Rosalie Iemhoff Dick de Jongh Chunlai Zhou

Properties of Intuitionistic Provability and Preservativity Logics

Abstract

We study the modal properties of intuitionistic modal logics that belong to the provability logic or the preservativity logic of Heyting Arithmetic. We describe the \square fragment of some preservativity logics and we present fixed point theorems for the logics $i L$ and $i P L$, and show that they imply the Beth property. These results imply that the fixed point theorem and the Beth property hold for both the provability and preservativity logic of Heyting Arithmetic. We present a frame correspondence result for the preservativity principle $W p$ that is related to an extension of Löb's principle.

Keywords: Intuitionistic modal logic, provability logic, preservativity logic, Heyting Arithmetic, Beth definability, fixed points.

1. Introduction

In this paper ${ }^{1}$ we study some intuitionistic modal logics that arise from a specific mathematical interpretation of the modal operations. The modalities we consider are \square and \triangleright, and their interpretation is given by

$$
\begin{array}{ll}
\square \varphi & \text { " } \varphi \text { is provable in } \mathrm{HA} \text { ", i.e. HA } \vdash \varphi \\
\varphi \triangleright \psi & \text { "for all } \sigma \in \Sigma_{1}: \mathrm{HA} \vdash \sigma \rightarrow \varphi \text { implies } \mathrm{HA} \vdash \sigma \rightarrow \psi ",
\end{array}
$$

where HA is Heyting Arithmetic, the constructive counterpart of PA, i.e. it is a theory in intuitionistic predicate logic IQC that has as axioms the nonlogical axioms of PA, and Σ_{1} is the first level of the arithmetical hierarchy. All the logics we consider are part of the provability or preservativity logic of HA. This means that all these logics consist of propositional schemes that HA proves about the provability predicate $\square_{\text {HA }}$ or the preservativity predicate $\triangleright_{\text {HA }}$ of HA. In particular, the theorems of these logics are (constructively) valid schemes. Note that provability logic is part of preservativity logic, as

$$
\mathrm{HA} \vdash \square_{\text {HA }} \equiv T \triangleright_{\text {HA }} \varphi .
$$

Preservativity logic was introduced by Visser[2002] as a constructive alternative for interpretability logic, to which it is equivalent for many classical

[^0]theories, in particular for PA. No axiomatization is known for the preservativity logic of HA, but over the last few years at least part of the logic has been axiomatized ${ }^{2}$. It is a logic in the language of preservativity logic, L_{\triangleright}, i.e. the language of propositional logic extended with one binary modal operator $\triangleright . L_{\square}$ is the language of provability logic, i.e. the language of propositional logic extended with one modal operator \square. As mentioned above, in preservativity logic we can define $\square A$ as $T \triangleright A$. In this paper we consider the following principles of the preservativity logic of HA (\triangleright and \square bind stronger than \wedge, \vee, that bind stronger than \rightarrow).

IPC	intuitionistic propositional logic		
P1	$A \triangleright B \wedge B \triangleright C \rightarrow A \triangleright C$		
P2	$A \triangleright B \wedge A \triangleright C \rightarrow A \triangleright(B \wedge C)$		
Dp	$A \triangleright B \rightarrow(A \vee C) \triangleright(B \vee C)$		
Mp	$A \triangleright B \rightarrow(\square C \rightarrow A) \triangleright(\square C \rightarrow B)$		
$W p$	$A \wedge \square B \triangleright B \rightarrow A \triangleright B$		
		K	$\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$
$4 p$	$A \triangleright \square A$	4	$\square A \rightarrow \square \square A$
Lp	$(\square A \rightarrow A) \triangleright A$	L	$\square(\square A \rightarrow A) \rightarrow \square A$
		Le	$\square(A \vee B) \rightarrow \square(A \vee \square B)$
Rules:			
Pres	$A \rightarrow B / A \triangleright B$		$A / \square A$
MP	$A(A \rightarrow B) / B$		

$i P^{-}$denotes the logic given by IPC, the principles $P 1, P 2$, and the rules Pres and MP.iP is the logic $i P^{-}$extended by $D p$ and is called the basic preservativity logic for reasons explained in the next section. By $i P 4$ we denote the logic $i P$ extended by the principle $4 p$. Similarly for the other preservativity principles $L p, M p, W p$. $i K$ denotes the logic given by IPC, K, and the rules $N e c$ and $M P$. The logic $i K$ extended by the principle 4 is denoted by $i K 4$. Similarly for L, Le. Conform tradition, $i K L$ is denoted by $i L$. $i L L e$ denotes $i L$ extended by $L e, i P X$ denotes an arbitrary extension of $i P$. Lemma 1.1 below shows that all provability principles can be derived from the preservativity principles.

Readers familiar with provability logic will note that at the right side the non-logical axioms $K, 4, L$ of the provability logic $G L$ of PA are listed. This in contrast to $D p$ and $L e$, that do not belong to the preservativity logic

[^1]of PA. Since it is difficult to think of a natural classical interpretation of \square or \triangleright for which these principles would hold, they are not likely to appear in classical modal logic. On the classical side, the modal study of the provability logic of PA has been a useful tool, as it was shown in Solovay [1976] that for a formula $A\left(p_{1}, \ldots, p_{n}\right)$ not derivable in $G L$ one can construct, on the basis of a countermodel of A, arithmetical formulas φ_{i} such that PA $\nvdash \mathrm{A}\left(\varphi_{1}, \ldots, \varphi_{\mathrm{n}}\right)$, (where \square in A are interpreted as the provability predicate of PA). An analogous result holds for the interpretability (preservativity) logic of PA. Although it is open whether similar results hold for HA, the modal study of the principles above is interesting for two main reasons. First, these principles express principles of HA. Therefore, knowledge about them is likely to provide insights in HA, and might help in the search for a complete axiomatization of the provability and preservativity logic of HA. In fact, modal results have lead to new principles of these logics before. Second, as mentioned above, some of these principles do not belong to the logics regularly studied in intuitionistic modal logic. We think that therefore the modal study of these principles might be a valuable addition to the field.

In Iemhoff[2003] modal completeness results were presented for all logics given by some or all of these principles, except for $i P W$ and $i P L$. In this paper we continue the modal study of these logics by investigating the relation between the preservativity and provability logics (Section 3), and by presenting fixed point theorems for both $i P L$ and $i L$ (Section 4). From the latter it follows that both the fixed point theorem and the Beth property hold for any extension of these logics in the appropriate language. In particular, it follows that they hold for the provability and preservativity logic of HA. The proof of the fixed point theorem for $i P L$ also provides another proof of the fixed point theorem for the interpretability logic $I L$. Furthermore, we present a correspondence theorem for $i P W$ and explain the connection of this principle to $i P L$. It is not difficult to show that $W p$ is derivable in $i P L M$, so in view of the preservativity logic of HA it does not add anything new. However, this principle came up in Zhou [2003] in relation to the open problem of frame completeness for $i P L$, where it plays an interesting role. This will be explained in more detail in Section 3.4 on $W p$.

\square-fragments

The first part (Section 3) on the relation between preservativity and provability logics, needs a little more explanation. The \square-fragment of a preser-
vativity logic $i P X$ in L_{\triangleright} is defined to be

$$
i P X_{\square}:=\left\{A \text { in } L_{\square} \mid i P X \vdash A\right\} .
$$

Here we ask ourselves what the \square-fragment of a given preservativity logic is. An obvious relation between \square and \triangleright is given by the following lemma ${ }^{3}$.

Lemma 1.1. $i P^{-} \vdash \square(A \rightarrow B) \rightarrow A \triangleright B$ and $i P^{-} \vdash A \triangleright B \rightarrow(\square A \rightarrow \square B)$.
Now the guiding idea behind the description of the \square-fragments is the translation ${ }^{\circ}$ on formulas that inductively replaces all occurrences of $A \triangleright B$ by $\square A \rightarrow \square$ $\square B$ B. All preservativity principles except $D p, M p$ and $W p$ are derivable in $i L$ under this translation ${ }^{4}$. For $W p$, it is explained in Section 3.4. why its translation under ${ }^{\circ}$ does not belong to the provability logic of HA. For $D p$ and $M p$, the translation of which under ${ }^{\circ}$ does not belong to the provability logic of HA either ${ }^{5}$, it turns out that there are rules that somehow cover the effect of $D p$ and $M p$ on the \square-fragment of the preservativity logics that contain them. These are the rules

$$
\begin{array}{ll}
D R & \square A \rightarrow \square B / \square(A \vee C) \rightarrow \square(B \vee C) \\
M o R & \square A \rightarrow \square B / \square(\square C \rightarrow A) \rightarrow \square(\square C \rightarrow B) .
\end{array}
$$

We show that for all preservativity logics considered in this paper, these rules determine the \square-fragment of a preservativity logic in the following way.

THEOREM 1.2. (Numbers indicate the sections where the equality is proved.)

$i P_{\square}$	$\stackrel{3.3}{=} i K$	$\stackrel{3.3}{=} i K+D R$	
$i P 4_{\square}$	$\stackrel{3.1}{=} i L e$	$\stackrel{3.1 .1}{=}$	$i K 4+D R$
$i P L_{\square}$	$\stackrel{3.2}{=} i L L e$	$\stackrel{3.2 .1}{=} i L+D R$	
$i P M_{\square}$	$\stackrel{3.3}{=} i K$	$\stackrel{3.3}{=} i K+D R+M o R$	
$i P W_{\square}$	$\stackrel{3.4}{=} i L L e$	$\stackrel{3.4}{=} i L+D R$	

In particular, if X is one of $4 p, L p$ or empty, then $i P X_{\square}=i K X^{\circ}+D R$. For $X=M p, i P X_{\square}=i K+D R+M o R=i K . W p$ is an exception of this regularity, as $i P W_{\square} \neq i K W^{\circ}+D R$ (Section 3.4).

[^2]In all these cases the general method to prove these equalities is similar. As an example, we explain the way in which the equalities on the second line $i P 4_{\square}=i L e=i K 4+D R$ are proved. First it is shown that $i P 4_{\square}=i L e$, essentially by proving completeness of $i L e$ and $i P 4$ with respect to the same class of frames. As $i L e \subseteq i K 4+D R$, this gives

$$
i P 4_{\square}=i L e \subseteq i K 4+D R
$$

It remains to prove that

$$
i K 4+D R \subseteq i P 4_{\square}
$$

Since by Lemma 1.1 it follows that $i P 4_{\square} \vdash 4$, it suffices to show that $D R$ is admissible for $i P 4_{\square}$. This is shown via proving that the rule $B P$ (Box Pres)

$$
\square A \rightarrow \square B / A \triangleright B
$$

is admissible for $i P X$, i.e. $i P X+B P=i P X$, and then applying the following lemma.

LEMMA 1.3. If the rule $B P$ is admissible for $i P X$, then $D R$ is admissible for $i P X$, and whence for $i P X_{\square}$. If in addition $i P X \vdash M p$, then both $D R$ and $M o R$ are admissible for $i P X$, and whence for $i P X_{\square}$.

Proof. We show the first part of the lemma, as the second part is similar. Suppose $i P X \vdash \square A \rightarrow \square B$. By the admissibility of $B P$ this implies that $i P X \vdash A \triangleright B$. Since $i P$ derives $D p$, so does $i P X$. Whence $i P X \vdash(A \vee B) \triangleright$ $(B \vee C)$. Lemma 1.1 gives $i P X \vdash \square(A \vee C) \rightarrow \square(B \vee C)$.

All the other equalities are proved in a similar manner. However, the applied techniques differ with the logic. In some cases modal completeness results are used, but for $i P L$, for which such a result is not available, other methods had to be found.

2. Preliminaries and Tools

2.1. Semantics for Preservativity Logic

DEFINITION 2.1. A frame F (for preservativity logic) is a triple $\langle W, R, \leq\rangle$, where W is a nonempty set of possible worlds, points or nodes, \leq is a partial order and R is a binary relation satisfying

$$
(\leq \circ R) \subseteq R
$$

A model M is a quadruple $\langle W, R, \leq, \Vdash\rangle$ where $\langle W, R, \leq\rangle$ is a frame and \Vdash is a forcing relation between points in W and propositional letters which satisfies the following condition:

- (persistence) If $x \Vdash p$ and $x \leq y$, then $y \Vdash p$.

Next we model the whole language by extending the forcing relation \Vdash to relate points to complex formulae by interpreting the connectives in $I P C$ in the usual manner:

$$
\begin{aligned}
& M, w \Vdash A \wedge B \equiv_{\operatorname{def}} M, w \Vdash A \text { and } M, w \Vdash B ; \\
& M, w \Vdash A \vee B \equiv_{\operatorname{def}} M, w \Vdash A \text { or } M, w \Vdash B ; \\
& M, w \Vdash A \rightarrow B \equiv_{\operatorname{def}} \forall v \geq w(M, v \Vdash A \text { implies } M, v \Vdash B) ; \\
& M, w \Vdash \top \text { for any } w ; \\
& M, w \Vdash \perp \text { for any } w .
\end{aligned}
$$

Define $\neg A$ as $A \rightarrow \perp$. From the above third and fifth clauses and the definition of $\neg A$ as $A \rightarrow \perp$, it is easy to deduce that $M, w \Vdash \neg A$ iff $\forall v \geq$ $w(M, v \Vdash A)$. The most important and characteristic clause is the following one for \triangleright formulas:
$M, w \Vdash A \triangleright B \equiv_{d e f}$ for any v such that $w R v$, if $M, v \Vdash A$, then $M, v \Vdash B$.

It follows immediately that $M, w \Vdash \square A$ iff for any v such that $w R v, M, v \Vdash$ A. Also it is easy to check that

- (persistence for all formulas) for any formula A in L_{\triangleright}, if $M, w \Vdash A$ and $w \leq v$, then $M, v \Vdash A$.

As a matter of fact, given the persistence for propositional letters, the condition that $(\leq \circ R) \subseteq R$ is a necessary and sufficient condition to guarantee persistence for all formulas ${ }^{6}$, which is different from the condition $(\leq \circ R) \subseteq(R \circ \leq)$ for intuitionistic modal logic (sometimes we write $R \circ \leq$ as $\bar{R})$.

LEMMA 2.2. Let $\langle W, R, \leq\rangle$ be a frame such that W is a non-empty set, \leq is a partial order and $(\leq \circ R) \nsubseteq R$. Then there is a formula A of L_{\triangleright} and a forcing relation \Vdash such that in $\langle W, R, \leq, \Vdash\rangle$ for some $x, y \in W, x \leq y$ and $x \Vdash A$ but $y \Vdash A$.

[^3]Proof. Since not $(\leq \circ R) \subseteq R$, there are two worlds $x, y \in W$ such that $x(\leq \circ R) y$ but not $x R y$. That is to say, there is a world $u \in W$ such that $x \leq u R y$. Define $z \Vdash p$ iff $y \leq z ; z \Vdash q$ iff $z \not \leq y ; z \Vdash r$ for any other propositional letter r.
It is easy to check that \Vdash is a forcing relation, i.e. it satisfies that for any propositional letter t, if $x \leq y$ and $x \Vdash t$, then $y \Vdash t$. On one hand, $u \Vdash p \triangleright q$. For $u R y, y \Vdash p, y \Vdash q$ and hence $u \Vdash p \triangleright q$. On the other hand, $x \Vdash p \triangleright q$. To see this we shall show that if $x R z$ and $z \Vdash p$, then $z \Vdash q$. Since $x R z$, $z \neq y$. Moreover, $y \leq z$, for $z \Vdash p$. Therefore $y<z$. This implies that $z \not \leq y$ and hence $z \Vdash q$. So we get that $x \leq u, x \Vdash p \triangleright q$ but $u \Vdash p \triangleright q$.
A is valid in a model M if for any $w \in W M, w \Vdash A . A$ is valid in a frame F if A is valid on any model $M=\langle F, \Vdash\rangle$ on the frame.

THEOREM 2.3. $i P \vdash A$ iff A is valid on all frames iff A is valid on all finite frames. ${ }^{7}$

As we can easily see, $i P$ stands in the same position in preservativity logic as $i K$ does in normal modal logics. In this sense, it is the basic preservativity logic.

2.2. Semantics for Intuitionistic Provability Logic

The semantics for L_{\square} should be part of the semantics for L_{\triangleright} because we define $\square A$ to be $T \triangleright A$. Although, given the persistence for propositional letters, the condition that $(\leq \circ R) \subseteq(R \circ \leq)$ is a sufficient and necessary condition that guarantee the persistence for all formulas in L_{\square} (in fact (\leq $\circ R) \subseteq R$ implies $(\leq \circ R) \subseteq(R \circ \leq))$, it is well justified ${ }^{8}$ to define frames for intuitionistic provability logics in the following simpler way, which is the same as that of frames for preservativity logics.

DEfinition 2.4. A frame F (for intuitionistic provability logic) is a triple $\langle W, R, \leq\rangle$ where W is a nonempty set of possible worlds, points or nodes, \leq is a partial order and R is a binary relation satisfying

$$
(\leq \circ R) \subseteq R .
$$

[^4]However, for L_{\square} we can impose extra conditions on frames that we cannot require of frames for preservativity logic. All intuitionistic modal logics $i T$ that we will consider below are complete with respect to some class of frames satisfying additionally:

- (brilliancy $)(R \circ \leq) \subseteq R$.

In particular, $i K$ is complete w.r.t the class of finite brilliant frames. Moreover, all the notions and propositions above can be adapted into intuitionistic modal logic automatically. We will not go into details about that.

2.3. Some Useful Facts

In the following we achieve some basic propositions in preservativity logics that will be very useful to other sections in this paper. First we establish the connection between the natural rule for preservativity logic: preservation rule and the more-often-used rule: necessitation rule.

THEOREM 2.5. In any preservativity logic $i T$ containing all theorems in $i P^{-}$, the preservation rule and the necessitation rule are equivalent. ${ }^{9}$

Proof. Assume that $A \rightarrow B / A \triangleright B$ is admissible in $i T$ and $i T \vdash A$. Then $i T \vdash \mathrm{~T} \rightarrow A$ because $I P C \vdash A \rightarrow(\top \rightarrow A)$. By the preservation rule, we get that $i T \vdash T \triangleright A$, i.e $i T \vdash \square A$. Now for the other direction. Assume that the necessitation rule is admissible in $i T$ and $i T \vdash A \rightarrow B$. By applying the necessitation rule, we get that $i T \vdash \square(A \rightarrow B)$. It follows from Lemma 1.1 that $i T \vdash A \triangleright B$.

By Lemma 1.1, we immediately get the following two corollaries:
COROLLARY 2.6. The following two forms of the Mp principle are equivalent over $i P^{-}$:

1. $A \triangleright B \rightarrow(\square C \rightarrow A) \triangleright(\square C \rightarrow B)$
2. $(A \wedge \square C) \triangleright B \rightarrow A \triangleright(\square C \rightarrow B)$.

COROLLARY 2.7. The following two forms of W are equivalent over $i P^{-}$:

$$
\text { 1. } A \wedge \square B \triangleright B \rightarrow A \triangleright B
$$

[^5]$$
\text { 2. } A \triangleright B \rightarrow(\square B \rightarrow A) \triangleright B
$$

We will use the following substitution lemmas in our section on the fixed point theorems.

LEMMA 2.8. (a) $T \vdash \square(A \leftrightarrow B) \rightarrow(F[A / p] \leftrightarrow F[B / p])$, for $T=i P 4$ or $T=i K 4$,
(b) If p occurs only modalized in F, i.e. only under \square or \triangleright, then $T \vdash \square(A \leftrightarrow B) \rightarrow(F[A / p] \leftrightarrow F[B / p])$, for $T=i P 4$ or $T=i K 4$.

Proof. We can prove (a) directly by induction on the complexity of F, and (b) by induction from (a).

The following lemma, the proof of which we leave to the reader, shows that the principle 4 is a very basic principle in intuitionistic provability logic.

LEMMA 2.9. For $T=i L$ or $T=i L e, T \vdash \square A \rightarrow \square \square A$ for any formula A in L_{\square}.

3. Conservation Results

As you will see, the rule $\square A \rightarrow \square B / A \triangleright B$ plays a dominant role in the following sections. This rule is discussed in Section 5.2 of Iemhoff [2001] where a short proof sketch is given for the admissibility of the rule for $i P H$. We will give detailed proofs of the admissibility of this rule in many other logics, which may impose an impression that we repeat the same proofs. This is not the case though. Every time we show the admissibility for a different logic, you will find some additional new ideas in the proof.
We will divide the presentation of this section into several parts according to the results which we have previously mentioned.

3.1. Conservation of $i P 4$ over $i L e$

A notational convention: Given a frame $M,[z):=\{w \mid$ there is a sequence of $w_{0} S_{0} w_{1} \cdots w_{n}=w$ for some worlds $w_{0}, w_{1}, \cdots, w_{n}$ in M where $\left.S_{i} \in\{R, \leq\}\right\}$. Thus $[z)$ stands for the subframe generated by z. The same notation applies to models.

THEOREM 3.1. ${ }^{10}$

[^6]1. In $L_{\square}, 4$ corresponds to semi-transitivity: $(R \circ R) \subseteq(R \circ \leq)$.
2. In $L_{\square}, \vdash_{i K 4} A$ iff A is valid on all finite transitive frames.
3. The principle $4 p$ corresponds to gatheringness: if $w R v R u$, then $v \leq u$.
4. $\vdash_{i P 4} A$ iff A is valid on all finite gathering frames.
5. On finite frames $L e$ corresponds to the $L e$-property: $\forall w v(w R v \rightarrow$ $\exists x(w R x \leq v \wedge \forall u(v R u \rightarrow x \leq u)))$.
6. $\vdash_{i L e} A$ iff A is valid on all finite brilliant $L e$-frames.
7. In $L_{\square}, \vdash_{i L L e} A$ iff A is valid on all finite transitive conversely wellfounded brilliant $L e$-frames.

For the sake of completeness, we will repeat the conservation of $i P 4$ over $i L e$ in Iemhoff [2001] to give a more transparent presentation. Besides, we need again the procedure (used in Lemma 3.3) transforming Le-frames to gathering frames again in the proofs of Lemmas 3.11 and 3.34.

LEmmA 3.2. Let $M:=\langle W, R, \leq, \Vdash\rangle$ and $N:=\left\langle W, R^{\prime}, \leq, \Vdash\right\rangle$ be two finite models. If $R^{\prime} \subseteq R \subseteq\left(R^{\prime} \circ \leq\right)$, then $M, w \Vdash B$ iff $N, w \Vdash B$ for any formula B in L_{\square} and any world $w \in W$.

Lemma 3.3. Let $M:=\langle W, R, \leq, \Vdash\rangle$ be a finite Le brilliant model. Then there is a finite gathering model $N=\left\langle W, R^{\prime}, \leq, \Vdash\right\rangle$ such that $R^{\prime} \subseteq R \subseteq\left(R^{\prime} \circ \leq\right)$.

Proof. Assume that $M:=\langle W, R, \leq, \Vdash\rangle$ is a finite Le brilliant model. Define:

$$
w R^{\prime} v \equiv_{d e f} w R v \text { and } \forall u(v R u \rightarrow v \leq u) \text { and } N:=\left\langle W, R^{\prime}, \leq, \Vdash\right\rangle
$$

$S(x)$ denotes the property: $\forall u(x R u \rightarrow x \leq u)$. Assume that $w R v$. We need to find an x such that $w R^{\prime} x \leq v$. That is to say, $w R x \leq v$ and $S(x)$. By the Le-property, there is a successor x_{1} of w which is below both v and all its own successors. If $x_{1}=v$, then we have found such an x. If $x_{1} \neq v$, then there is another successor x_{2} of w which is below both x_{1} and all its own successors. If $x_{2}=x_{1}$, then we have found such an x. If not, we will repeat the same argument as above. Thus, we will get a sequence $x_{1} x_{2} \cdots$. Since the frame is finite, there are two nodes $x_{n-1}=x_{n}$ for some $\mathrm{n} ; x_{n}$ is the x that we are looking for.

LEMMA 3.4. $\vdash_{i P 4} \square(A \vee B) \rightarrow \square(A \vee \square B)$.

Proof. Observe that, by $4 p$ and $D p, \vdash_{i P 4}(A \vee B) \triangleright(A \vee \square B)$, and apply Lemma 1.1.

THEOREM 3.5. $\vdash_{i L e} A$ iff A is valid on all finite gathering frames.
Proof. The right-to-left direction follows from the fact that $L e$ is derivable in $i P 4$ (Lemma 3.4). We just need to show the other direction. Suppose that $\vdash_{i L e} A$. Then by the completeness of $i L e$, we know that there is a world b in some finite brilliant $L e$ model $M=\langle W, R, \leq, \Vdash\rangle$ such that $M, b \Vdash A$. According to Lemma 3.3, there is another new finite gathering model $N=$ $\left\langle W, R^{\prime}, \leq, \|\right\rangle$ such that $R^{\prime} \subseteq R \subseteq\left(R^{\prime} \circ \leq\right)$. From Lemma 3.2, it follows that $N, b \Vdash A$.
corollary 3.6. (Conservation) $\vdash_{i P 4} A$ iff $\vdash_{i L e} A$, for all A in L_{\square}.

3.1.1. $i L e$ is equivalent to the logic $i K 4$ with $D R$

LEMMA 3.7. Let M be a model on a gathering frame and x, y be two worlds in this model such that $x R y$. If $y \Vdash A$, then, for any $z \in[y), z \Vdash \square A$.

Proof. First one observation: for any $z \in[y), y \leq z$. This follows immediately from the fact that M is on a gathering frame. So $z \Vdash A$. Take any successor w of $z, w \Vdash A$ because $w \in[y)$. So $z \Vdash \square A$ and hence $z \Vdash \square A$.

LEMMA 3.8. $\vdash_{i P 4} A \triangleright B$ iff $\vdash_{i P 4}(\square A \rightarrow \square B)$.
Proof. The direction from left to right follows from Lemma 1.1. We prove the other direction by contraposition. Suppose that $i P 4 \nvdash A \triangleright B$. From the completeness of $i P 4$, it follows that $A \triangleright B$ is false at a point w of some finite gathering model M. Then there is a point v such that $w R v, v \Vdash A$ and $v \nVdash B$. Now we define from the original one a new model M^{\prime}, which is, in fact, a submodel of the old one. Take $W^{\prime}:=\{w\} \cup[v), R^{\prime}=R \upharpoonright_{W^{\prime}}$, $\leq^{\prime}=\leq{ }^{W^{\prime}}$, and $x \Vdash p$ iff $x \Vdash^{\prime} p$ for any propositional variable p, for all $x \in W^{\prime}$. Observe that M^{\prime} has a gathering frame. Note that, for any $x \in[v)$ and for any formula B in $L_{\triangleright}, M^{\prime}, x \Vdash B$ iff $M, x \Vdash B$.

It is clear that $M^{\prime}, w \Vdash \square B$ because $w R^{\prime} v$ and $M^{\prime}, v \nVdash B$. By the above lemma, we get that $M^{\prime}, w \Vdash \square A$ because $R^{\prime}[w] \subseteq[v)$ and for any $x \in[v), x \Vdash A$. So $M^{\prime}, w \Vdash \square A$ but $M^{\prime}, w \Vdash \square B$, which implies that $M^{\prime}, w \Vdash \square A \rightarrow \square B$. Therefore $\forall_{i P 4} \square A \rightarrow \square B$.

THEOREM 3.9. $i L e$ is equivalent to the logic $i K 4$ with the extra rule $D R$. Whence $i P 4_{\square}=i L e=i K 4+D R$.

Proof. First we prove that $i L e$ is contained in $i K 4+D R$. We only need to show that $L e$ is derivable in the latter logic. Since $i K 4+D R \vdash \square A \rightarrow$ $\square \square A$, we can get Le immediately by just applying $D R$. For the other direction, recall ${ }^{11}$ that the principle 4 is derivable in $i L e$. Whence it remains to show that $D R$ is admissible for $i L e$, which is the same as showing that it is admissible for $i P 4_{\square}$, by Corollary 3.6. That $D R$ is admissible for $i P 4_{\square}$ follows from the previous lemma, by applying Lemma 1.3.

3.2. Conservation of $i P L$ over $i L L e$

LEmma 3.10. The principle Lp corresponds to gatheringness plus converse well-foundedness of the modal relation. Similarly, L corresponds to semitransitivity plus well-foundedness. ${ }^{12}$
lemma 3.11. iLLe $\vdash A$ iff A is valid on all finite gathering conversely wellfounded frames.

Proof. First the easier left-to-right direction. It suffices to show that both $L e$ and L are valid on all finite gathering conversely well-founded frames. Firstly, $L e$ is valid on all finite gathering frames and hence on all finite gathering conversely well-founded frames. Secondly, L is valid on all finite gathering conversely well-founded frames. For L corresponds to semi-transitivity plus converse well-foundedness, and gatheringness implies semi-transitivity.

Next we show the more difficult direction. Suppose that $i L L e \nvdash A$ where A is a formula in L_{\square}. According to Theorem 3.1, there is a point b in some model $M=\langle W, \leq, R, \Vdash\rangle$ which is finite transitive conversely wellfounded brilliant $L e$-model such that $M, b \nVdash A$. Define $w R^{\prime} v$ iff $w R v$ and $\forall u(v R u \rightarrow v \leq u)$. By the same argument as that in Lemma 3.3, we get that $R^{\prime} \subseteq R \subseteq\left(R^{\prime} \circ \leq\right)$. Set $M^{\prime}=\left\langle W, R^{\prime}, \leq, \Vdash\right\rangle$. It is easy to see that M^{\prime} is on a finite gathering frame, as we impose this property through the definition of R^{\prime}.

Finally, M^{\prime} is conversely well-founded. Suppose not. Then there is a loop: $w_{0} R^{\prime} w_{1} R^{\prime} \cdots R^{\prime} w_{n} R^{\prime} w_{0}$. According to the definition of $R^{\prime}, w_{0} R w_{1} R$ $\cdots R w_{n} R w_{0}$, which is impossible because R is conversely well-founded. So M^{\prime} is on a finite gathering well-founded frame. It follows immediately from

[^7]the above Lemma 3.2 that $M^{\prime}, b \Downarrow A$. Since M^{\prime} is on a finite gathering conversely well-founded frame, A is not valid on all finite gathering conversely well-founded frames.

THEOREM 3.12. (Conservation) $i L L e$ is the L_{\square}-fragment of $i P L$.
Proof. Suppose that $i L L e \nvdash A$. Then A is not valid on all gathering conversely well founded frames. It follows from the above correspondence result that $i P L \nvdash A$. On the other hand, it is easy to see that $i L L e$ is contained in $i P L$. For both L and $L e$ are derivable in $i P L$.

3.2.1. $i L L e$ is Equivalent to $i L$ with the Extra Rule $D R$

In the following paragraphs we are mainly concerned with the proof of

$$
i P L \vdash \square A \rightarrow \square B \Leftrightarrow i P L \vdash A \triangleright B,
$$

which immediately implies that $i L L e$ is equivalent to $i L$ with the extra rule $D R$.

Lemma 3.13. $i P 4 \vdash \square((\square C \rightarrow C) \triangleright C) \rightarrow(\square C \rightarrow C) \triangleright C$.
Proof. First note that $i P \vdash \square(A \triangleright B) \rightarrow(\square A \triangleright \square B)$ by Lemma 1.1. Reason inside $i P 4$:

$$
\begin{aligned}
& \square((\square C \rightarrow C) \triangleright C) \rightarrow \square(\square C \rightarrow C) \triangleright \square C \\
& \square((\square C \rightarrow C) \triangleright C) \rightarrow(\square C \rightarrow C) \triangleright \square C \\
& \square((\square C \rightarrow C) \triangleright C) \rightarrow(\square C \rightarrow C) \triangleright(\square C \wedge(\square C \rightarrow C)) \\
& \square((\square C \rightarrow C) \triangleright C) \rightarrow(\square C \rightarrow C) \triangleright C .
\end{aligned}
$$

COROLLARY 3.14. $i P 4 \vdash \square \square L \leftrightarrow \square L \leftrightarrow \square L$ where L is $(\square C \rightarrow C) \triangleright C$.
lemma 3.15. (Detour Lemma) iPLトA iff there exist $C_{1}, C_{2}, \cdots, C_{n}$ such that $i P 4 \vdash \square\left(\left(\square C_{1} \rightarrow C_{1}\right) \triangleright C_{1}\right) \wedge \cdots \wedge \square\left(\left(\square C_{n} \rightarrow C_{n}\right) \triangleright C_{n}\right) \rightarrow A$.

Proof. Let C range over expressions $\left(\left(\square C_{1} \rightarrow C_{1}\right) \triangleright C_{1}\right) \wedge \cdots \wedge\left(\square C_{n} \rightarrow\right.$ $\left.\left.C_{n}\right) \triangleright C_{n}\right)$). Then the above proposition can be put in the following simpler way:

$$
i P L \vdash A \text { iff there exists } C \text { such that } i P 4 \vdash \square C \rightarrow A \text {. }
$$

The direction from right to left is obvious. We just show the other direction. Assume that $i P L \vdash A$. Let $s_{1} s_{2} \cdots s_{n}$ be a proof of A in $i P L$, i.e. $s_{n}=A$ and for all $i \leq n, s_{i}$ is an axiom of $i P L$, or there are $j, h<i$ such that $s_{j} s_{h} / s_{i}$ is an instance of Modus Ponens, or s_{j} / s_{h} is an instance of the rule Pres. Let $\left.\left(\square C_{1} \rightarrow C_{1}\right) \triangleright C_{1}\right), \cdots,\left(\left(\square C_{n} \rightarrow C_{n}\right) \triangleright C_{n}\right)$ be the instances of the Löb principle occurring in the sequence and C denote their conjunction. Define $s_{i}^{\prime}:=\square C \rightarrow s_{i}$. With induction to i we show that for all $i, i P 4 \vdash s_{i}^{\prime}$. This proves that $i P 4 \vdash \square C \rightarrow A$.

1. If s_{i} is an instance of axiom of $i P$, then s_{i}^{\prime} is a theorem of $i P$ and hence of $i P 4$ because, in fact, $s_{i} \rightarrow\left(\square C \rightarrow s_{i}\right)$ is a tautology;
2. If s_{i} is an instance of $L p$, it is easy to see that s_{i}^{\prime} is a theorem of $i P 4$ by of the following reasoning:

$$
\begin{aligned}
& i P 4 \vdash \square C \rightarrow \square C \\
& \Rightarrow i P 4 \vdash \square C \rightarrow s_{i} \\
& \Rightarrow i P 4 \vdash \square C \rightarrow s_{i} \\
& \Rightarrow i P 4 \vdash s_{i}^{\prime} ;
\end{aligned}
$$

3. If there are s_{j} and $s_{k}(j, k<i)$ such that $s_{j} \equiv s_{k} \rightarrow s_{i}$, then $s_{j}^{\prime} \equiv$ $\square C \rightarrow\left(s_{k} \rightarrow s_{i}\right) \equiv\left(\left(\square C \rightarrow s_{k}\right) \rightarrow\left(\square C \rightarrow s_{i}\right)\right) \equiv s_{k}^{\prime} \rightarrow s_{i}^{\prime}$, and as $i P 4 \vdash s_{j}^{\prime} \wedge s_{k}^{\prime}$ by $\mathrm{IH}, i P 4 \vdash s_{i}^{\prime}$ follows;
4. If there are B, D and $s_{j}(j<i)$ such that $s_{j} \equiv B \rightarrow D$ and $s_{i} \equiv B \triangleright D$, then $s_{j}^{\prime} \equiv \square C \rightarrow(B \rightarrow D)$ and $s_{i}^{\prime} \equiv \square C \rightarrow(B \triangleright D)$. Now we show that we can get s_{i}^{\prime} in $i P 4$. The following is the argument:

$$
\begin{aligned}
& i P 4 \vdash s_{j}^{\prime} \text { by } \mathrm{IH} \\
& \Rightarrow i P 4 \vdash \square C \rightarrow(B \rightarrow D) \\
& \Rightarrow i P 4 \vdash \square \square C \rightarrow \square(B \rightarrow D) \\
& \Rightarrow i P 4 \vdash \square C \rightarrow \square(B \rightarrow D) \\
& \Rightarrow i P 4 \vdash \square C \rightarrow(B \triangleright D)
\end{aligned}
$$

LEmmA 3.16. If $i P 4 \vdash \square C \rightarrow(\square A \rightarrow \square B)$, then $i P 4 \vdash \square C \rightarrow(A \triangleright B)$, for all formulas C.

Proof. The proof is similar to the one of Lemma 3.8.

THEOREM 3.17. $i P L \vdash \square A \rightarrow \square B$ iff $i P L \vdash A \triangleright B$
Proof. Assume that $i P L \vdash \square A \rightarrow \square B$. Then, according to Lemma 3.15, there are some instances of $L:\left(\square C_{1} \rightarrow C_{1}\right) \triangleright C_{1}, \cdots,\left(\square C_{n} \rightarrow C_{n}\right) \triangleright C_{n}$ (C denotes their conjunction) such that $i P 4 \vdash \square C \rightarrow(\square A \rightarrow \square B)$. By Lemma 3.16, we get that $i P 4 \vdash \square C \rightarrow(A \triangleright B)$. This implies, according to Lemma 3.15, that $i P L \vdash A \triangleright B$.

COROLLARY 3.18. iLLe is equivalent to the logic iL with the extra rule $D R$. Whence $i P L_{\square}=i L L e=i L+D R$.

Proof. The previous theorem, Theorem 3.12 and Lemma 1.3.
In fact, we can show the admissibility of $D R$ in $i L L e$ without that of $\square A \rightarrow$ $\square B / A \triangleright B$ in $i P L$. The proof strategy here is similar to the above though. First we give a similar detour lemma:

LEmmA 3.19. For any formula A in $L_{\square}, \vdash_{i L L e} A$ iff $\vdash_{i L e} \square C \rightarrow A$ where C is the conjunction of some instances of Löb's principle L.

Proof. Here we only mention that, for any instance C of Löb's provability principle, $\vdash_{i L L e} \square C \leftrightarrow \square C$.

THEOREM 3.20. $D R$ is admissible in $i L L e$.

```
Proof. \(\vdash_{i L L e} \square A \rightarrow \square B\)
    \(\Rightarrow \vdash_{i L e} \square C \rightarrow(\square A \rightarrow \square B)\) for some conjunction \(C\) of instances of \(L\).
    \(\Rightarrow \vdash_{i L e} \square(C \wedge A) \rightarrow \square B\)
    \(\Rightarrow \vdash_{i L e} \square((C \wedge A) \vee D) \rightarrow \square(B \vee D)\) (by the admissibility of \(D R\) in \(i L e\) )
    \(\Rightarrow \vdash_{i L e} \square(C \vee D) \rightarrow(\square(A \vee D) \rightarrow \square(B \vee D))\)
    \(\Rightarrow \vdash_{i L e} \square C \rightarrow(\square(A \vee D) \rightarrow \square(B \vee D))\)
    \(\Rightarrow \vdash_{i L L e} \square(A \vee D) \rightarrow \square(B \vee D)\).
```


3.3. Conservation of $i P M$ over $i K$

Before proving that $i K$ is the L_{\square}-fragment of $i P M$ (Theorem 3.29), we show the admissibility of $\square A \rightarrow \square B / A \triangleright B$. Recall that \bar{R} is short for $R \circ \leq$.

Lemma 3.21. ${ }^{13}$ (i) The principle $M p$ corresponds to the $M p$ property:
$\forall w v u(w R v \leq u \rightarrow \exists x(w R x \wedge v \leq x \leq u \wedge x \bar{R} \subseteq u \bar{R})$.
(ii) $\vdash_{i P M} A$ iff A is valid on all finite $M p$ frames.

It is not easy to give a precise proof of the admissibility of rules in $i P M$, although the intuitive idea is not difficult. Probably the reason for that lies in the fact that the $M p$ property is a property that states the existence of certain nodes. Hence, in contrast to the situation for e.g. gathering models, the $M p$ property is not inherited by submodels. In order to make certain submodels into models that have the $M p$ property, we have to define some notions to help with our formalization of the proof.

DEFINITION 3.22. A triple (w, v, u) in a frame is called a problem if it satisfies $w R v \leq u$. It is called an unsolved problem if it additionally satisfies:

$$
\text { there is no } x \text { such that } w R x, v \leq x \leq u \text { and } x \bar{R} \subseteq u \bar{R} \text {. }
$$

Such an x is called a solution to the above problem. If such an x exists, then the problem is called a solved problem. Let (w, v, u) and (w, v^{\prime}, u) be two problems. If $v \leq v^{\prime}$, then we denote $(w, v, u) \preceq\left(w, v^{\prime}, u\right)$ and say (w, v, u) is below $\left(w, v^{\prime}, u\right)$. If $v<v^{\prime}$, then we denote $(w, v, u) \prec\left(w, v^{\prime}, u\right)$. A problem (w, v, u) is called a dispensable problem if there is another different problem such that $(w, v, u) \prec\left(w, v^{\prime}, u\right)$. A problem is called indispensable if it is not dispensable. $\langle[x]:=\{z \mid x<z\}$. A point w is called a minimal point in X if there is no point v such that $v<w . \min [x]$ denotes the set of minimal points in the set $<[x]$.

LEMMA 3.23. The following propositions follows immediately from the above definition:

1. If $x \leq y$, then $y \bar{R} \subseteq x \bar{R}$. Therefore, if $x \leq y$ and $x \bar{R} \subseteq y \bar{R}$, then $y \bar{R}=x \bar{R}$.
2. Let (w, v, u) and $\left(w, v^{\prime}, u\right)$ be two problems. If $(w, v, u) \preceq\left(w, v^{\prime}, u\right)$ and x is a solution to the problem $\left(w, v^{\prime}, u\right)$, then x is also a solution to the problem (w, v, u).
3. Let $v \leq v^{\prime}$. For all x, y, if both (x, v, y) and $\left(x, v^{\prime}, y\right)$ are problems, then each solution to $\left(x, v^{\prime}, y\right)$ is also a solution to (x, v, y).
4. Any problem (w, v, v) is a solved problem.

[^8]5. Let F be a frame. If there is no unsolved problem, then F satisfies the Mp-property.

THEOREM 3.24. $i P M \vdash A \triangleright B$ iff $i P M \vdash(\square A \rightarrow \square B)$.
Proof. One direction follows from Lemma 1.1. We show the other direction. Assume that $i P M \nvdash A \triangleright B$. Then, according to the completeness of $i P M, A \triangleright B$ is falsified at some point w_{0} of some model M on some finite frame satisfying the $M p$-property. This implies that there is a v_{0} such that $w_{0} R v_{0}, M, v_{0} \Vdash A$ but $M, v_{0} \Vdash B$. In the following we will construct a new $M p$-model M^{\prime} such that $M^{\prime} \Downarrow(\square A \rightarrow \square B)$. Note that, if a problem (x, y, z) is inside $\left[v_{0}\right)$, i.e $x, y, z \in\left[v_{0}\right)$, then it is easy to see that there is a solution to this problem in $\left[v_{0}\right)$. This means that we don't need to consider the problems in $\left[v_{0}\right)$ because all of them are already solved in $\left[v_{0}\right)$.

First we define $W_{0}:=\left[v_{0}\right) \cup\{w\}, R_{0}:=R \upharpoonright_{\left[v_{0}\right)} \cup\left\{\left(w, v_{0}\right)\right\} ; \leq_{0}:=\leq{ }_{\left[v_{0}\right)}$ where w is a new world. Then enumerate all the elements in $\min \left[v_{0}\right]$: $u_{0}, u_{1}, \cdots, u_{n}$. The purpose of choosing minimal points is to just to make the construction more efficient. At every stage we will add solution to some indispensable unsolved problems. These solutions will be denoted by x_{σ}, where σ is a sequence of nodes in W_{0}, used to keep track of the problem to which x_{σ} is a solution. Let $*$ denote concatenation of sequences, and let σ_{l} denote the last element of σ, i.e. $\left\langle y_{0}, \ldots, y_{m}\right\rangle_{l}=y_{m}$, and $\tau \preceq \sigma$ denote that τ is an initial segment of σ. Let $T C(S)$ denote the reflexive transitive closure of a relation S. At stage 0 , we add for every unsolved problem (w, v_{0}, u_{i}) (which is indispensable because the u_{i} are minimal elements), a new world $x_{\left\langle u_{i}\right\rangle}$ to W_{0}. We define the new frame $F_{1}=\left\langle W_{1}, R_{1}, \leq_{1}\right\rangle$ via $W_{1}:=W_{0} \cup\left\{x_{\left\langle u_{i}\right\rangle} \mid i \leq n\right\} ; R_{1}:=R_{0} \cup\left\{\left(w, x_{\left\langle u_{i}\right\rangle}\right),\left(x_{\left\langle u_{i}\right\rangle}, z\right) \mid i \leq n,\left(u_{i}, z\right) \in\right.$ $\left.R_{0}\right\} ; \leq_{1}:=T C\left(\leq_{0} \cup\left\{\left(v_{0}, x_{\left\langle u_{i}\right\rangle}\right),\left(x_{\left\langle u_{i}\right\rangle}, u_{i}\right) \mid i \leq n\right\}\right)$. It is easy to see that $x_{\left\langle u_{i}\right\rangle} \bar{R}=u_{i} \bar{R}$ and that we can extend the forcing relation to the new nodes by defining $x_{\left\langle u_{i}\right\rangle} \Vdash p$ iff $u_{i} \Vdash p$ for all propositional letters. Note that in this way persistency is satisfied.

Observe that in F_{1} all indispensable unsolved problems are of the form ($w, x_{\left\langle u_{i}\right\rangle}, z$), for some $z \in<\left[u_{i}\right]$. Namely, all the problems $\left(w, v_{0}, u_{i}\right)$ and ($w, x_{\left\langle u_{i}\right\rangle}, u_{i}$) have been solved by $x_{\left\langle u_{i}\right\rangle}$, and all problems $\left(w, v_{0}, z\right)$ for $z \in<$ [u_{i}] have become dispensable in F_{1} through $x_{\left\langle u_{i}\right\rangle}$. Therefore, we have only to consider problems $\left(w, x_{\left\langle u_{i}\right\rangle}, z\right)$, for some $z \in<\left[u_{i}\right]$. At stage 1, we add for every unsolved problem $\left(w, x_{\left\langle u_{i}\right\rangle}, u\right)$ with $u \in \min \left[u_{i}\right]$, a solution $x_{\left\langle u_{i}, u\right\rangle}$ to W_{1}, and proceed in the same way as before.

In general, at stage $i+1$, we consider the nodes x_{σ} in F_{i} that are newly added at stage i. For every such x_{σ} and every problem $\left(w, x_{\sigma}, u\right)$ for $u \in$ $\min \left[\sigma_{l}\right]$ we add a solution $x_{\sigma * u}$ to W_{i}. We define the new frame $F_{i+1}=$ $\left\langle W_{i+1}, R_{i+1}, \leq_{i+1}\right\rangle$ via
$W_{i+1}:=W_{i} \cup\left\{x_{\langle\sigma * u\rangle} \mid x_{\sigma} \in W_{i} \backslash W_{i-1}, u \in \min \left[\sigma_{l}\right]\right\} ;$
$R_{i+1}:=R_{i} \cup\left\{\left(w, x_{\sigma * u}\right),\left(x_{\sigma * u}, z\right) \mid x_{\sigma} \in W_{i} \backslash W_{i-1}, u \in \min \left[\sigma_{l}\right],(u, z) \in R_{0}\right\} ;$
$\leq_{i+1}:=T C\left(\leq_{i} \cup\left\{\left(x_{\sigma}, x_{\sigma * u}\right),\left(x_{\sigma * u}, u\right) \mid x_{\sigma} \in W_{i} \backslash W_{i-1}, u \in \min \left[\sigma_{l}\right]\right\}\right)$. Again, note that $x_{\sigma * u} \bar{R}=u \bar{R}$ and that by extending the forcing relation to the new nodes via $x_{\sigma * u} \Vdash p$ iff $u \Vdash p$, persistency is satisfied.
To see that the procedure terminates, observe that for every x_{σ} that is added at some stage in the construction, σ is of the form $\left\langle u_{i}, y_{1}, \ldots, y_{m}\right\rangle$, for some nodes $u_{i}<y_{1}<\ldots<y_{m}$ in W_{0}. Since W_{0} is finite, termination follows. Let $i+1$ be a stage at which there are no more unsolved indispensable problems. Consider M_{i}. As explained in the previous lemma, M_{i} satisfies the $M p$-property. It remains to show that $M_{i}, w \Vdash \square A$ and $M_{i}, w \Vdash \square B$, as according to the soundness of $i P M$, this gives $\vdash_{i P M} \square A \rightarrow \square B$.
It is not difficult to prove with induction to i that for all formulas C,

1. for all $x_{\sigma * u} \in W_{i}, M_{i}, u \Vdash C$ iff $M_{i}, x_{\sigma * u} \Vdash C$.
2. for all nodes $y \in\left[v_{0}\right), M_{i}, y \Vdash C$ iff $M, y \Vdash C$.

We leave the proof to the reader. For the first part, use the fact that $x_{\sigma * u} \bar{R}=$ $u \bar{R}$. For the last part, use the first part and the facts that no new nodes are added above the u_{i}, and that above v_{0} all new nodes are of the form x_{σ}. As observed above, for $x_{\sigma * u}, u \in W_{0}$ and $v_{0} \leq u$. Thus $u \Vdash A$, and whence $M_{i}, x_{\sigma * u} \Vdash A$. Whence $x_{\sigma} \Vdash A$, for all $x_{\sigma} \in W_{i}$. As for $w, w R_{i} y$ implies $y=v_{0}$ or y is a new node x_{σ}, it follows that $M_{i}, w \Vdash \square A . M_{i}, w \Vdash \square B$ follows from the fact that $M_{i}, v_{0} \Vdash B$.

We can extract a theorem from the above proof, which is very handy when we deal with the admissibility of many other rules in $i P M$.
theorem 3.25. Let $M=\langle W, R, \leq, V\rangle$ be a finite $M p$ model and $[v)$ be any generated submodel by v. Then there is a new finite $M p$ model $N=\left\langle W^{\prime}\right.$, $\left.R^{\prime}, \leq^{\prime}, V^{\prime}\right\rangle$ in which

1. $[v) \subseteq W^{\prime} ;$
2. for any world $x \in[v)$ and any formula $E, M, x \Vdash E$ iff $N, x \Vdash E$;
3. there is a world $w \in W^{\prime}$ such that $w R^{\prime} v$ and, if $w R^{\prime} y$ and $M, v \Vdash A$, then $N, y \Vdash A$.
4. if $M, v \Vdash A$ and $M, v \Vdash B$, then there is a world $w^{\prime} \in W^{\prime}$ such that $w^{\prime} R^{\prime} v$ and $N, w^{\prime} \Vdash \square A \rightarrow \square B$.

By appealing to this theorem, we can easily show that $i P M$ is also closed under the inference rules: $\square A / A$ and $\square A \rightarrow \square B / \square A \rightarrow B$.

THEOREM 3.26. The logic $i K+D R+M o R$ is contained in $i P M_{\square}$.
Proof. By Lemma 1.3 and Theorem 3.24.

There also is an interesting syntactic proof of $i K+D R+M o R=i P M_{\square}$ that uses the following translation on formulas which is related to the translation ${ }^{\circ}$ given in the introduction.
definition 3.27. The translation * from formulas in L_{\triangleright} to those in L_{\square} is inductively defined as follows:

- For p, \top and $\perp, p^{*}=p, \top^{*}=\top$ and $\perp^{*}=\perp$.
- For $\circ \in\{\vee, \wedge, \rightarrow\},(A \circ B)^{*}=A^{*} \circ B^{*}$.
- $(\neg A)^{*}=\neg A^{*}$.
- $(A \triangleright B)^{*}=\square\left(A^{*} \rightarrow B^{*}\right)$.
lemma 3.28. If $i K \vdash X^{*}$, then $i P X_{\square}=i K$, where X is in L_{\triangleright}.
Proof. Clearly, $i K \subseteq i P X_{\square}$. Thus it remains to show that $i P X_{\square} \subseteq i K$. Assume that $i P X_{\square} \vdash A$. Of course we can consider A as a formula in L_{\triangleright} according to the fact that $\square A \equiv(T \triangleright A)$ in $i P$. It suffices to show that

$$
\text { if } i P X \vdash A \text {, then } i K \vdash A^{*}(*)
$$

because, for any formula B in $L_{\square}, B^{*}=B$.
Since $i P X \vdash A$, there is a finite sequence $s_{1} s_{2} \cdots s_{n}(=A)$ of formulas in L_{\triangleright} in which, for any $s_{i}(1 \leq i \leq n)$,

1. either s_{i} is in the forms of $P_{1}, P_{2}, D p$ or X,
2. or there are some $A_{1}, A_{2}, s_{j} \in L_{\square}(j<i)$ such that $s_{i}=A_{1} \triangleright A_{2}$ and $s_{j}=A_{1} \rightarrow A_{2}$,
3. or there are some $s_{j}, s_{k}(j, k<i)$ such that $s_{k}=s_{j} \rightarrow s_{i}$.

The sequence $s_{1}^{*} s_{2}^{*} \cdots s_{n}^{*}\left(=A^{*}\right)$ of formulas in L_{\square} is a proof of A^{*} in $i K$. We treat the first case and leave the others to the reader. If s_{i} is an instance of $P_{1}, P_{2}, D p$ or X, then it is easy to see that s_{i}^{*} is a theorem of $i K$ for the first three, and it follows by assumption for X.

THEOREM 3.29. $i P M_{\square}=i K=i K+D R+M o R$.
THEOREM 3.30. $i P_{\square}=i K$.

3.4. Conservation of $i P W$ Over $i L L e$

The usual method to prove completeness for L, like the proof method in the proof of completeness for $i L$, breaks down for $i P L$. One of the problems is that it is not possible in $i P L$ to infer $A \triangleright B$ from $A \wedge \square B \triangleright B^{14}$. This is how the principle $W p$ emerged. Trivially, $L p$ is derivable in $I P W$. We do not know whether $W p$ is complete, but in the following we will give a correspondence result for $W p$ and show that the \square-fragment of $i P W$ is $i L L e$. Thus although $i P W$ and $i P L$ are distinct, their \square-fragments are equal.

THEOREM 3.31. ${ }^{15}$ Let F be a finite frame. $F \Vdash(A \wedge \square B) \triangleright B \rightarrow A \triangleright B$ iff F satisfies the following property:

$$
\forall w v u(w R v R u \rightarrow \exists x(w R x \wedge v<x \leq u))
$$

DEFINITION 3.32. Let $\langle W, R\rangle$ be a finite, transitive, gathering and conversely well-founded (hence irreflexive) frame. An end point w is a world without a w^{\prime} such that $w R w^{\prime}$ or $w \leq w^{\prime}$. It is easy to see that for any $w \in W$, there is a finite sequence s of $w_{n}, w_{n-1}, \cdots, w_{0}$ such that $w=w_{n} S_{n} w_{n-1} \cdots S_{1} w_{0}$ where s_{i} is either R or \leq and w_{0} is an end point. We define the grade $g_{s}(w)$ of w in this sequence inductively as follows:

1. $g_{s}\left(w_{0}\right):=0$
2. If $g_{s}\left(w_{i-1}\right)=k$ and S_{i} is \leq, then $g_{s}\left(w_{i}\right):=k$; If $g_{s}\left(w_{i-1}\right)=k$ and S_{i} is R, then $g_{s}\left(w_{i}\right):=k+1$.

Of course, $g_{s}\left(w_{i}\right) \leq n$ for any $i \leq n$. For each $w \in W$, we define the rank $r(w)$ of w as the greatest such $g_{s}(w)$ (we omit the subscript $\langle W, R\rangle$ here). Note that, if $w R v$, then $r(w)>r(v)$.

[^9]THEOREM 3.33. $i P W \vdash A$ implies that A is valid on all finite gathering, transitive and conversely well-founded frames.

Proof. It suffices to show that $W p$ is valid on all finite gathering, transitive, conversely well-founded frames. Given a model M on such a frame $\langle W, R\rangle$ and any $w^{\prime}, w, v \in W$ such that $w^{\prime} \leq w R v$, assume that $M, w \Vdash(A \wedge \square B) \triangleright B$ and $M, v \Vdash A$. We need to show that $M, v \Vdash B$. It suffices to show that $M, v \Vdash \square B$. Suppose that this is not the case: $M, v \Vdash \square B$.

Now consider the v-generated submodel M^{\prime}. Obviously, $M^{\prime}, v \nvdash \square B$, $M^{\prime}, v \Vdash A$ and M^{\prime} is on a finite transitive, gathering and conversely wellfounded frame. Then there is a world $v^{\prime} \in W^{\prime}$ of least rank such that $M^{\prime}, v^{\prime} \Vdash \square B$. This implies that, for any $v^{\prime \prime} \in W^{\prime}$ such that $v^{\prime} R v^{\prime \prime}, M^{\prime}, v^{\prime \prime} \Vdash$ $\square B$ and hence $M, v^{\prime \prime} \Vdash \square B$. Such a $v^{\prime \prime}$ can always be found because every end point makes all boxed formulas true. It is easy to check that $w R v^{\prime \prime}$ by transitivity and that $M^{\prime}, v^{\prime \prime} \Vdash A$ (and hence $M, v^{\prime \prime} \Vdash A$) according to the fact that $M^{\prime}, v \Vdash A$ and $v^{\prime \prime} \in[v)$. Since $M, w \Vdash(A \wedge \square B) \triangleright B, M, v^{\prime \prime} \Vdash B$ and hence $M^{\prime}, v^{\prime \prime} \Vdash B$. So $M^{\prime}, v^{\prime} \Vdash \square B$. We have arrived at a contradiction. So $M, v \Vdash \square B$ and hence $(A \wedge \square B) \triangleright B$ is valid on any finite gathering, transitive and conversely-well-founded frame.

The converse of this lemma is not true. On the one hand, it is easy to check that $(A \triangleright B) \rightarrow \square(A \triangleright B)$ is valid on all transitive frames. On the other hand, it is well-known that this formula is not arithmetically valid in $H A$. Suppose that the converse were true. Then, according to the converse proposition, $i P W \vdash(A \triangleright B) \rightarrow \square(A \triangleright B)$, which is impossible because $W p$ is a valid principle in $H A$ whereas $(A \triangleright B) \rightarrow \square(A \triangleright B)$ is not.
lemma 3.34. $\vdash_{i L L e} A$ iff A is valid on all finite gathering transitive and conversely well-founded frames.

Proof. In fact the lemma is not new, just an extension of Lemma 3.11. We only need to show that transitivity is preserved in the new model $N=$ $\left\langle W, R^{\prime}, \leq, V\right\rangle$. Assume that $w, v, u \in W$ and $w R^{\prime} v R^{\prime} u$. We need to show that $w R^{\prime} u$. Since $w R^{\prime} v R^{\prime} u, w R v R u$ and hence $w R u$ because R is transitive. It remains to show that, for any z such that $u R^{\prime} z, u \leq z$. This immediately follows from the assumption that $v R^{\prime} u$. So $w R^{\prime} u$.

THEOREM 3.35. $i P W_{\square}=i L L e=i L+D R$.

Proof. Since both L and $L e$ are derivable in $i P L$, and $i P W$ is a proper extension of $i P L, i L L e \subseteq i P W_{\square}$ is clear. For $i P W_{\square} \subseteq i L L e$, suppose that $\forall_{i L L e} A$ for some A in L_{\square}. By the completeness of $i L L e$, we know that A is not valid on some finite transitive gathering and conversely wellfounded frame. It follows from Lemma 3.33 that $\forall_{i P W} A$. This shows that $i P W_{\square}=i L L e$. That $i L L e=i L+D R$ follows from Corollary 3.18.

Note that in contrast to the principles treated before, $i P W_{\square} \neq i K W^{\circ}+D R$, as $(W p)^{\circ}=(\square(A \wedge \square B) \rightarrow \square B) \rightarrow(\square A \rightarrow \square B)$. Using the completeneness result for $i L L e$ one can show that $(W p)^{\circ}$ does not belong to $i L L e$, but one can also show directly that $W p$ does not belong to the provability logic of HA, and whence cannot be derivable from $i L L e$. For if so, $(\square \square B \rightarrow \square B) \rightarrow \square B$ would belong to the provability logic as well, because it is derivable from $W p$. But this principle is not even true, neither classically nor constructively, as it constructively implies $\neg \neg(\square \square B \vee \square B)$.

4. Fixed Points and Beth Definability

In this section we will prove the fixed point theorems for $i L$ and $i P L$ and point out connections with Beth's Definability Theorem. Let us remind the reader that fixed point theorems are of the form: for each formula $A(p)$ in which p occurs only modalized, there exists a unique B not containing p such that B and $A(B)$ are provably equivalent. The proof of the existence of fixed points in $i L$ is an adaptation of the well-known proof of that property for $G L$; the proof of the existence of fixed points in $i P L$ derives from the one for $I L$, the basic interpretability logic (de Jongh-Visser [1991]). We will give the main steps of the proof but not all the details where these are sufficiently similar to the classical proofs. In the last subsection, we will discuss the interderivability between fixed points and Beth definability (Definition 4.21) in both intuitionistic provability and preservativity logics. This extends the work of Areces et al.[2000] (see also Hoogland[2001], Ch. 5).

A notational convention: $A B$ is the result of substitution of B for p in the formula $A p$.
theorem 4.1. (Uniqueness Theorem) Suppose that p occurs modalized in A, then $\vdash_{L}(\odot(p \leftrightarrow A p) \wedge \boxminus(q \leftrightarrow A q)) \rightarrow(p \leftrightarrow q)$ where $L \in\{i L, i P L\} .{ }^{16}$

[^10]Proofs of the existence of fixed points for a system usually consist of proving the existence of fixed points for the basic formulas and proving an inductive step. For the inductive step for $i P L$, we can borrow the following theorem ${ }^{17}$, since its proof did not use classical logic. This means that for $i L$ and $i P L$ we can confine ourselves to proving the basic cases.

THEOREM 4.2. Let U be any extension of $i L$ or $i P L$ satisfying:
FIX: Every formula $A p$ of the form $\square B p$ or $B p \triangleright C p$ has a fixed point.
Then, for every formula $A p$ with p modalized, there is a formula J such that p does not occur in J and $\vdash_{U} J \leftrightarrow A J$.

4.1. Fixed Point Theorem for $i L$

LEMMA 4.3. $i L \vdash \square A \top \leftrightarrow \square A \square A \top$ for all formulas A.
Corollary 4.4. Let $A p:=B \square C p$. Then $i L \vdash A B \top \leftrightarrow A A B \top$.
Now an application of Theorem 4.2 suffices.
theorem 4.5. If in C the propositional letter p occurs exclusively under \square, then there is a formula D not containing p such that $i L \vdash D \leftrightarrow C D$.

4.2. Fixed Point Theorem for $i P L$

The following proof is similar to the one for interpretability logic in de Jongh-Visser [1991]. To put it more precisely, the fixed point for the formula $A(p) \triangleright B(p)$ in $i P L$ is a kind of mirror image of that for the formula $A(p) \triangleright_{i} B(p)$ in $I L$. This is not surprising since classically $A(p) \triangleright B(p)$ is equivalent to $\neg B(p) \triangleright_{i} \neg A(p)$ in $I L$. Since the latter formula contains negations however the details of the intuitionistic proof ought not to be skipped. The crucial point is Theorem 4.8 which reflects E2 of de Jongh-Visser [1991].

Define: $A \equiv B: \Leftrightarrow \vdash_{i P L}(A \triangleright B) \wedge(B \triangleright A)$.
Lemma 4.6. $A \equiv A \wedge \square A \equiv \square A \rightarrow A$.
lemma 4.7. If $\vdash \square B \top \rightarrow C$, then $\vdash B \top \wedge \square B \top \leftrightarrow B C \wedge \square B C$.

[^11]Proof．For the left－to－right direction，reason in $i P L$ ：

```
\square B 丁 \rightarrow C ,
\square B \top \rightarrow ( \top \leftrightarrow C )
\square\squareB丁->\square(\top\leftrightarrowC)
\square B 丁 \rightarrow \square ( \top \leftrightarrow C )
\square丁\top->(■B\top\leftrightarrow\squareBC)
\square
```

Now the other direction．Again reason in $i P L$ ：

```
\(\square B \top \rightarrow \square(\top \leftrightarrow C)(*)\)
\(\square(\square B \top \rightarrow \square(\top \leftrightarrow C))\)
\(B C \wedge \square B C \wedge \square(\square B \top \rightarrow \square(\top \leftrightarrow C)) \rightarrow(B C \wedge \square(\square B \top \rightarrow B \top))\)
\(B C \wedge \square B C \wedge \square(\square B \top \rightarrow \square(\top \leftrightarrow C)) \rightarrow(B C \wedge \square B \top))\)
\(B C \wedge \square B C \rightarrow(B C \wedge \square B \top))\)
\(B C \wedge \square B C \rightarrow \square(C \leftrightarrow \top)(\) by \((*))\)
\((B C \wedge \square B C) \rightarrow(B \top \wedge \square B \top)\)
```

THEOREM 4．8．If $\vdash \square B \top \rightarrow C$ ，then $\vdash B \top \equiv B C$ ．
Proof．Follows immediately from Lemmas 4.6 and 4．7．
COROLLARY 4．9．$\vdash B \top \equiv B(A \square B \top \triangleright B \top)$
Proof．Since $\vdash A \square B \top \triangleright \top, \vdash \square B \top \rightarrow(A \square B \top \triangleright B \top)$ ．It follows from the above theorem that $\vdash B \top \equiv B(A \square B \top \triangleright B \top)$ ．

LEmmA 4．10．$\vdash \square A \square B \top \rightarrow(A \square B \top \triangleright B \top \leftrightarrow \square B \top)$
THEOREM 4．11．$\vdash \square A \square B \top \rightarrow \square(A \square B \top \triangleright B \top \leftrightarrow \square B \top)$
THEOREM 4．12．$\vdash A \square B \top \wedge \square A \square B \top \leftrightarrow A(A \square B \top \triangleright B \top) \wedge \square A(A \square B \top \triangleright B \top)$
Proof．For the left to right direction，reason in $i P L$ as follows：
$\square A \square B \top \rightarrow \square(A \square B \top \triangleright B \top \leftrightarrow \square B \top)$ $\backsim(A \square B \top \triangleright B \top \leftrightarrow \square B \top) \rightarrow(A \square B \top \wedge \square A \square B \top \leftrightarrow A(A \square B \top \triangleright B \top) \wedge$ $\square A(A \square B \top \triangleright B \top))$
$A \square B \top \wedge \square A \square B \top \rightarrow A(A \square B \top \triangleright B \top) \wedge \square A(A \square B \top \triangleright B \top)$
For the right to left direction，it suffices to show：$\vdash \square A(A \square B \top \triangleright B \top) \rightarrow$ $\square A \square B \top$ ．Reason in $i P L$ ：
$\square A \square B \top \rightarrow \square(A \square B \top \triangleright B \top \leftrightarrow \square B \top)$
$A(A \square B \top \triangleright B \top) \rightarrow(\square A \square B \top \rightarrow A \square B \top)$

```
\(\square A(A \square B \top \triangleright B \top) \rightarrow \square(\square A \square B \top \rightarrow A \square B \top)\)
```

$\square A(A \square B \top \triangleright B \top) \rightarrow \square A \square B \top$

LEMMA 4.13. $A \square B \top \equiv A(A \square B \top \triangleright B \top)$.
Proof. Obviously, $\vdash A \square B \top \equiv A \square B \top \wedge \square A \square B \top$ (from Lemma 4.6). It follows from Theorem 4.12 that $\vdash A \square B \top \wedge \square A \square B \top \equiv A(A \square B \top \triangleright B \top) \wedge$ $\square A(A \square B \top \triangleright B \top)$. In addition, $\vdash A(A \square B \top \triangleright B \top) \equiv A(A \square B \top \triangleright B \top) \wedge$ $\square(A(A \square B \top \triangleright B \top))$.

THEOREM 4.14. (Fixed Point Theorem for $A(p) \triangleright B(p)) \vdash A \square B \top \triangleright B \top \leftrightarrow$ $A(A \square B \top \triangleright B \top) \triangleright B(A \square B \top \triangleright B \top) .{ }^{18}$

Proof. This is just a combination of Lemmas 4.9. and 4.13.
We may consider boxed formulas to be defined of course, but we can also rely on the fact that the proof of fixed point theorem for such formulas in $i P L$ is the same as that in $i L$.

THEOREM 4.15. (The Fixed Point Theorem for \square-formulas in L_{\triangleright}) $\vdash_{i P L}$ $\square A \top \leftrightarrow \square A \square A \top$ for all formulas A in L_{\triangleright}.

We can get a symmetric form of the fixed point for $A p \triangleright B p$.
THEOREM 4.16. $\vdash A \square B \top \triangleright B \top \leftrightarrow A \square B \top \triangleright B \square B \top$
Proof. Since $\vdash_{i P L} \square B \top \rightarrow \square B \top, B \top \equiv B \square B \top$.

Since we have now proved FIX of Theorem 4.2 we can conclude
THEOREM 4.17. (Fixed Point Theorem) For every formula $A p$ with p modalized, there is formula J such that p does not occur in J and $\vdash_{i P L} J \leftrightarrow A J$.

Proof. It has to be checked that
$\vdash_{i P L} \square(A \leftrightarrow B) \rightarrow(A \triangleright C \leftrightarrow B \triangleright C)$
$\vdash_{i P L} \square(A \leftrightarrow B) \rightarrow(C \triangleright A \leftrightarrow C \triangleright B)$.
But that is just the Substitution lemma (Lemma 2.8). So $i P L$ satisfies FIX in Theorem 4.2.

[^12]In $i P W$, we have a simpler form of fixed point for $A p \triangleright B p$.
THEOREM 4.18. In $i P W$, the fixed point of $A p \triangleright B p$ is $A \top \triangleright B \top$.
Proof. Reason in $i P W$:
$\square B \top \rightarrow(\square B \top \leftrightarrow \top)$
$\square B \top \rightarrow \square(\square B \top \leftrightarrow \top)$
$\square B \top \rightarrow(A \top \leftrightarrow A \square B \top)$
In other words, $\vdash A \square B \top \wedge \square B \top \leftrightarrow A \top \wedge \square B \top$. Therefore we can proceed in $i P W$ as follows:
$A \square B \top \triangleright B \top \leftrightarrow(A \square B \top \wedge \square B \top) \triangleright B \top$
$A \square B \top \triangleright B \top \leftrightarrow(A \top \wedge \square B \top) \triangleright B \top$
$A \square B \top \triangleright B \top \leftrightarrow A \top \triangleright B \top$

However, in $i P L$, we can't get such a simpler form. Consider the formula $p \triangleright q$. Suppose that the fixed point for formulas $A p \triangleright B p$ were $A \top \triangleright B \top$. Then $\square q$ would be the fixed point of $p \triangleright q$, i.e. $\vdash_{i P L}(\square q \triangleright q) \leftrightarrow \square q$. It is easy to see that one direction is correct: $\vdash_{i P L} \square q \rightarrow(\square q \triangleright q)$. But for the other direction it is not difficult to construct a countermodel.
Actually the fixed point theorems for $I L$ and $I L W$ (de Jongh and Visser [1991]) may be seen as a consequence of Theorems 4.17 and 4.18.
corollary 4.19. For every formula $A p$ with p modalized, there is formula J such that: p does not occur in J, and $\vdash_{I L} J \leftrightarrow A J$.

Proof. Just use the translation discussed at the start of this subsection and note that the principle $D p$ (which, dually, is not available in $I L$) has not been used in the above proof. Clearly $I L W$ can be treated similarly.

4.3. Beth Definability and Fixed Points

In the following, we will show for a general class of intuitionistic modal logics two theorems (Theorem 4.24 and Theorem 4.25) about the interderivability of the Beth property (Definition 4.22) and the fixed point property (Definition 4.23). The theorem applies to logics in an extended language as e.g. preservativity logics. The theorems and their proofs are an adaptation of the corresponding theorems and proofs of Areces et al. [2000] concerning interpretability logic.

The essential difference lies in an adaptation of Maximova's trick to obtain the Beth property from the existence of fixed points. The problem is of course that fixed points are there for formulas with p modalized only, and Beth's property is supposed to apply to all formulas. Maximova's trick (Maximova[1989]) that was applied in the proof in Areces et al.[2000] relies on the fact that $A(\bar{p}, r)$ is equivalent to $\left(A_{1}(\bar{p}, r) \wedge r\right) \vee\left(A_{2}(\bar{p}, r) \wedge \neg r\right)$ for some A_{1}, A_{2} with r modalized. But this presupposes the existence of a disjunctive normal form unavailable in intuitionistic logic. However (skipping the \bar{p} from here onwards), A_{2} is not used in the proof and the role of A_{1} can be taken over by the formula arising from the substitution of T for all the nonmodalized occurrences of r. It is easy to see that, for A_{1} thus defined, $A_{1}(r)$ is modalized in r and thus $\vdash_{i P L} \square\left(r \leftrightarrow r^{\prime}\right) \rightarrow\left(A_{1}(r) \leftrightarrow A_{1}\left(r^{\prime}\right)\right)$. The following straightforward lemma about the relation between $A(r)$ and $A_{1}(r)$ is all we need.

LEmmA 4.20. For any intuitionistic logic \mathcal{T} with modal operators, if A_{1} arises from A by the substitution of \top for all nonmodalized occurrences of r, then $\vdash_{T} r \rightarrow\left(A(r) \leftrightarrow A_{1}(r)\right)$.
definition 4.21. (Beth Definability Property) A logic \mathcal{L} has the Beth Property iff for all formulas $A(\bar{p}, r)$ the following holds:

- If $\vdash_{L} \boxminus A(\bar{p}, r) \wedge \boxminus A\left(\bar{p}, r^{\prime}\right) \rightarrow\left(r \leftrightarrow r^{\prime}\right)$, then there exists a formula $C(\bar{p})$ such that $\vdash_{L} \boxminus A(\bar{p}, r) \rightarrow(C(\bar{p}) \leftrightarrow r)$.
definition 4.22. (Fixed Point Property) A logic \mathcal{L} has the fixed point property iff, for any formula $A(\bar{p}, r)$ which is modalized in r, there exists a formula $F(\bar{p})$ such that
- (existence) $\vdash_{L} F(\bar{p}) \leftrightarrow A(\bar{p}, F(\bar{p}))$
- (uniqueness) $\vdash_{L} \boxminus(r \leftrightarrow A(\bar{p}, r)) \wedge \boxminus\left(r^{\prime} \leftrightarrow A\left(\bar{p}, r^{\prime}\right)\right) \rightarrow\left(r \leftrightarrow r^{\prime}\right)$.

We now state the theorems in a form that seems more perspicuous than the formulation in Areces et al.[2000]. The properties we require in our formulations for the logics \mathcal{L} are clearly strong enough to ensure the properties of Areces et al.[2000]. (This is because, just as in the classical case, over $i K 4$ the rule $L R$ is equivalent to the axiom scheme of $i L$.)
theorem 4.23. (From Beth Definability to Fixed Points) Let \mathcal{L} be an intuitionistic logic with modal operators that extends $i L$ and obeys the substition lemmas and for which the Beth theorem holds.
Then \mathcal{L} has the fixed point property.

Proof. It is easy to check that the proof for the classical case in Hoogland [2001] is intuitionistically acceptable.
theorem 4.24. (From Fixed Points to Beth Definability) Let \mathcal{L} be an intuitionistic logic with modal operators that extends $i L$ and obeys the substition lemmas and for which the fixed point theorem holds.
Then \mathcal{L} has the Beth property.
Proof. Again, the proof is similar to that in Areces et al.[2000]. The only difference is that we will not use Maksimova's lemma (see in Hoogland [2001]) to reduce arbitrary formulas to ones that are "largely modalized" but apply Lemma 4.20 directly.

We have shown the fixed point theorem for $i L$ and $i P L$. Since any extension \mathcal{L} of $i L$ or $i P L$ will have the fixed point property, it should also have the Beth property according to the above theorem.

COROLLARY 4.25. Let \mathcal{T} be an extension of $i L$ or $i P L$ (of course in the appropriate language). Then \mathcal{T} has the Beth property.

Acknowledgements

The first author is supported by a Marie Curie fellowship of the European Union under grant HPMF-CT-2001-01383. The third author is very grateful to Prof. Johan van Benthem for his encouragement and his financial support through the Spinoza project "Logic in Action" during his master study in the Graduate Programme in Logic at ILLC.

References

[1] Carlos Areces, Eva Hoogland and Dick de Jongh [2000]: Interpolation, definability and fixed points in interpretability logics, in M. Zakharyaschev, K. Segerberg, M. de Rijke and H. Wansing (eds.), Advances in Modal Logic, Volume 2, Lecture Notes, pp. 53-76, Stanford, CA. CSLI Publications.
[2] Milan Bozic and Kosta Došen [1984]: Models for normal intuitionistic modal logics, Studia Logica, XLIII, 3, pp. 217-245.
[3] Eva Hoogland [2001]: Definability and Interpolation, Ph.D thesis, ILLCdissertation series, DS-2001-05, Universiteit van Amsterdam.
[4] Rosalie Iemhoff [2001]: Provability Logic and Admissible Rules, Ph.D thesis, ILLC-dissertation series, DS-2001-04, Universiteit van Amsterdam.
[5] Rosalie Iemhoff [2003]: Preservativity Logic (An analogue of interpretability logic for constructive theories), Mathematical Logic Quarterly, 49(3), 2003, pp. 1-21.
[6] Rosalie Iemhoff, Dick de Jongh and Chunlai Zhou [2004]: Properties of Intuitionistic Provability and Preservativity Logics, Proceedings of CombLog'04, workshop on Combinations of Logics: Theory and Applications, July 28-30, 2004, CLC IST-Lisbon, Portugal, Walter A. Carnielli, F. Miguel Dionísio, Paul Mateus (eds.), CLC, Center for Logic and Computation, Department of Mathematics, Instituto Superior Técnico.
[7] Dick de Jongh and Albert Visser [1991]: Explicit Fixed Points in Interpretability logic, Studia Logica, 50, pp. 39-50.
[8] Maximova [1989]: Definability theroems in normal extensions of the provability logic. Studia Logica, 50, pp. 495-507
[9] Craig Smoryński [1985]: Self-reference and Modal Logic, SpringerVerlag, Berlin.
[10] Robert Solovay [1976]: Provability Interpretations of modal logic, Israel Journal of Mathematics, 25, pp, 287-304.
[11] Albert Visser [2002]: Substitutions of Σ_{1}^{0} sentences, Annals of Pure and Applied Logic 114(1-3), pp. 227-271.
[12] Chunlai Zhou [2003]: Some Intuitionistic preservativity Logics and Provability Logics, Master of Logic thesis, ILLC-MoL series, MoL-200301, Universiteit van Amsterdam.

Institute for Discrete Mathematics and Geometry
Technical University Vienna
Wiedner Hauptstrasse
8-10 A-1040 Wien, Austria
iemhoff@logic.at

Institute for Logic, Language and Computation
University of Amsterdam

Plantage Muidergracht 241018 TV Amsterdam
The Netherlands
dickdj@science.uva.nl
Department of Mathematics
Indiana University, Bloomington
IN 47405, U.S.A.
czhou@indiana.edu

[^0]: ${ }^{1}$ A shorter version of which was published as Iemhoff et al.[2004].

[^1]: ${ }^{2}$ Visser[2002] Iemhoff[2003]

[^2]: ${ }^{3}$ Iemhoff[2003]
 ${ }^{4}$ Iemhoff[2003]
 ${ }^{5}$ Iemhoff[2001]

[^3]: ${ }^{6}$ Zhou[2003]

[^4]: ${ }^{7}$ Proposition 4.1.1 in Iemhoff [2001].
 ${ }^{8}$ For details, see Bozic and Došen [1983] or Zhou [2003].

[^5]: ${ }^{9}$ This theorem is, in fact, implicit in Lemma 3.1.2 in Iemhoff [2001].

[^6]: ${ }^{10}$ Propostions 4.2.1, 4.2.2, 4.4.1 in Iemhoff [2001].

[^7]: ${ }^{11}$ Lemma 2.9
 ${ }^{12}$ Iemhoff [2001].

[^8]: ${ }^{13}$ (i) Iemhoff [2001] (ii) Zhou [2003] .

[^9]: ${ }^{14}$ Page 68 in Iemhoff [2001].
 ${ }^{15}$ Lemma 3.5.1 in Zhou [2003].

[^10]: ${ }^{16}$ See Smoryński[1985]. The proof there is intuitionistically acceptable. This is also the case for Lemma 4.3, Corollary 4.4 and Theorem 4.5 below.

[^11]: ${ }^{17}$ Theorem 2.4 in de Jongh-Visser[1991].

[^12]: ${ }^{18}$ Following de Jongh-Visser [1991] we can also get an interesting dual result: $\vdash_{i P L}$ $(A \top \triangleright B \square A \top) \leftrightarrow A(B \square A \top \triangleright A \top) \triangleright B(B \square A \top \triangleright A \top)$.

