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We present a biorthogonal process for two subspaces ofC𝑛. Applying this process, we derive a matrix inequality, which generalizes
the Bauer-Hausdorff inequality for vectors and includes the Wang-IP inequality for matrices. Meanwhile, we obtain its equivalent
matrix inequality.

1. Introduction

The Cauchy-Bunyakovsky-Schwarz, or for short the C.B.S.-
inequality, plays an important role in different branches
of Modern Mathematics including Hilbert Space Theory,
Probability & Statistics, Classical Real and Complex Analysis,
Numerical Analysis, and Qualitative Theory of Differential
Equations and their applications.

Given an 𝑛-dimensional complex spaceC𝑛 and two linear
subspaces 𝑈 and 𝑉 such that

𝑈 ∩ 𝑉 = {0} , (1)

there exists

𝛾 = 𝛾 (𝑈,𝑉) ∈ [0, 1) (2)

such that for all 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 the following strengthened
C.B.S.-inequality holds (see [1]):





𝑥
∗

𝑦




≤ 𝛾 ‖𝑥‖ ⋅





𝑦




, (3)

where ‖ ⋅ ‖denotes the standardEuclidian norm.The smallest
quantity 𝛾may be called the cosine of the angle 𝜙 between the
spaces 𝑈 and 𝑉, or be called the C.B.S.-ratio of 𝑈 and 𝑉.

Strengthened C.B.S.-inequality has a long history and
there exist various versions. The earliest result of this
kind is due to the Wielandt [2] and was later generalized
by many researchers. Among them two important exten-
sions of the Wielandt inequality were given by Bauer and

Householder [3], and Wang and Ip [4]. The aim of this
paper is to present a matrix version of the Bauer-Hausdorff
inequality like one of the Wielandt inequality given by Wang
and Ip in [4].

On the practical side, this has been used in the analysis of
two-levelmethods.The survey by Eijkhout andVassilevski [1]
attributes the basic theory of this inequality and its applica-
tions in multilevel methods for the solution of linear systems
arising from finite element or finite difference discretisation
of elliptic partial differential equations. Auzinger and Kir-
linger [5] proposed another extension of this inequality for
the resolvent conditions in the Kreiss matrix theorem [6].

Throughout the paper, we denote by𝑅(𝑋) the range of the
matrix𝑋 ∈ C𝑛×𝑝,

𝑅 (𝑋) = {𝑥 | 𝑥 = 𝑋𝑧, 𝑧 ∈ C
𝑝

} , (4)

and by𝑊(𝐴) the (closed) numerical range of an operator 𝐴
on the space C𝑛,

𝑊(𝐴) = {𝑥
∗

𝐴𝑥 | 𝑥 ∈ 𝑅 (𝐴) , ‖𝑥‖ = 1} , (5)

and by 𝐿(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑝
) the linear subspace spanned by

{𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑝
} with 𝑎

𝑖
∈ C𝑛, 𝑖 = 1, 2, . . . , 𝑝.

Definition 1. For 𝐴 ∈ C𝑛×𝑛, 𝑃
𝐴
= 𝐴𝐴

+ denotes the orthogo-
nal projector onto the column space (range) of 𝐴, where 𝐴+
is the Moore-Penrose inverse of 𝐴.

Definition 2. For two 𝑛 × 𝑛 positive semidefinite Hermitian
matrices 𝐴, and 𝐵, we say that 𝐴 is below 𝐵 with respect to
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the Löwner partial ordering, and we write𝐴 ≤
𝐿
𝐵, if 𝐵−𝐴 is

positive semidefinite.

2. A Matrix Inequality

Let 𝐴 be an 𝑛 × 𝑛 positive definite Hermitian matrix. For any
two nonzero complex vectors 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉, Bauer and
Householder [3] asserted that

(𝑥
∗

𝐴𝑦)
2

𝑥
∗
𝐴𝑥 ⋅ 𝑦

∗
𝐴𝑦

≤ cos2𝜃, (6)

where 𝜃 satisfies

cot2 𝜃
2

=

𝜆
1

𝜆
𝑛

cot2
𝜙

2

, (7)

with 𝜙 ∈ (0, 𝜋/2] being the angle between two vector
subspaces 𝑈 and 𝑉 mentioned above, and with 𝜆

1
and 𝜆

𝑛

being the largest and smallest, necessarily real and positive,
eigenvalues of 𝐴.

A very interesting and important special case of (6) is the
Wielandt inequality

(𝑥
∗

𝐴𝑦)
2

𝑥
∗
𝐴𝑥 ⋅ 𝑦

∗
𝐴𝑦

≤ (

𝜆
1
− 𝜆
𝑛

𝜆
1
+ 𝜆
𝑛

)

2

(8)

established by Wielandt [2] when 𝜙 = 𝜋/2. The upper bound
in (8) is called the Wielandt ratio (see [7]). Wang and Ip [4]
generalized this inequality as follows.

Let 𝑋 and 𝑌 be complex 𝑛 × 𝑝 and 𝑛 × 𝑞 matrices,
respectively. If 𝑋∗𝑌 = 0, then for all generalized inverses
(𝑌
∗

𝐴𝑌)
−

𝑋
∗

𝐴𝑌(𝑌
∗

𝐴𝑌)
−

𝑌
∗

𝐴𝑋 ≤
𝐿
(

𝜆
1
− 𝜆
𝑛

𝜆
1
+ 𝜆
𝑛

)

2

𝑋
∗

𝐴𝑋 (9)

in the Löwner partial ordering.
The first statistical application of the Wielandt inequality

seems to be Eaton [8]. There are various equivalent versions
of (8) in the literature. The most important one of them
is the famous Kantorovich inequality [9, 10] which was
used in estimating convergence rate of the steepest descent
method for minimizing quadratic problems. Historical and
biographical remark on them can be found in [7].

Lemma 3 (see Zhan, [11]). Let 𝐴 ∈ C𝑛×𝑛 be a Hermitian
matrix with 2 × 2 block form

𝐴 = (

𝐴
11

𝐴
12

𝐴
21

𝐴
22

) . (10)

Then 𝐴 is positive semidefinite if and only if 𝐴
11

and 𝐴
22

are
positive semidefinite and if there is a contractionmatrix𝑊 such
that 𝐴

12
= 𝐴
1/2

11
𝑊𝐴
1/2

22
.

If 𝐴 can be partitioned as (10) and

𝑋 = (

𝐼
𝑝

0

) 𝑌 = (

0

𝐼
𝑛−𝑝

) , (11)

then (9) becomes

𝐴
12
𝐴
−1

11
𝐴
21
≤
𝐿
(

𝜆
1
− 𝜆
𝑛

𝜆
1
+ 𝜆
𝑛

)

2

𝐴
22

(12)

such that

𝑊
∗

𝑊 ≤
𝐿
(

𝜆
1
− 𝜆
𝑛

𝜆
1
+ 𝜆
𝑛

)

2

𝐼. (13)

In other words, if 𝐴 is positive definite with the 2 × 2 block
(10), then there is a contractionmatrix𝑊, with themaximum
singular value being equal to or less than (𝜆

1
−𝜆
𝑛
)/(𝜆
1
+𝜆
𝑛
),

such that 𝐴
12
= 𝐴
1/2

11
𝑊𝐴
1/2

22
.

The main result of this paper is stated in the following
theorem.

Theorem4. Let𝐴 ∈ C𝑛×𝑛 be a positive semidefiniteHermitian
matrix with rank 𝑟 ≤ 𝑛 and eigenvalues 𝜆

1
≥ 𝜆
2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑟
>

0. For any 𝑋 ∈ C𝑛×𝑝 and 𝑌 ∈ C𝑛×𝑞, if 𝜙 ∈ (0, 𝜋/2] is the angle
between the two vector spaces 𝑅(𝑃

𝐴
𝑋) and 𝑅(𝑃

𝐴
𝑌) and

cot2 𝜃
2

=

𝜆
1

𝜆
𝑟

cot2
𝜙

2

, (14)

then

𝑋
∗

𝐴𝑌(𝑌
∗

𝐴𝑌)
−

𝑌
∗

𝐴𝑋 ≤
𝐿
cos2𝜃 ⋅ 𝑋∗𝐴𝑋. (15)

Theorem 4 will be proved in the next section. This states
a very general form of a (strengthened) C.B.S.-inequality and
covers various types of C.B.S.-inequalities and their matrix
forms. For instance, the inequality (15) reduces to (6) when
𝑝 = 𝑞 = 1 and reduces to (9) when 𝜙 = 𝜋/2.

Theorem 4 can be rewritten as the following equivalent
form.

Theorem 5. Under the assumptions of Theorem 4, there is a
contraction matrix 𝑊 (from Lemma 3), with the maximum
singular value being equal to or less than cos 𝜃, such that

𝑋
∗

𝐴𝑌 = (𝑋
∗

𝐴𝑋)
1/2

𝑊(𝑌
∗

𝐴𝑌)
1/2

. (16)

Themaximum singular value of the contractionmatrix𝑊
inTheorem 5might be strictly less than cos 𝜃. For example, if

𝐴 = (

cos𝜓 − sin𝜓
sin𝜓 cos𝜓 )(

𝜆
1

0

0 𝜆
2

)(

cos𝜓 sin𝜓
− sin𝜓 cos𝜓)

= (

𝜆
1
cos2𝜓 + 𝜆

2
sin2𝜓 (𝜆

1
− 𝜆
2
) sin𝜓 cos𝜓

(𝜆
1
− 𝜆
2
) sin𝜓 cos𝜓 𝜆

1
sin2𝜓 + 𝜆

2
cos2𝜓 ) ,

(17)

then𝑊 = 𝐴
−1/2

11
𝐴
12
𝐴
−1/2

22
such that

𝑊
∗

𝑊 =

(𝜆
1
− 𝜆
2
)
2sin2𝜓cos2𝜓

(𝜆
1
cos2𝜓 + 𝜆

2
sin2𝜓) (𝜆

1
sin2𝜓 + 𝜆

2
cos2𝜓)

=

(𝜆
1
− 𝜆
2
)
2sin2𝜓cos2𝜓

(𝜆
1
− 𝜆
2
)
2sin2𝜓cos2𝜓 + 𝜆

1
𝜆
2

.

(18)

That is, the singular value of the contraction matrix 𝑊

belongs to the interval [0, (𝜆
1
− 𝜆
2
)/(𝜆
1
+ 𝜆
2
)].
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3. Proof of the Main Result

In this section we present an elementary proof of Theorem 4
by a biorthogonal procedure.

The C.B.S.-ratio 𝛾 in (3) can be redefined as

𝛾 = max {𝑥∗𝑦 | ‖𝑥‖ =




𝑦




= 1, 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉} . (19)

Since in finite dimensional spaces the unit sphere is compact,
the maximum value of (19) is attained.The following result is
obvious.

Lemma 6. Let 𝛾 be the C.B.S.-ratio of two subspaces 𝑈 and 𝑉
ofC𝑛 satisfying (1).Then there exist two unit vectors 𝑢 ∈ 𝑈 and
V ∈ 𝑉 satisfying 𝛾 = 𝑢

∗V such that

𝑢 − 𝛾V ⊥ 𝑉, V − 𝛾𝑢 ⊥ 𝑈. (20)

One direct consequence of Lemma 6 is the following
theorem.

Theorem 7. Let 𝑈 and 𝑉 be 𝑝 and 𝑞 dimensional linear
subspaces of C𝑛 satisfying (1) with 𝑝, 𝑞 ≥ 2 and 𝑝 +

𝑞 ≤ 𝑛. Then there exist two standard orthogonal bases
{𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑝
} of𝑈 and {V

1
, V
2
, . . . , V

𝑞
} of𝑉 such that for each

𝑖 = 1, 2, . . . ,min{𝑝, 𝑞}

𝑢
𝑖
⊥ 𝐿 (V

𝑖+1
, . . . , V

𝑞
) , V

𝑖
⊥ 𝐿 (𝑢

𝑖+1
, . . . , 𝑢

𝑝
) . (21)

Proof. We shall achieve the desired result by the following
biorthogonal process. Start with 𝑈

1
= 𝑈 and 𝑉

1
= 𝑉, 𝑖 = 1.

By Lemma 6, one finds two unit vectors 𝑢
𝑖
∈ 𝑈
𝑖
and V
𝑖
∈ 𝑉
𝑖

such that

𝛾
𝑖
= 𝑢
∗

𝑖
V
𝑖
, (22)

𝑢
𝑖
− 𝛾
𝑖
V
𝑖
⊥ 𝑉
𝑖

V
𝑖
− 𝛾
𝑖
𝑢
𝑖
⊥ 𝑈
𝑖
, (23)

where 𝛾
𝑖
is the C.B.S.-ratio of 𝑈

𝑖
and 𝑉

𝑖
with 𝛾

𝑖
≤ 𝛾. If

dim(𝑈
𝑖
) = 1 or dim(𝑉

𝑖
) = 1, then the procedure is completed;

otherwise, update 𝑈
𝑖
and 𝑉

𝑖
by setting

𝑈
𝑖+1

= {𝑥 −

𝑥
∗V
𝑖

𝛾
𝑖

𝑢
𝑖
| 𝑥 ∈ 𝑈

𝑖
} ,

𝑉
𝑖+1

= {𝑦 −

𝑦
∗

𝑢
𝑖

𝛾
𝑖

V
𝑖
| 𝑦 ∈ 𝑉

𝑖
} .

(24)

It is easily proved that

𝑢
𝑖
⊥ 𝑉
𝑖+1
, V

𝑖
⊥ 𝑈
𝑖+1
. (25)

Replace 𝑖 by 𝑖 + 1, and repeat the above procedure until
𝑖 = min{𝑝, 𝑞}.

If 𝑝 is not equal to 𝑞, one finds a standard orthogonal
bases {𝑢

𝑞+1
, . . . , 𝑢

𝑝
} of 𝑈

𝑝
(𝑞 < 𝑝) or {V

𝑝+1
, . . . , 𝑢

𝑞
} of 𝑉

𝑝

(𝑝 < 𝑞). This procedure generates two bases {𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑝
}

of𝑈 and {V
1
, V
2
, . . . , V

𝑞
} of𝑉 such that𝑈

𝑖
= 𝐿(𝑢

𝑖
, 𝑢
𝑖+1
, . . . , 𝑢

𝑝
)

and 𝑉
𝑖
= 𝐿(V

𝑖
, V
𝑖+1
, . . . , V

𝑞
) for each 𝑖 = 1, 2, . . . ,min{𝑝, 𝑞}.

Equations (23) and (25) imply that

𝑢
𝑖
⊥ 𝑈
𝑖+1
, V

𝑖
⊥ 𝑉
𝑖+1
, (26)

such that these two bases are standard orthogonal. Finally,
(21) holds since it is equivalent to (25).

In order to acquire ourmain result, we need the following
lemmas.

Lemma 8. Let 𝑊(𝐴) be the numerical range of a linear
operator 𝐴 on the space C𝑛. Then

𝑊(𝑋
∗

𝐴𝑋) ⊆ 𝑊(𝐴) ⋅ 𝑊 (𝑋
∗

𝑃
𝐴
𝑋) (27)

for any operator 𝑋 : C𝑘 → C𝑛 (𝑘 ∈ N arbitrary), where the
multiplication is defined by 𝑋 ⋅ 𝑌 = {𝑥𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌},
𝑋,𝑌 ∈ C.

Proof. For any 𝑧 ∈ C𝑘, if 𝑃
𝐴
𝑋𝑧 = 0, then 0 = (𝑋

∗

𝐴𝑋𝑧, 𝑧) ∈

𝑊(𝐴) ⋅ 𝑊(𝑋
∗

𝑃
𝐴
𝑋). If 𝑃

𝐴
𝑋𝑧 ̸= 0 and ‖𝑧‖ = 1, then 𝐴 =

𝐴𝐴
+

𝐴𝐴
+

𝐴 = 𝑃
𝐴
𝐴𝑃
𝐴
such that

(𝑋
∗

𝐴𝑋𝑧, 𝑧)

=




𝑃
𝐴
𝑋𝑧






2

(𝐴

𝑃
𝐴
𝑋𝑧





𝑃
𝐴
𝑋𝑧






,

𝑃
𝐴
𝑋𝑧





𝑃
𝐴
𝑋𝑧






) ∈ 𝑊 (𝐴) ⋅ 𝑊 (𝑋
∗

𝑃
𝐴
𝑋) ,

(28)

which results in the desired assertion.

When 𝐴 is invertible, Lemma 8 was established by Fujii
[12].

Lemma 9. If 𝑝 ≤ 𝑞, then the matrix

𝐶 = (

𝐼
𝑝

𝐵

𝐵
𝑇

𝐼
𝑞

) (29)

has single eigenvalues 1 ± 𝛾
1
, . . . , 1 ± 𝛾

𝑝
, where 𝐼

𝑝
and 𝐼
𝑞
are

two 𝑝×𝑝 and 𝑞 × 𝑞 unit matrices, and 𝐵 = (Λ, 0) ∈ C𝑝×𝑞 with
a 𝑝×𝑝 diagonal matrix Λ = diag(𝛾

1
, 𝛾
2
, . . . , 𝛾

𝑝
). Furthermore,

if 𝑝 < 𝑞, then 𝐶 has multiple eigenvalue 1.

Proof. If two vectors 𝜉 = (𝜉
1
, . . . , 𝜉

𝑗
, . . . , 𝜉

𝑝+𝑞
)
𝑇 and 𝜂 =

(𝜂
1
, . . . , 𝜂

𝑗
, . . . , 𝜂

𝑝+𝑞
)
𝑇 are defined by

𝜉
𝑗
= {

1, 𝑗 = 𝑖, 𝑝 + 𝑖,

0, 𝑗 ̸= 𝑖, 𝑝 + 𝑖,

𝜂
𝑗
=

{
{

{
{

{

1, 𝑗 = 𝑖,

−1, 𝑗 = 𝑝 + 𝑖,

0, 𝑗 ̸= 𝑖, 𝑝 + 𝑖

(30)

then they are eigenvectors of𝐶with the eigenvalues 1+𝛾
𝑖
and

1 − 𝛾
𝑖
, respectively.

If 𝑝 < 𝑞, for each 𝑗 = 2𝑝 + 1, . . . , 𝑝 + 𝑞, the 𝑗th column
vector of the (𝑝+𝑞)× (𝑝+𝑞) unit matrix is the eigenvector of
𝐶with themultiple eigenvalue 1.The proof is completed.

Finally, we give the proof of Theorem 4.

Proof of Theorem 4. Let𝑈 and𝑉 be two standard orthogonal
bases of ranges 𝑅(𝑃

𝐴
𝑋) and 𝑅(𝑃

𝐴
𝑌), respectively, with the

ranks 𝑝 and 𝑞 in Theorem 7. Without loss of generality, we
may assume that 𝑝 ≤ 𝑞. Let 𝑈∗𝑉 = (Λ, 0) ∈ C𝑝×𝑞, where
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Λ = diag(𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑝
) is a 𝑝 × 𝑝 diagonal matrix with 𝛾

𝑖
≤ 𝛾

for each 𝑖 = 1, 2, . . . , 𝑝 and 𝛾 the C.B.S.-ratio of 𝑅(𝑃
𝐴
𝑋) and

𝑅(𝑃
𝐴
𝑌). There exist two matrices𝑋

1
∈ C𝑝×𝑝1 and 𝑌

1
∈ C𝑞×𝑞1

such that 𝑃
𝐴
𝑋 = 𝑈𝑋

1
and 𝑃

𝐴
𝑌 = 𝑉𝑌

1
.

Letting 𝑍 = (𝑈,𝑉), 𝐶 = 𝑍
∗

𝑃
𝐴
𝑍 can be expressed as the

form (29) such that𝑊(𝑍
∗

𝑃
𝐴
𝑍) = [1−𝛾, 1+𝛾] fromLemma 9.

Lemma 8 shows that the matrix

𝑄 = 𝑍
∗

𝐴𝑍 = (

𝑈
∗

𝐴𝑈 𝑈
∗

𝐴𝑉

𝑉
∗

𝐴𝑈 𝑉
∗

𝐴𝑉
) (31)

has the largest and smallest eigenvalues𝜆
1
(1+𝛾) and𝜆

𝑟
(1−𝛾).

Since (7) holds and

1 + 𝛾

1 − 𝛾

=

1 + cos𝜙
1 − cos𝜙

= cot2
𝜙

2

, (32)

the Wielandt ratio of 𝑄 is

(

𝜆
1
(1 + 𝛾) − 𝜆

𝑟
(1 − 𝛾)

𝜆
1
(1 + 𝛾) + 𝜆

𝑟
(1 − 𝛾)

)

2

= (

𝜆
1
/𝜆
𝑟
cot2𝜙/2 − 1

𝜆
1
/𝜆
𝑟
cot2𝜙/2 + 1

)

2

= (

cot2𝜃/2 − 1
cot2𝜃/2 + 1

)

2

= cos2𝜃

(33)

such that the matrix

(

𝑈
∗

𝐴𝑈 𝑈
∗

𝐴𝑉

𝑉
∗

𝐴𝑈 cos2𝜃 ⋅ 𝑉∗𝐴𝑉) (34)

being positive semidefinite by the use of the Schur comple-
ment theory (see [13, 14]) to the inequality (9), which leads to
the matrix

(

𝑋
∗

𝐴𝑌 𝑋
∗

𝐴𝑌

𝑌
∗

𝐴𝑋 cos2𝜃 ⋅ 𝑌∗𝐴𝑌) = (

𝑋
∗

1
0

0 𝑌
∗

1

)

× (

𝑈
∗

𝐴𝑈 𝑈
∗

𝐴𝑉

𝑉
∗

𝐴𝑈 cos2𝜃 ⋅ 𝑉∗𝐴𝑉)

× (

𝑋
1

0

0 𝑌
1

)

(35)

is positive semidefinite. Applying the Schur complement
theory again, the desired result is proved.
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