetic variation (say, at a mutation–selection balance)

with realistic values of mutation rate will almost defin-

itely prevent sympatric speciation in the Dieckmann–

Doebeli or in similar models. We note that this hypo-

thesis is easily falsifiable.

Initial conditions with allele frequencies at 1/2 emerge

in a population of hybrids between two diverged popu-

lations. In the strict sense, the paper by Dieckmann &

Doebeli (1999) is not a paper about sympatric speciation

(by which one usually means the emergence of a new

species from within the old species) but about preventing

the fusion of two species that have somehow diverged

prior to their contact. Prevention of fusion of species as a

result of hybridization is an important theoretical

question which however is very different from the

question of the origin of species (i.e. speciation).

We comment that spatial subdivision of natural

populations is ubiquitous (e.g. Endler, 1977; Avise,

2000). In general, isolation by distance and spatial

heterogeneity in selection resulting from spatial subdivi-

sion appear to be much more powerful and general in

causing allopatric and parapatric speciation than the

mechanisms envisaged in the Adaptive Dynamics models

of sympatric speciation.

6. Recommendations for Adaptive
Dynamics

We speculate that in the future Adaptive Dynamics will

continue to be a useful method of attacking a variety of

interesting problems. As we have seen, in the preceding

parts of this somewhat nonstandard review, there are
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hidden limitations and unconscious or implicit assump-

tions that are frequently made in calculations associated

with Adaptive Dynamics. This is not unexpected, as the

intrinsic dynamics of evolving systems is, without a

doubt, complex. However, we believe that practitioners

of Adaptive Dynamics will need to take a backward look

at results obtained to date, with a view of establishing

their full regions of validity, as well as ensuring that

claims of novelty are justified and are not, in fact,

reproducing or closely paralleling earlier work. They

should be more careful in inventing new terms for old

concepts. Consider, for example, the term ‘Evolutionarily

Singular Strategy’. We believe it would be simplest and

most communicative to use the conventional and well

understood mathematical term ‘saddle point’ to describe

this point. This usage might allow the integration of

Adaptive Dynamics into more standard theories of

dynamical systems.

We also believe practitioners should be more open to

referencing relevant recent work on evolutionary

dynamics; more effort needs to be devoted to illuminate

connections between Adaptive Dynamics approaches and

alternative or well established methods. The same can be

said of work that predates Adaptive Dynamics. For

example, gradient-type dynamics has been well estab-

lished in population genetics (e.g. Wright, 1935; Lande,

1976; Barton & Turelli, 1987) yet it is treated as a new

development in Adaptive Dynamics (Dieckmann & Law,

1996; Metz et al., 1996; Geritz et al., 1998). Another

example, already mentioned above, is the condition for

‘Evolutionary Branching’, r2
K > r2

c identified by Dieck-

mann & Doebeli (1999). This was previously found as a

condition for the maintenance of genetic variation

(Roughgarden, 1972; Christiansen & Loeschcke, 1980)

20 years before the advent of Adaptive Dynamics. Simi-

larly, modelling the effects of selection gradients on the

possibility of parapatric speciation has a long history (e.g.

Endler, 1977; Caisse & Antonovics, 1978; Moore, 1981)

which apparently was missed by recent Adaptive

Dynamics papers on this subject (e.g. Doebeli &

Dieckmann, 2003; Mizera & Meszéna, 2003).

On other matters, there will, no doubt, be special cases

that are found where the simplest application of the

theory breaks down, and for these, it will be necessary to

understand and explain precisely where and what the

failure is, so that a good intuition may be built up, for the

benefit of later workers.

We believe that workers in Adaptive Dynamics need to

come up with testable predictions of their approach to

evolution, that are novel, in the sense that they cannot

be easily achieved by any other approaches. It would be

especially interesting to see a comprehensive comparison

of empirical data and the corresponding predictions of

Adaptive Dynamics.

Lastly, we note that quite a lot of the work in the

literature on Adaptive Dynamics relies on numerical

simulation of the behaviour of populations. We observe

that there is often a somewhat sketchy description of the

computational procedures adopted. To enable later

workers to reproduce computational work, we would

like to see clearer descriptions of this important aspect of

the research, which should be viewed as being as

important as an experimental protocol.
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