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Time-dependent ultrafast diffraction measurements can be directly inverted to obtain the dynamics of atomic
motions, in contrast to ultrafast spectra which require detailed knowledge of the sample (e.g., potential energy
surfaces) for their inversion. We consider here how to derive time-dependent diffraction (the X-ray and
electron diffraction cases being very similar) from nuclear quantum dynamics and vice versa and how this
may be used to directly observe the atomic motions in molecules, in particular how chemical reactions take
place. Two simple examples of dissociative and bound quantum (vibrational and rotational) dynamics in a
gas-phase sample of diatomic molecules, excited by an optical pump pulse and measured by an electron or
X-ray probe pulse, are presented. The quantum mechanical basis of the breaking of symmetry due to the
linearly polarized optical pump pulse and the superposition and interference between the ground and excited
electronic states are discussed. We demonstrate how to isolate the short-time excited-state dynamics from
that of the ground state using the symmetry of the electronic dipole transition. We illustrate that the time-
evolving distribution of interatomic distances can be clearly resolved from the ultrafast diffraction data and
thus illustrate that the detailed dynamics of molecular vibration and the progress of a photodissociation reaction
could be watched as they occur. In addition, we show that the duration of ultrafast X-ray and electron pulses
can be measured with a time resolution of tens of femtoseconds by clocking it against such atomic motion.

I. Introduction complicated (and often unknown) relation between the experi-
mental observable and the interatomic distances for optical probe
experiments, the connection between the atomic positions and
the scattering (X-ray or electron) amplitude is clear and
well-known: the two are linked by a Fourier relatibr® In
addition, the theoretical treatments of electron and X-ray
diffraction are very similar. With this in mind, it has been
proposed (see refs—® for a recent review and collections of
papers) that ultrafast time-resolved X-ray and electron diffraction
may be used to directly watch structural changes and atomic
motions during chemical (and biochemical) reactions and/or
réhysical changes (such as phase transitions).

Conceptually, the method is similar to an ultrafast optical
pump—probe experiment. The essential new ingredient is that

X-ray and in many cases electron diffraction have been used
to resolve the electron density and equilibrium structure of a
large number of small molecules as well as of many important
biomolecules and biopolymets® Our knowledge of time-
evolving structures, on the other hand, is much more limited
and it is mainly due to optical pumiprobe experimentsywhich
can now be carried out with a routine resolution of tens of
femtoseconds. Although the time resolution in these optical
experiments allows in principle a detailed observation of atomic
motions, more often than not it is impossible to “invert” the
measurements to the desired positions of the atoms because th
connection between the atomic positions and the experimental
observable requires knowledge of such properties as the potentia Lo . o . .
energy surfaces as well as polarizabilities (nonresonance Ra—the_ problng_ IS not opt|_cal bu_t IS via X-ray or electron diffraction.
man), dipole moments (infrared), and transition dipole moments This comblnes_ the direct Inversion advantages of X-ray and
(electronic absorption and resonance Raman). Unlike this rathereIeCtron techniques (the experimental measurements are done

in momentumk, space and are inverted to remlspace) with
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< T > excitation of atoms can significantly change their X-ray and
electron diffraction intensitie®, suggesting that electronic
structures of excited electronic states may be directly observed
using optical pump-diffraction probe techniques.

Although gas-phase X-ray diffraction was demonstrated in
1929 when Debye and co-workers imaged the scattering pattern
of carbon tetrachloride vapé®?,it is more common to use
electrons for gas-phase samples in order to overcome the
. problem of the low-scattering cross section for hard X-rays. The

Time first gas-phase experiments with a pulsed electron beam
Figure 1. An illustration of the optical pumpdiffraction probe (X- synchronous with photoexcitation were performed by Ischenko
ray or electron) experimental scheme. An ultrafast optical pulse initiates et g|51.52and Rood and Milledg®® Nanosecond electron pulses,
a chem_lcal reactl(_)n, or other tlme-d_ependent process, and at Var'ousproduced by light-stimulated emissi&fis” have been used to
increasing delay timeg, the system is probed with a short X-ray or T . ! o
electron pulse. study.structural kinetics in various photoexcitation processes.
Zewail and co-workers have studied the effect of UV photo-
dissociatioR®?on electron diffraction intensities using femto-
second optical pulses for the photoexcitation process and
picosecond range electron pulses for the probing process.
Stroboscopic electron diffraction has not been limited to the
gas phase. Laser-induced melting of films and laser-induced
transient temperature changes in a single crystal have been
' directly observed using picosecond range electron péfsés.
A comprehensive review on recent developments in time-
resolved surface electron diffraction studies can be found in ref

Optical pump Probe x-ray or
pulse electron pulse

probed (at various increasing delay times) by ultrafast diffraction
(X-ray or electron), as shown in Figure 1. By taking “snap-
shots” of the atomic positions as a function of delay time after
the reaction is initiated by a pulse of light, and stringing them
together as frames in a “movie”, one can watch the dynamics
as the structures of molecules evolve in time, for example
during the course of a chemical reaction.

Although the idea of ultrafast time-resolved diffraction
experiments is appealing, it is experimentally very challenging
because the X-ray or electron source must satisfy particular
requirements concerning pulse duration, synchronization with
the optical pump pulse, energy width, brightness, and flux. In
addition, for electron pulses, special attention must be paid to
the effect of repulsion between the electrons and of the
difference in electron and photon velocitisin the next few
paragraphs, we discuss some of the experimental and theoretic
studies on ultrashort X-ray and electron diffraction. In each
case (X-ray and electron), we first discuss the experimental wor
and then proceed with the theoretical one. We begin with fast

From a theoretical point of view, Williamson and Zewail have
discussed aspects of the experimental methodology of ultrafast
gas-phase electron diffractiZhand in particular the problem
of velocity mismatch and temporal resolution in crossed-beam
experimentd? The effect of spatial alignment induced by the
gpolarization of the optical pump pulse has been discussed both

by Williamson and ZewalP and by Ischenko et &f. (In both
K Studies only one potential surface was considered.) Ewbank et
al58 have also discussed in detail the inversion of the scattering
X-ray diffraction. intensities to real space and the computation of potential energy

Various sources have been used to generate ultrafast X-raySurfaces for the case of a diatomic molecule. Finally, a
pulses. The early work (beginning in the late 1960s) on time- stochastic approach to structural and vibrational kinetics that
resolved X-ray diffraction was based on electron impact €an be used to model time-resolved gas-phase electron diffrac-
sourcedl 14 More recently, picosecond X-ray pulse time scales tion has also been presented by Ischenko éta?.
were achieved using vacuum X-ray diodes with a laser-triggered ~ Although the experimental scheme that we discuss in this
photocathodé>24 Laser-produced plasma X-ray sources offer paper is a direct extension of stationary diffraction experiments,
exceptionally short X-ray pulses whose duration has been it poses new theoretical questions because the pump pulse, the
systematically reduced from the nanosecond range to thesample, and the probe pulse are all time-depentferit, as
subpicosecond rangé&:® As recently demonstrated in a pulsed discussed in this paper, the molecular dynamics is initiated by

Laue X-ray protein crystal diffraction experimeftwith a an ultrashort optical pulse, then the probe pulse scatters from a
nanosecond time resolution, synchrotrons provide exceptionallysample that consists of an initially coherent superposition of
bright X-ray sources that can produce X-ray pulses of 400 rotational, vibrational, and electronic states. The presence of

ps#2 (For a recent collection of papers on time-resolved more than one electronic state in the sample implies that one
macromolecular crystallography, see ref 43.) Finally, the best cannot restrict attention to the nuclear dynamics of a single state
X-ray pulse temporal resolution (300 fs) has been achieved by but may have to consider the dynamics of multiple electronic
utilizing Thomson scattering of optical photons from a relativ- states. This can lead to interference among states, as discussed
istic electron bearfr-46 in this paper. This problem is not unique to optical pump
Relatively, few theoretical studies have discussed the use ofdiffraction probe experiments and it is encountered in any
ultrafast X-ray pulses as a tool for studying ultrafast molecular modeling of a photochemical reaction where the interesting
dynamics. The first theoretical treatment of molecular dynamics dynamics begins on an electronically excited state. The multi-
and ultrafast diffraction, by Wilson and co-worképsé used electronic-state problem is, however, more severe for optical
classical MD simulations to compute the diffraction resulting pump—diffraction probe experiments. Unlike optical probing
from |, photodissociation in the gas phase and from the that is usually electronic-state specific, X-ray and electron
subsequent caging and possible recombination in variousprobing has the disadvantage of being insensitive to electronic-
solvents. More recently, Lin et &l.discussed the theory of  state labeling (in other words, all electronic states contribute to
ultrafast time-resolved X-ray diffraction and applied their theory the diffraction pattern). To properly treat and understand the
to the vaporization kinetics of finite systems. Recently, we have coherence and interference among states, both the nuclear and
discussed some theoretical aspects of ultrafast X-ray absorptiorelectronic degrees of freedom need to be considered quantum
and diffractiort® and, in addition, have theoretically illustrated mechanically. Later, after the quantum effects are understood,
that the change in electron density distribution upon electronic appropriate approximations can be made. Exact quantum
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mechanical computations cannot be performed for large poly- vibrational) nuclear degrees of freedom. Hence, the scattering
atomic systems (and/or condensed phases) and other, compu@amplitude and) intensity is first evaluated for a fixed nuclear
tationally less demanding, methods will have to be invoked to configuration and then averaged over the nuclear degrees of
model such systent4.”> freedom (i.e., vibrations and rotations). However, we do differ

As in previous time-dependent diffraction studies, we, in this from all previous time-dependent studies in that (i) we explicitly
paper, also limit our discussion to the nuclear dynamics and compute the optical excitation stage and do take into account
ignore the electron dynamié8. Our derivation approximates  the resulting mixture of ground and excited electronic states.
the electron density by a sum of nonoverlapping densities (each(ii) We treat the resulting coherent superposition of ro-
of which is localized about the instantaneous position of an atom vibrational states quantum mechanically, and (iii) we pay special
in the molecule), and thus, it cannot account for the deformation attention to the coherence length and pulse duration of the probe
of the electron density during the course of reaction. Within X-ray or electron pulse. As will be shown in section II.B these
this approximation, the time dependence of the diffraction considerations imply that for a multi-electronic-state system the
intensities that we compute and discuss is associated only withinstantaneous X-ray (and electron) scattering intensity (eq 2.12)
the nuclear motion, and bonding changes in valence electronsis not given by the sum of the individual electronic-state
are ignored. This approximation is sufficient at this time Sscattering intensities. It has cross terms that are a product of
because the current accuracy (as well as signal-to-noise ratio)scattering amplitudes from different electronic states. However,
of pulsed electron and X-ray experiments is insufficient to these cross terms can only be observed if the duration of the
resolve the scattering of a few bonding electrons from that of probe X-ray or electron pulse is approximately of the order of,
the dominant core electrons. Elsewhere, we have discussed th@r shorter than, the oscillation period of these terms (eq 2.16,
changes in diffraction given by valence electron excitation which 2.15).
may in time be resolved in ultrafast experimetfts. A. General Derivation of Time-Dependent X-ray and

The general theory for ultrafast optical pumgiffraction (X- Electron Diffraction Theory. Our derivation begins with a
ray or electron) probe experiments is presented in section II.A. short summary of conventional (i.e., time-independent) X-ray
This general derivation (for both X-ray and electron diffraction) and electron diffraction theory, whose theoretical principles are
is followed by a more specific discussion of X-ray diffraction Similar and very well established: X-ray photons (away from
for a two-electronic-state diatomic molecule, section II.B. Two Specific resonances) are solely scattered by the electronic charge
simple numerical examples are presented in section Ill: the density cloud whereas electrons have an additional scattering
ultrafast photodissociation of molecular bromine and the bound term that is due to the nuclear charge density. In this paper,
vibrational motion in electronically excited iodine. We point We consider only scattering using the first Born approximétion
out that such molecular motions can be used as a clock to(i.€., first-order perturbation theory) and ignore the effect of
measure the duration of X-ray and electron pulses with tens of any absorption processes. This approximation is very reasonable
femtoseconds time resolution. In section IV we discuss the for the examples shown, and for wavelengths that are far from
inversion of the data from momentum spaketo coordinate ~ any absorption edgé. Within the first Born approximation [and
spaces. In both sections Ill and IV, special attention is given the independent atom model (IAM} see below], the elastic
to the previously discuss&l857.70breaking of symmetry in X-ray scattering intensity of rigid centers moving according to
the sample due to the linearly polarized optical pump pulse guantum dynamics of the nuclei on a single Be@ppenheimer
(electrostatic hexapole techniqi@¥ have also been used to  Ppotential energy surface is given by
demonstrate symmetry breaking in diffraction from gas-phase
samples). In section IV we use the symmetry of the electronic
dipole transition in order to isolate the excited-state dynamics
from that of the ground state. Many technical details regarding

the computation of the angular part of the molecular wave |n eq 2.1 the following standard definitions have been used.
function (and the scattering integrals) are summarized in the First, the total wave functiony(r, R), was written as a product
Appendix. As discussed in section Il and in the AppendiX, of an electronic wave functiong(r; R), with the usual
our treatment of the nuclear wave functions is only ap- parametric dependence on the nuclear coordirRtesd a ro-
proximate: the three-dimensional two-electronic-state wave yjprational nuclear eigenfunction”(R): w(r,R) = ¢(r;R)y"-
function is written as a product of an angular independent radial (R). |n what follows, we use Greek letters for nuclear indices.
part and an angular part. The radial part is computed numeri- Next, the exact electronic wave functio(r; R), was ap-
cally, by propagating the two-electronic state one-dimensional proximated by a sum of nonoverlapping electronic wave
Schralinger equation, and the angular part is evaluated analyti- functions (the IAM-79), each of which is localized about the
cally assuming a single photon process for the excited state anthosition of an atom in the molecule:

a two photon process for the ground state.

N
Il. Theory #(r; R) ~ ZQOG(M =r—Ry Ry (2.2)

In this section the theoretical treatments of gas-phase X-ray
and electron diffraction (which are quite similar) are discussed The summation in eq 2.2 (and eq 2.1) extends oveX alloms
for the case when more then one electronic state contributes toin the molecule, and we used a set of electronic coordinates,
the measured scattering intensity. The general theory (for bothr, that refers to the nuclear positiori&,, as the origin. Within
X-ray and electron diffraction) is presented in section Il.A, and the IAM approximation,f*(s) is the scattering amplitude of
it is followed by a more specific discussion of a two-electronic- atoma.
state diatomic molecule in section II.B. Like previous deriva-
tions of stationar§’8 and time-dependent X-ray and electron fY9)=f*= fdro#’w explsr)e” (2.3)
diffraction theories16:54.5659.70\ye assume that the scattering
process is elastic with respect to the electronic degrees ofin which s is the difference between the incidert;, and
freedom and inelastic with respect to the (rotational and scatteredk, wave vectors,

N
() = EkV(R)Igf(S)“* (s’ explis(R; — RYIX'(R)C (2.1)
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s=k,—k (2.4) given by the temporal profile of the X-ray or electron field
intensity (eqs 2.132.16).

As noted above, electrons scatter from the total charge density Given eq 2.6 for the multi-electronic-state wave function, and
(electronic plus nuclearpe + pn, in which pe is the electronic the above discussion of the properties of the X-ray probe pulse,
density andp,, is the nuclear charge density, the latter taken the instantaneous X-ray scattering amplitude (for a fixed nuclear
here as & function8 There is thus an additional “nuclear”  configuration) is given by
term which is due to the scattering of the electrons from the ,
ath nucleus with chargg,, and within the 1AM and first Born f(s,t) = ZCj(t)fj(s) = ZCj(t)I]jbj(r; R)I€¥"|¢(r; R)D (2.7)
approximation the elastic electron scattering amplitude of atom ] ]

o is given byt
g Y Equation 2.7 implies that, for a sample composed of more than

P | o one electronic state, the instantaneous scattering amplitude is
g9=9 = ;z[za — (9] (2.5) given by a sum of electronic-state scattering amplitu/es,
each of which is weighted by its appropriate coefficigD().
Using eq 2.5, the electron scattering intensity is derived by ~ The instantaneous X-ray scattering amplituge.t), directly
rep|acing the X-ray Operatoflo with the electron Operatog(o_ reflects the elgctl’qnlc dynam|CS and |nd|reCt|y reflects the
Finally, since in general the system is initially in vibrational ~nuclear dynamics since the electrons closely follow the nuclear
and rotational equilibrium, the scattering intensity (X-ray and/ motions. The evaluation of the exact scattering amplitude (eq
or electron) needs to be averaged over a ro-vibrational Boltz- 2.7) is at an unnecessary level of detail if our focus is only on
mann distribution (at the appropriate temperature). the nuclear dynam|CS. ThUS, in a manner similar to the Slngle-
We now discuss the scattering amplitudes, and subsequentlyelectronic-state problem, we invoke the IAM and approximate
intensities, for the case of a sample that is driven synchronouslythe exact amplitude by a sum of atomic scattering amplitudes:
by an ultrafast coherent optical pump pulse and then probed N
(at various delay times with respect to the optical pump pulse) _ RV (Q) A : . a
by an ultrafast X-ray or electron pulse. After an interaction f(s 9 chl(t)fJ(S) IZCJ(t)uZ\ expisR)f;" (2.8)
with coherent laser light, the total molecular wave function is
given b)_/alinear combination of produqt wave functions, each where f* is the atomic scattering amplitude of atoen in
one bellng taken as a BOHGppenhelmer product of an  electronic statg:
electronic part,¢j(r; R), and an associated time-dependent

) 82 a o o a
nuclear part;(R, 1) =19 = [drg" expisr,)y| (2.9)

YR Y= ZCj(t)qu(r; R)y(R, 9 = In eq 2.9,¢" = ¢'(rw Ry is the IAM electronic wave
! function of atoma in electronic statg, and for each electronic
ch(t)¢j(r; R) d'0x(R) (2.6) statej we have approximated the exact electronic wave function
] v ¢i(r; R) by a sum of such localized atomic electronic wave
functions. At the end of this subsection, the implications of
this assumption for the interpretation of time-dependent dif-

thewvth ‘brational | renfuncii b electroni fraction patterns are discussed. As implied by the 1AM, there
evth ro-vibrational nuclear eigenfunction on ik electronic are no cross terms that involve electronic wave functions that

surface [with a time-dependent coefficiedf{(t)], the index» are localized on different atoms and hence the innermost
implying a summation over all nuclear indices, i.e., vibrational - ¢, nmation in eq 2.8 is just over all atoms of the molecule.

and rotational. Both the nuclear and the 2e_|ectron_|c Wave The equivalent equation for the electron scattering amplitude
functions are normalized to unity so thii(t)|” is the time- 5 eagjly derived by replacing the atomic X-ray scattering

dependent (fractional, i.e3jni(t) = 1), population of thgth amplitude (eq 2.9) by the electron scattering amplitude:
electronic state. [Note tha¥(r, R, t) is an M dimensional

In eq 2.6, the IAM has not yet been invoked, and ti{s; R)
is the exacith orthonormal electronic eigenfunctio%”(R) is

vector, whereéM is the number of electronic states and that the 0« 1 "

use of a time-dependent nuclear wave packet is dictated by the 9 =9(= ?[Za s (2.10)
nature of the optical excitation by the pump pulse that results

in a nonstationary nuclear wave functi&. The instantaneous X-ray scattering intensity (prior to integra-

Using this multi-electronic-state wave function we next want tion over the nuclear coordinates) is given by the absolute value
to evaluate the scattering amplitude and intensity. Before doing, squared of its amplitude (eq 2.8):

so we need to discuss the properties of the ultrafast probe pulse.

Consider, for example, laser-produced plasma X-ray sources.fins‘(s t) = |ZCj(t)fj(3)|2 =

These sources produce pulses that can be considered as an T

incoherent sum of many ultrashort s_ubpulses._ The duration of ZC{(t)C-(t) fia*f'ﬁ expﬂs-(Rﬁ “RY] (2.11)

each of these ultrashort subpulses is determined by the (fem- & ! & !

tosecond) lifetime of the atomic hole state that emitted the X-ray

photon. The computation of the scattering intensity will and we have used the sign to indicate that the instantaneous
therefore be divided into two parts. We first compute the intensity has not yet been integrated over the nuclear coordinates.
instantaneous scattering amplitude and intensity (egs212). In eq 2.11, the outermost double summation is over all electronic
This amplitude and/or intensity corresponds to the scattering states in the sample whereas the innermost one is the usual
of a single X-ray photon (or electron) from a coherent multi- double summation over all atoms in the molecule. As for the
electronic-state sample. Second, the total X-ray or electron scattering amplitude, the equivalent expression for the electron
scattering intensity is evaluated by a weighted summation of scattering intensity is derived by replacing the atomic X-ray
the instantaneous scattering intensities (integrated over thescattering amplitudes (eq 2.9) by the electron scattering
nuclear ro-vibrational degrees of freedom), with the weights amplitude (eq 2.10).
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To evaluate the total scattering intensity, we need to average2n/|w; — wi| associated with the energy difference between two
the instantaneous scattering intensity, eq 2.11, over the nucleawell-separated electronic states, we can assume that upon time
degrees of freedom and then integrate it over the time envelopeintegration over the envelope of the field intensity the cross
of the incident X-ray or electron pulse. Equation 2.11 describes electronic terms average to practically zero so that eq 2.13
anM x M matrix (M is the number of electronic states in the reduces to
sample) whose elements are giveniB(s, t)i; = C{t)Cj()f*

(9fi(s). The required averaging over the nuclear degrees of I(s, 7) ~ le(s, 7) (2.14)
freedom therefore implies a right and left multiplication by the ]

M dimensional vector of the nuclear wave functig(R, t) [the

jth element of this vector is the time-dependent nuclear wave
packet of thgth electronic statey;(R, t), cf. eq 2.6]:

where

| _ s 7) = 7 dtA, DO (R, OISR, =
I"(s,t) = Z%(R, B[S, t);l%(R, Y= oo .
Y S dtA, 0 47O dOE RISy (R)D

u v

Zci’(t)cj(t) BH(R, DIFOL()Ix(R, )= (2.15)
ZC{(t)Cj(t)Zdi”*(t) d' O RISy (R)D(2.12) The equivalent expression for electron scattering is derived by
] v replacing the X-ray scattering amplitudgs), (in eq 2.15) with

. . ] the electron amplitude:
[The reader can easily verify that for a one-electronic-state (and

ro-vibrational nuclear state) wave function, eq 2.12 reduces to N N 1
the IAM equation 2.1.] Finally, the scattering intensity for a g(s) = Zg,a = Z—(Za —£(9) (2.16)
noninstantaneous measurement, i.e., the X-ray or electron o= t=ts
scattering intensity time integrated over the total diffraction L L o
pulse, is given by a weighted sum of the instantaneous scattering 1€ approximation (2.14) to the scattering intensity is the
intensity (eq 2.12 and its electron equivalent) with the weights resu_lt that ha_s been assumed (and never really den\_/ed) in all
given by the time envelope of the incident X-ray or electron Previous s_tud_les o_f ultrafast gas-phase elgctron dlffract_|on. Since
field intensity, A(t, 7) its derlvatloq is quite long (eqs 2—@14) it |s.useful to reiterate
the two basic steps that led to it: (i) the instantaneous X-ray
+00 i and electron scattering intensities were computed for a coherent
I(s,7) = f . JHA, )I"™(s, 1) (2.13) multi-electronic-state system (eqgs 25.12). (ii) These instan-
taneous intensities were integrated over the total diffraction pulse
As illustrated in Figure 1, the time envelope of the ultrafast with the weights given by the time envelope of the incident

X-ray or electron probe pulsé(t, 7), is centered at time= , probe (X-ray or electron) field (egs 2.42.16). Although we
wherer is the time delay between the optical pump pulse and too will use eq 2.14 in our numerical examples, we note that
the diffraction probe pulse. this is an approximation that will break down when electronic

Equations 2.12 and 2.13 are the central equations of this surfaces approach one another, for example, in curve crossing,
paper, and we discuss them in some detail. We first considerand more generally whenever the duration of the probe X-ray
the interference among ro-vibronic states. These can be dividedor electron pulse is comparable to the period associated with
into two classes: ro-vibronic interferences involvidiferent the energy difference between two electronic states.
electronic states and ro-vibrational interferences wittsingle Finally, we consider the implications of using the 1AM in
electronic state. All these interference terms appear explicitly time-dependent diffraction studies. The dynamics of atoms and
in the expressions for the instantaneous and total X-ray scatteringmolecules, particularly in chemical reactions, involve the
intensity (egs 2.12 and 2.13, respectively) and its electron dynamics of both the nuclei and of the electrons. As seen from
equivalent. Due to the nature of the optical excitation (an eq 2.6, in principle, both are reflected in ultrafast X-ray and
ultrashort coherent laser pulse), the off-diagonal elements of electron diffraction. If we consider, for example, the cleavage
the electronic,CG(t)Ci(t) = |Gi||Cj| expli(w; — wit], ,and of a diatomic bond, then the electronic density deforms from a
nuclear, d (t) d'® = Id1ld]| expli(w] — o), density peanutlike shape (where the valence electrons are partially
matrices are nonzero and thus in principle the total scattering localized between the two atoms) to two clouds that are localized
intensity (eq 2.13) does include products of scattering amplitudesabout the two separated atoms. The IAM does not allow for
that involve two different electronic and nuclear states. It such deformations of electronic densities, and hence, the time
implies that, in principle, the scatteringtensityfor a system dependence is associated only with the nuclear motion: the
composed of more than one electronic state is not given by thelocalized electronic cloud is assumed to remain spherical and
incoherent sum of the individual scattering intensities (weighted nonoverlapping, instantaneously adjusting itself to the changing
by the fractional populations of the states) but rather by a nuclear positions. Thus, the IAM time dependence of the X-ray
coherent sum that includes cross terms that are products ofdiffraction pattern does not reflect bonding changes in valence
scattering amplitudes from different electronic states. In electrons. Although in the future it may be possible to
practice, one can observe such interferences only if the time experimentally measure such electron dynamics, it will be a
resolution of the experiment, which is expected to be limited more difficult task than measuring the nuclear dynamics where
by the duration of the probe pulsa(t, 7), is approximately of the required spatial resolution is lower and where the information
the order of or shorter than the oscillation period of these terms. is carried by the scattering from all the electrons instead of just
This oscillation periodrj = 27/|wj — wi is determined by the by the valence electron scattering. The diffraction pattern is
energy difference between the two statear(dj) in question dominated by the nearly spherical core electronic clouds, and
and is thus very short for well-separated electronic states andunder usual circumstances one cannot separately discern the few
much longer for vibrations and/or rotations. As a subpicosecond bonding electrons. Thus, the 1AM approximation is usually
X-ray or electron pulse is still long when compared to the period reasonable. There are, however, clear cases where the basic
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IAM picture breaks down and a more detailed approach is and an angular par¥;(6, ¢, t). [The polar anglé is the angle
needed, for example to treat the time-dependent migration of between the internuclear vectBr and the lab frame axis,
charge during a charge-transfer reaction. and the azimuthal anglg is the projection (with respect to the

B. Time-Dependent Diffraction from a Two-Electronic- Z axis) of the internuclear vector on the IXty plane.] In the
State Diatomic Molecule. As a more specific simple illustra-  Appendix we provide analytical expressions for the rotational
tion of the general formulas derived in the previous subsection, part of the wave functions for both the ground and the excited
we discuss diffraction for the special case of an ultrafast states, assuming a single-photon process for the latter (i.e., first-
electronic excitation of a homonuclear diatomic molecule in the order perturbation theory) and a two-photon process for the
gas phase. While we explicitly write out only the X-ray case, former (i.e., second-order perturbation theory). It should be
the electron diffraction case can be easily written out in a parallel noted that the two assumptions that we make (radial part is
manner. Two electronic states (the indices 1 and 2 refer to theindependent of the angular part and computing the latter using
ground and excited states, respectively) are included in thefirst- and second-order perturbation theory) are approximations
electronic expansion, and by transforming the two-atom homo- and in particular cycling between the ground and excited states

nuclear system to a relative coordinate systém, = R, — can result in angular distributions that are tighter than predicted
Rg, the instantaneous scattering intensity is written as a sum of by first- and second-order perturbation thedtySince the
four terms: sample is of diatomic molecules, we limit our discussion to two

) cases: a parallel transitioldJ = +1, AA and AM = 0,
i electronic transition dipole parallel to the internuclear axis) and
lmSl(S' H= 2illei’(t)Cj(t)fi*(s)fj(s)%(R, D1+ é\ perpendicular transitFi)omez 0, 4+1, AA = +1, andAM :)
" 0 (dipole perpendicular to the internuclear &4dJ is the total
coseR)Ix(R, HU(2.17) angular momentun?\ the molecule fixed (in the diatomic case
electronic) component along the internuclear axis, Ehthe
component in the chosen space fixed direction.] Here we only
outline the various steps and discuss the final result.
+oo First we write the three-dimensional nuclear wave function
I(s, 1) = 2f_w dtACt, f)nl(t)”l(s)'zgkl(R’ DI+ as a product of a radial part and an angular part. The discussion
coskR)[y(R, t)O of the radial part is deferred to section Ill.A and here we only
note that the one-dimensional quantum computation gives both
oo 2 the time-dependent radial part of the two electronic-state wave
+ 2f o AL D011 (R, 1+ function and the time-dependent grounds(f)] and excited-
cos6&R)|x,(R, 1)1 (2.18) [nx(t) = 1 — my(t)] state fractional populations. The angular
part of the wave function (of both the ground and the excited
In writing eq 2.18, we have assumed that cross products of state) is written as a coherent sum over rotational eigenstates
scattering amplitudes from different electronic states averagewhose amplitudes are computed using the Cleb&brdan
to zero (cf. egs 2.14 and 2.15). (Note also that here and in series and its invers®:36 (Note that whereas the excited-state
what follows,R is a three-dimensional vector that denotes the rotational wave packet is fully coherent, the ground-state
internuclear separation vector between the two atoms.) Therotational wave packet is only partially coherent because the
fractional populationsn;, of the different electronic states are optical excitation creates a hole in the initially isotropic
determined by the optical excitation. Prior to the application distribution.) Next, the three-dimensional Fourier transform,
of the optical pump pulse, only the ground staje=(1) is eq 2.18, is reduced to a one-dimensional numerical integration
populated and causes scattering. Once we excite part of theby expanding the cosR) in terms of products of even spherical
ground-state population to the excited electronic state, the harmonics and spherical Bessel functions (cf. eqs A.13 and
scattering intensity is given by a weighted sum of ground- and A.16). Using the orthonormality of the rotational wave func-
excited-state scattering intensities, with the weights given by tions and the ClebsehGordan series, the integrals over three
the fractional populations. spherical harmonics [two from the rotational eigenfunctions and
The scattering intensities that we compute in section Il are one from the expansion of casR)] are evaluated analytically
evaluated using eq 2.18. We reiterate that electronic cross-and written in terms of products of ClebseBGordan coef-
scattering amplitudes exist in principle at the scattering intensity ficients8587 This procedure is applied for both the ground and
level, eq 2.12, but can be assumed to average to zero when theixcited states. In analogy to optical puagrobe experiments,
two electronic states are well separated in energy (see discussiofihis results in a scattering intensity that is a sum over even
following eq 2.13). products of spherical Bessel functiorj§gR] with Legendre
The evaluation of the scattering intensity requires as an input polynomials, P|(3-8), in the angle,y, between the optical
the three-dimensional time-dependent nuclear wave function, polarization unit vectorg, and the scattering vectsy cosy =
cf. eq 2.18. We choose an initially isotropic gas-phase sample &g, (3is the unit scattering vector whose two lab frame polar
as a simple illustration. Prior to the optical excitation we assume coordinate angles determine the scattering direction, see Figure
that the ground state is spherically symmetric (i.e., all the 2):
different M states of a given rotational level are equally
populated). Once we apply the optical pulse, this spherical oo )
symmetry is broken as the optical pump pulse creates a “hole” Ij(s, 7) = 2 " dtA(t, n,()If,(9)1 1 +
in the initial isotropic distribution. Furthermore, the ultrafast
excitation also creates a coherent superposition of rotational . 11
levels in the excited-state vibrational manifold. (The amplitudes . P .
of the vibrational states are determined by the detailed shape ;(')4” A P(&8) E (1) Eti(R’ t)“I(SR)'XJ‘(R’ H
of the pump pulse; see section IlIl.LA below.) For ease of B (2.19)
computation, we approximate the nuclear wave functig(R, )
t), as a product of an angle-independent radial pg(R, t), where

and the intensity integrated over the diffraction pulse as a sum
of two terms:
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z propagation axis and the optical axis do not coincide, i.e., a
perpendicular arrangement, the scattering pattern loses its
cylindrical symmetry because the spatial distribution (of both
/ the ground and the excited states) is symmetric with respect to
-\ the polarization vectog but it is not symmetric with respect to
J X rotation about the axis of the incident probe beaky,
Experimentally, in particular for the X-ray case, the perpen-

dicular arrangement is more amenable to short-time resolution,
because the optical and X-ray pulses can co-propagate in
synchrony in the sample. It also offers more information, as

the noncircular shape of the diffraction pattern will be used in
/—L sample section IV to separate the diffraction signal of the excited state

from that of the ground state. Hence, in the next section we
Y only discuss the perpendicular arrangement.

If one considers a thermal ensemble of ground-state molecules
to which our excitation pulse is applied, then any initial ground
Parallel arrangement 7 ro-vibrational eigenstate results in a particular coherent super-
a\ position on the excited state. As argued above, the latter is

Perpendicular arrangement

Area detector
XZ plane

X determined by the nature of the excitation pump pulse and by
the rotational selection rules. This implies that the diffraction
intensity should be computed, using eq 2.18, for each of these
initial states (and the resulting excited states). The total,
thermally averaged, diffraction intensity is then given by the
[ Boltzmann average of these diffraction intensitié@Note that
/ sample this average is performed on the level of intensities and not
e amplitudes since the ground state is assumed to be thermal, i.e.,
in terms of its nuclear ro-vibrational density matrix the off-
diagonal elements average to zero.) The small spacing between

Figure 2. Upper drawing: Schematic of the perpendicular experimental rotational levels combined with their{2- 1) degeneracy results
arrangement simulated in the computations. The polarization vector at room temperature in a rotational distribution that peaks for
(€) of the optical pulse axis) and the propagation direction of the  hromine, for example, at = 35.

incident ko) X-ray or electron beamY(axis) are perpendicular. X-ray

photons or electrons with the wave vectorscatter at angle. and .

intersect theX2) plane of the detector at angle The scattering vector ~ 1l- Numerical Examples

sis the difference between the incident and scattered wave vectors. In . . o N
the parallel arrangement (lower panel) the optical polarization vector Two simple examples of bound and dissociative motion in a

is parallel to the incident X-ray or electron propagation vector (along c!latomlc molecule are dlscus_sed in this section, using respec-
the Z axis) and the area detector is placed in ¥¥plane. tively, 12 (where ultrafast diffraction has previously been

considered from a classical viewpoint by our gr&tf§and by

E1) =00, . 91Y,o(0, 9)IY(0, ¢, )0 (2.20) Williamson and ZewalP) and Be. Special reference is given

to the breaking of symmetry in the system by the linearly
In eq 2.20,Yi(, ¢, t) is the time-dependent angular wave polarized optical pump pulse. This symmetry breaking is further
function of thejth electronic state (cf. eq A.3) angy(8, ¢) is used in the next section where we show how to isolate the
aJ =1, M = 0 spherical harmonic function. Because of the excited-state dynamics from that of the ground state using the
even symmetry in our problem (a homonuclear diatomic symmetry of the electronic transition.
molecule has an inversion symmetry which the dipole interaction ~ A. Technical Details. Our computation attempts to provide
with the electric field does not alter), only eviestates contribute  a realistic quantum modeling of an optical pungiffraction
to the sum in eq 2.19 whose upper bound) @ 2), is probe experiment. We begin the simulation with all the
determined by the ClebsetGordan theorem. In practice we population on the ground electronic surface. This state is then
find that this sum converges quite rapidly. Physically, the coupled to an excited electronic state via an external optical
“classical-like” behavior of the rotational motion is the reason field: a temporally Gaussian-shaped pulse with fwhm of 70 fs,
for this fast convergence. (In the classical limit ohky 0 and intensity of 2 x 10 W/cn?, and a wavelength of 400 nm
2 states contribute to the sum in eq 2.20.) As noted in the (25 000 cn1?) for Br, and 520 nm (19 320 cm) for I,. The
Appendix, and illustrated in Figure 2, the anglelepends on radial part of the time-dependent StHirmyer equation is solved
the details of the experimental arrangement, and just as in anynumerically (for this two-electronic-state system) using the
optical pump-probe experiment, two different experimental Newton interpolating polynomial and Fourier technigéfEghis
arrangements, parallel (lower drawing in Figure 2) and perpen- computation provides the time-dependent vibrational part of the
dicular (upper drawing in Figure 2), should be considéred. nuclear wave functiony;(R, t), as well as the electronic-state
In the parallel configuration, the optical polarization veckor  fractional populationsp;(t). [Note that, strictly speaking, the
is parallel to the incident X-ray or electron propagation wave exact population depletion is given by the producngf) and
vectorko, and hence the laser and X-ray or electron beams musta geometric factor which we compute in the Appendix.] The
be perpendicular in their propagation direction. In the perpen- angular part (which is also time-dependent) is evaluated
dicular arrangement the two beams may co-propagate so thatnalytically using the appropriate selection rules (see previous
the optical polarization vector is perpendicularkg@ These section and the Appendix). At each pointin time, we then write
two arrangements give significantly different results (cf. eqs the nuclear wave function (for each electronic state) as a product
A.12 and A.15) because the system is now symmetric only aboutof a radial part and an angular part. The two-electronic-state
one axis that of the optical polarizatién’® Hence, when the  time-dependent diffraction pattern is computed using eqs2.18

Area detector
XY plane
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2.20 for various (increasing) pumjprobe delay times;. Probe
X-ray pulses with fwhm between 100 and 300 fs are used and
a wavelength of either 154 or 56.1 pm (corresponding to the
Cu and Ag Ku lines, respectively). As discussed in the previous
section, only the perpendicular pumprobe arrangement is
considered and thus, as shown in the upper panel of Figure 2,

0 100
Time (fs)

200

Energy (x 10 *cm-1)

the optical laser pulse is polarized along the lab frafe 21

direction, the incident X-ray beam propagates along Yhe

direction, and an area detector is placed in X¥plane. In Iy

the present computation, we use the same atomic form factor 0 . l )

for both the ground and the excited states, f1s) = fx(s) (this 200 300
is a reasonable approximation for the heavy atoms discussed in

this paper), and the diffraction intensities are averaged over the

400
Br-Br distance (pm)

Figure 3. The ground)((lZ;), and excitedB(.I1y,), electronic state

ground-state rotational distribution. For simplicity, we treat only
a single vibrational state in the initial ground electronic-state
distribution. Extension to an average over an initial vibrational
distribution is straightforward.

Before we discuss the results, we consider the role of rotation.

potentials of the bromine molecule (as a function of internuclear
distance) used in the computations. The arrow illustrates the electronic
excitation (25 000 crrt), and the inset shows the excited-state fractional
population as a function of time in fs, for a transform-limited Gaussian-
shaped pulse of 70 fs fwhm duration. The steep excited-state potential

. . o . . curve results in very rapid dissociation.
As discussed in detail in the previous section and else- y rap

wherel®1657.70the pump laser pulse converts the isotropic
sample into an anisotropic mixture of two electronic states.
Immediately after a perpendicular (parallel) transition, the
excited-state internuclear axes are aligned predominantly per-
pendicular (parallel) to the polarization vector of the optical 4i5mic motions by which chemical reactions take place, one
field, whereas the ground state is depleted in this direction. The aeds a probe X-ray or electron pulse whose time duration is
exact amount that is depleted (excited) is determined by the gimilar and preferably shorter than that of the making and
excitation probability multiplied by a geometric factdfs(for breaking of chemical bonds. (An alternative would be to use
a parallel transition and/s for a perpendicular one). Atany {ime.resolved detection.) Ideally one would therefore like to
time t after the excitation, the angular distribution (of both the e gple to produce and measurd00 fs X-ray and electron
ground and the excited states) is determined by the time yyises. Since streak cameras for measuring X-ray or electron
evolution of the coherent superposition of rotational levels in ,,jse duration do not have this time resolution, the main
the ground and excited electronic-state vibrational manifolds. gpjective of the first example that we discuss is to provide a
As both states are composed of different rotational levels that nonconventional (yet hopefully feasible) procedure for measur-
have different rotational periods, this initial rotational coherence ng the time profile of ultrafast probe X-ray or electron pulses.
decays on the picosecond time sc#le(Under collisionless e suggest the use of a fast chemical reaction as a &lo#k’8
conditions one can observe the relocalization of rotational Our examp|e “chemical clock” is the Simplest chemical reaction’
coherences and this relocalization does not vanish upon thermathe photodissociation of a homonuclear diatomic molecule: Br
averaging®®) This delocalization of the rotational coherences — Br + Br. In Figure 3 the potential energy cur§&&for the

is expected to progressively reduce the observed changes in thgyo electronic states (along with an arrow that indicates the
anisotropy of the diffraction pattern. In the present computation, electronic transition) are shown. An ultrafast optical pulse
we average over 50 ground-state rotational levels (and all Thepumps the ground X{;)-state molecule into a steeply dis-
correspondingV levels) and still observe significant changes  sociativellly, state. As a result, the dissociation of the diatomic
in the diffraction pattern and in particular the effect of molecule is very rapid. For our specific choice of pulse duration
anisotropy. This somewhat weak sensitivity to rotational motion and intensity (70 fs fwhm and 2 101! W/cn¥), about 26% of

is due to a combination of two effects. First, the heavy massesthe ground-state population is pumped into the excited state, as
of the atoms implies a slow rotational period and hence we do shown in the inset to Figure 3. To characterize the X-ray (or
not expect to see a significant reduction in the anisotropy at similarly electron) pulse, we first compute the diffraction pattern
short times. This is even more so in the case of dissociative (for Cu Ka. 154 pm X-rays) as a function of time at a specific
motion where the excited-state explodes apart very rapidly, angle @, 0; see Figure 2) where the change in intensity is
freezing in the angular distribution. (A classical computation predicted to be most pronounced. Hence, in the case of bromine,
shows that for excitation at 400 nm an excited-state bromine where the electronic transition is perpendicular, we choose the
molecule formed ag = 35 rotates by only #from its initial azimuthal angled to be in the direction perpendicular to the
configuration as the atoms separate. In our computation for optical polarization. The polar angteis set to the first crest
the bromine molecule, we therefore assume that the excited statén the ground-state molecular diffraction. In an ideal hypotheti-
is frozen at its initial angular distribution determined by the cal experiment one would like to be able to record the diffraction
rotational selection rules. For the iodine molecule, we make intensity [at a givend, 6)] of only the ground, or excited, state.
no such assumption and both the ground and excited states ar@s a function of time one would then observe a simple steplike
allowed to rotate.) The second effect is due to the ground statedepletion, or rise, in the scattering intensity as the latter would
(which in the example of dissociative motion is in practice the be proportional to the scattering population (see eq 2.15, for
only one that is appreciably rotating). As the effect of the example). In general, however, both states will contribute to
ground-state anisotropy is only second order in the field (see the time-dependent diffraction intensity. Thus, to still be able
the discussion in the previous section and the Appendix), it is to use the photodissociation reaction as a “chemical clock”, the
of somewhat less importance. We do note, however, that sincediffraction intensity with contributions from both states should
the radial part of the wave function is assumed to be angular still exhibit pronounced changes in intensity (as a function of
momentum independent (i.e., we ignore vibratiefraitational time) that can be detected in an experiment with a reasonable

coupling, for example thé-dependent centrifugal term in the
internuclear potential) our computation underestimates the role
of rotational delocalization.

B. Results. 1. Bp. To be able to observe the detailed
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T T T T T the time profile of the probe X-ray pulse. The distinct
oscillations in intensity (upper panel of Figure 4), observed only
with the shorter probe pulse, are due to the dissociative dynamics
on the excited electronic state. Again they could be removed
from the lower panel curve by a more accurate deconvolution
procedure. Their qualitative features can be reproduced by
invoking an Ehrenfest type of approximation for the scattering
intensity, i.e., by replacing the expectation value of the scattering
intensity by the scattering intensity at the average position of
the wave packet.

In this initial example, a fast chemical reaction has been
chosen so that the time resolution is predominantly determined
by the probe X-ray pulse. Once the probe X-ray pulse is
characterized, one would prefer to shift the emphasis to
measuring molecular dynamics rather than pulse duration. Thus,
it is worthwhile to compute the diffraction intensity as a function
of time and see if we can discern observable changes that can
be detected using X-ray pulses with nonzero duration. Hence,
S in Figure 5 we show a series of Cwikdiffraction patterns at
-400  -200 0 200 400 various pump-probe delay times. (Note that because we are
probing a dissociative motion (leading to large spacing between
the two bromine atoms) we observe changes as a function of
Figure 4. Upper panel: the variation in diffraction intensity as a tjme at small diffraction angles. At larger scattering angées,

function of delay timer (in fs) for molecular bromine at an angle af . :
= 30° andd = 90° using three Gaussian-shaped X-ray probe pulses of > 20°, the changes occur at very early times after which the

different fwhm time duration: 100 (full thick line), 200 (full thin line),  intensity is basically constant; cf. Figure 4.

and 300 (dashed line). (In all three cases, the duration (fwhm) of the  In the uppermost panel of Figure 5, we show the computed
optical pump pulse is 70 fs.) The polar angte, corresponds to the  jnitial diffraction pattern of ground-state molecular bromine.

first crest in the ground-state molecular diffraction, and the azimuthal (This is the total scattering intensity and not only the “molecular”

angle,d, is chosen perpendicular to the polarization direction of the L . . S
optical light. In this figure (and in all the other scattering figures and part.) For the initially isotropically distributed molecules, the

differences thereof), both the ground and the excited states contributePattern is cylindrically symmetric. As argued above and shown
to the diffraction intensity (see eq 2.18) and the changes in intensity in Figure 4, once the molecule interacts with the optical pump
(or differences thereof) as a function of time are predominantly due to field, one expects to see changes in this pattern. The other
the excited-state dynamics. Because the photodissociation dynamics ispanels in Figure 5 show a series of diffraction patterns at
very rapid, the time profile of the change is governed by the duration increasing pumpprobe time delays. Even though these pat-

of the probe X-ray pulse, thereby suggesting that a fast chemical reaction -
can be used as a tool to measure the duration of the probe X-ray Orterns have been evaluated using a Gu(K54 nm) 200 fs X-ray

electron pulse. Lower panel: the time derivative of the variation in Probe pulse, and thermally averaged over the ground-state
diffraction intensity shown in the upper panel, which measures the X-ray rotational distribution, at certain small diffraction angles the
pulse envelope. The oscillations shown for the 100 fs pulse could be changes in intensity are substantial. (Experimentally this result
eliminated by a more sophisticated treatment. is encouraging since the intensity decreases very rapidly with
the scattering angle and thus the signal is higher at small angles.)
signal-to-noise ratio. An easily readable “chemical clock” Th€ magnitude of these changes is determined by three
requires that the time profile of the diffraction intensity be factors: (i) the amount of excited-state fractional population,
governed by the duration of the probe pulse (in other words, (i) the radial part of the nuclear_wave fu_nctlon_, and (iii) the
we would like the X-ray or electron pulse duration to be long angular part. The more population that is excited, the larger
with respect to the optical pump duration and the time scale of the changes. T_he effect of the radial wave function is Fwofold:
the observed molecular dynamics). In the upper panel of Figure _the larger the _dlff_erer_lce between the ground- and excned_—state
4, we compute the difference in diffraction intensity as a function internuclear distributions the more pronounced are the differ-
of time using three X-ray probe pulses with varying time €nces in the diffraction pattern. (A dissociative excned_ state
duration (100, 200, and 300 fs). [In this figure and all the other therefore serves as a very favorable example.) The width of
diffraction intensity (and differences thereof) figures, the the radial wave function also aff(_acts the diffraction pattern: the
intensity is computed using eq 2.18 and the changes in intensitymore localized the wave function, the sharper the observed
as a function of time are predominantly due to the excited-state Pattern. (In the present example the ultrafast excitation into
dynamics.] This figure confirms our suggestion that a simple the 111, state establishes a Iocghzed nonstationary V|prat|onal
chemical reaction can be used as a tool to measure the duratior$tate whose subsequent evolution can be well approximated at
of the probe X-ray pulse: although both states scatter, the the short times treated here by an ensemble of classical
intensity does change rapidly as a function of time and the time trajectories.) The role of the angular part is discussed in detail
profile of the change is governed by the probe pulse and notin the Appendix.
by the photodissociation dynamics. To better illustrate this point 2. 1. To check the effects on the diffraction pattern of radial
we also show the time derivative of the change in intensity, delocalization and of the similarity between ground- and excited-
lower panel of Figure 4, which approximately, but quite well, state radial wave functions, it is useful to look at a bound motion
measures the X-ray pulse envelope. As shown in eq 2.16, thisin a diatomic molecule where at certain points in time the
time profile convolutes in it both the time dependence of the ground- and excited-state internuclear distributions may be
probe X-ray pulseA(t, 7), and the time dependence of the similar and in addition the latter may at different times show
nuclear dynamicdins(s, t). If the latter is known theoretically,  considerable delocalization (due to the nature of the optical
one can deconvolute this time profile to recover more accurately excitation and the potential surfaces). Since molecular iodine

— I{e, 8,1=—00)

I(o, 8,7)—I(0t, §,T=—o0)

Time derivative (arb. units)

Time (fs)
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Figure 5. Two-dimensional polar contour plots (arbitrary units) of
X-ray scattering intensities of molecular bromine at a series of
increasing pumpprobe time delays;, measured between the centers
of the 70 fs optical pump and the 200 fs Ca154 pm) X-ray probe

Ben-Nun et al.
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Figure 6. The groundX, and excitedB, electronic-state potentials of

I, as a function of internuclear distance (in pm). An ultrafast pump
pulse with a carrier frequency of 19 230 chexcites the groundx,

state molecule into the bound region of the exclBestate. About 15%

of the population (not shown) is excited. Superimposed on the potentials
are the ground-state wave function (before the excitation) and two
“snapshots” of the excited-state wave function (215 and 435 fs after
the electronic excitation).

the ground- and excited-state wave functions are localized at
very different internuclear distances, and indeed, if we look at
a difference £ = 215 fs minust = —o0) scattering intensity
plot (upper panels in Figures 7 and 8), we see that the differences
are significant (the highest and lowest difference contours are
drawn at 0.04 ane-0.04, respectively, compared to the highest
X-ray diffraction intensity at forward scattering of 1.) On the
other hand, at = 435 fs, when the ground and excited states
are at more similar internuclear distances and in addition the
excited state is delocalized (see Figure 6), the difference (
435 fs minust = —o) in the X-ray and electron scattering
intensity is less pronounced (lower panels of Figures 7 and 8).
Comparing Figures 7 and 8, note how similar the X-ray and
electron difference results are, illustrating the fundamental
theoretical similarity of X-ray and electron diffraction. For both,
the changes in the diffraction intensity are greater along the

pulses. The pump and probe pulses co-propagate, i.e., a perpendiculaglirection of the optical polarization (the axis), as expected

pump—probe arrangement (see Figure 2). Here, and in all subsequent
scattering (and differences thereof) figures the horizontal axsaisd

the vertical isZ, as in Figure 2. The results are averaged over the
ground-state rotational distribution, and the contours are equally spaced
The distance from the origin to any point on the graph is the scattering
anglea (a circle inscribed within the bounding box would be at a
scattering angle of 2, and the angle between this line and the vertical
Z axis is the azimuthal angl® (0 < 6 < 2x). The changes in intensity

as a function of time are mainly due to the time evolution of the excited
state and because we are probing a dissociative motion (large
internuclear distances) the changes are concentrated at small diffractio
angles. The most pronounced features in these diffraction patterns ar

gorobed by monitoring the laser-induced fluorescence from a third

for a parallel transition. (We do note, however, that the two
figures would be less similar had electronically inelastic
scattering been included in the calculation, a point that needs
to be treated more deeply for time-dependent diffraction than
we have done here.)

The initial coherent vibrational motion (and subsequent
delocalization) of ultrafast pumped iodine has been extensively
studied using ultrafast optical spectroscdp§*° In a typical
ultrafast optical experiment, the excited-state dynamics are

the collapse of the scattering intensity toward smaller diffraction angles €lectronic state into which the excitefl state molecule is

and the anisotropy in the azimuthal angle induced by the interaction
with the polarized pump pulse. Note that, because the molecular
electronic transition dipole is perpendicular to the internuclear axis (a
perpendicular transition), the changes in intensity are most pronounced
in the direction perpendicular to the optical polarization direction.

has been the subject of numerous pumppobe experimental
and theoretical studig§6.709%9 and its relevant potential
energy surfaces are well-knoWwh?6 we use it as an example.
An iodine molecule is excited from the grouXdstate into the
bound region of the excite® (Oj) state and the system is
probed via either X-ray (Figure 7) or electron (Figure 8)
diffraction at two delay times, 215 and 435 fs after the optical
excitation. (The duration of the probe X-ray and electron pulses
is 100 fs.) Snapshots of the ground- and excited-state wave
functions at these two delay times (as well as the relevant
potential energy surfaces) are shown in Figure 6. At 215 fs

promoted by the probe pulse. Although the most common (and
intuitive) observable that one would like to derive when
discussing coherent vibrational motion is the expectation value
of the position on the excited electronic state, none of these
time domain experiments (and their frequency domain ana-
logues) probe this observable directly. On the other hand,
inversek (momentum) space (the domain of diffraction experi-
ments) and real (coordinate) space are directly related by a
Fourier transform. In Figure 9, we plot the difference in the
X-ray diffraction intensity (at the fixed scattering angle for
which, on the basis of Figure 7, we expect to see large changes)
as a function of time (dashed line and right axis), as well as the
expectation value of the position on the excited electronic state
(full line and left axis),[R(r)C] from the quantum dynamics.
The coherent motion of the excited state and its subsequent
delocalization is reflected in the single-angle time-dependent
diffraction intensity in a manner almost identical witR(z)(l
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S Figure 8. As in Figure 7 but for electron diffraction substituting the

Figure 7. Three-dimensional polar contour plots for molecular iodine €lectron scattering amplitudgy(s), [from eq 2.10], for the X-ray

at two pump-probe delay times of the X-ray scattering intensity at ~Scattering amplitudd(s), in eq 2.18. The vertical and horizontal scales
that delay time minus the intensity for the unpumped ground state. in these two plots are the same as in Figure 7, and the contours (both
(The excited-state wave functions at these two time points are showndashed and solid) are drawn at the same values as in Figure 7. Note
in Figure 6, and the duration of the probe X-ray pulse is 100 fs, fwhm.) that these dlffere_nce p_Iots fc_)r electron dlffr_actlon are very S|m|Iar_to
The solid (dashed) contours are equally spaced (0.01 apart) betweerfhose for X-ray diffraction, Figure 7, reflecting the similarity of their
0.01 (-0.01) and 0.040.04) with the highest (absolute) value being theoretical foundations.

the innermost one. The scattering vectdor a circle bounded by the

box of the figure is 4.0 A for both panels. (The magnitude of the
scattering intensity at forward scattering does not depend on time and
for undifferentiated data equals 1.) As expected for a parallel transition,
the intensities in these difference plots are greater along the optical
polarization direction4 axis). Their magnitude reflects the width of

the ground- and excited-state wave functions and the extent of their
overlap in space. When the ground and excited states are at different
internuclear distances, and both are localized (upper panel), see Figure
6, the differences in intensity are most significant (the highest and lowest
values in the upper panel are 0.04 an@.04, respectively). When they

(eo—=0* 0" PO (2° 0 P

are at similar distances, lower panel, and furthermore the excited-state 260L—o . 1 0
wave function is delocalized (see Figure 6), the differences are less 0 1000 2000 3000 4000
pronounced (the highest and lowest values in the lower panel are 0.02 T (fs)

and —0.02, respectively).
Figure 9. Normalized difference diffraction intensity at= 24°, § =
0° (right axis and dashed line) compared to the quantum expectation

(Note again that the diffraction intensity used to produce this value of the internuclear distance (left axis and solid line) on the excited
electronic state as a function of delay timér molecular iodine. (In

figure is computed for a sample that consistdothground- "0 ve “the difference in diffraction intensity is defined as the
and excited-state molecules, using eq 2.18.) This figure jntensity at timer minus the intensity before the optical excitation, the
demonstrates that ultrafast diffraction experiments can be usedresult being divided by this last value.) The probe X-ray pulse duration
as direct, real-time, probes of nuclear dynamics. In the next is 100 fs, fwhm. That the difference in diffraction intensity at just a

section we will continue this discussion by showing the inversion single angle reflects so clearly the initial coherent vibrational motion
of the time-dependent data froknspace to real space and subsequent vibrational delocalization shows the direct and close
P p P : relationship between time-resolved diffraction experiments and nuclear

We now return to the role of rotation. In these two examples dynamics.
(and in particular in the bromine case), the excited state does

not appreciably rotate and the ground state is rotating slowly ¢agter than what is shown in Figure 9. (Other figures will also

compared to the time periods illustrated in Figure$3 (Care e affected, but to a much lesser extent because of their shorter
should be taken when discussing Figure 9 whose time scale isijme scale.)

somewhat longer; see below.) Thus, the effect of the rotational
dynamics is somewhat diminished. We reiterate that this is not
a general result, and we do expect the rotation to play a more
significant role in other reactions. Furthermore, we point out  The inversion of the data from the momentuk),domain
that our neglect of the coupling between vibration and rotation into the coordinater;, domain is discussed in this section. Our
underestimates the role of rotation in delocalization and thus ultimate goal for optical pumpdiffraction probe experiments
expect the loss of vibrational coherence to be actually somewhatis to provide real-time information about the nuclear (and

IV. Inversion
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hopefully one day also electronic) dynamics during the course transform. (To reveal the fine features of the scattering signal,
of chemical reactions. In addition, th#(R, t)|2 measurements it is customary to first remove the atomic scattering intensity
may be used to compute the potential energy surface on whichand then analyze the remaining molecular part.) As discussed
the atoms are evolving. In a classical mechanical study, in the previous section (and in more detail in the Appendix)
Williamson and Zewail have analyzed theoretical transient the diffraction intensity of an anisotropic gas-phase sample can
electron diffraction patterns, giving special attention to the be written as a sum of Bessel functiofgsR in eq 2.19] that
spatial anisotropy induced in the sample by the optical pump includes alll > 0 terms with their proper weight®(5-8). In
puls€® and have also fitted their experimental data by assuming this sum, thel = 0 term is referred to as the isotropic term,
that a certain fraction of the molecules in the sample was pecause its weight does not depend on the azimuthalngle
phOtoeXCitecf.8'59 Ewbank et aP have also discussed the [Po(é.é) = 1] In a perpendic[_”ar arrangement, the We|ghts of
inversion of scattering intensities to real space and the computa-|| the otherl > 0 terms depend on both the scatteringand

tion of the potential energy surface for the case of a diatomic azimuthal,0, angles (cf. eq A.19), and hence they are referred
molecule and gas-phase electron diffraction. Their elegantto as the anisotropic part of the diffraction intensity. (In a
formalism relates the time-dependent intensities to intramo- parallel arrangement, these weights depend only on the scattering
lecular potential energy surface parameters and to othergngie o; cf. eq A.18.) To recover the radial part of the wave
parameters taken from spectroscopic investigations, yet it fynction, we need to isolate the isotropic term from all the other
addresses only one electronic surface at a time and it does Notermg and then analyze it as for an isotropic sample, i.e., via an
simulafte the optical excitation stag.e. (Only Ieast-.squares datainversejo(SQ transform. If the weights of all the> 0 would
analysis was used to model experimental data with more than gepend on the scattering angle, then an inverse transform
one electronic state.) Our purpose is therefore to complete theqs e total intensity would in fact isolate the isotropic term
quantum modeling of an optical pumpliffraction probe  poca 56 of the orthonormality of the Bessel functions. However,
experiment by showing that diffraction intensities from non- since the weight of each of the> 0 terms does depend on the
stationary samples composed of more than one electronic Stat%cattering angle (i.e., 08, an inverseo(sR transform cannot
can be inverted to recover inte_rnuclear di_stributions and that isolate the isotropic lpart, and as will be shown below it can
excited-state dynamics can be isolated using the symmetry Ofa(:tually incorporates into it much of the anisotropic part. Thus,

the electronic dipole transition. A hard X-ray wavelength of X . . : C :
56.1 pm (Ag Kx) and a pulse duration of 100 fs (fwhm) are to isolate the |sotroplg part qf the diffraction intensity, a more
elaborate procedure is required.

used in all the computations presented in this section (i.e., ) ) )
Figures 16-13). To illustrate the procedure that we use, we consider first a

simple case where only the= 0 andl = 2 terms are included

in the expression for the diffraction intensity, eq 2.19. (This is
the classical limit of eq 2.19.) In such a case, both the isotropic
and anisotropic parts consist of one term whose weight is known
at each scattering direction: it equals 1 for the isotropic part
andP,(cosy) = P;[cos(/2) cosod] for the anisotropic part. If
we now consider the diffraction intensity at two different

As is clear from the two-dimensional polar plots of the
scattering intensities (Figures 5, 7, and 8), there is both radial
and angular information in these gas-phase diffraction intensities.
The procedure that we suggest for extracting the radial and
angular information from the gas-phase diffraction intensities
is motivated by the specific method that we have used to
evaluate the nuclear wave function and the diffraction inten- "~ )
sity: the wave function was written as a product of an angle- @Zimuthal anglesy, but at the same scattering angte,then
independent radial part and an angular part (which was W€ ha\(e a set of two Iln_ear eqyatlons with two unknowns: thg
computed using first- and second-order perturbation theory) andisotropic part and the aplsotroplc.part. (Note that both electronic
the diffraction intensity as a sum over even products of spherical St&tes, ground and excited, contribute to each of these two terms,
Bessel functions and Legendre polynomials in the angle between!SOtropic and anisotropic.) By solving this set of equations for
the optical polarization vector and the scattering vector. (In the two parts (isotropic and anisotropic) at each scattering angle,
the strong field limit, this approximate procedure for evaluating @ We can determine both the isotropic part and the anisotropic
the nuclear wave function is likely to be less quantitative and Part. (Again, we emphasize that this procedure does not isolate
a more accurate procedure will have to be used. In such a casethe ground-state scattering from that of the excited state. What
the procedure for inverting the diffraction intensities from the it does is separate the isotropic and anisotropic contributions to
momentum domain to the coordinate domain will have to be the diffraction signal, each of which is composed of both
modified accordingly.) Our analysis of the diffraction intensities ground- and excited-state terms.) Once we have isolated the
begins with a discussion of the radial information which is then isotropic part we can recover the radial part of the wave function
generalized to include the angular information. Before doing by computing its inversego(sR transform. Again, as is
so we would like to point out that if the molecular wave function commonly done in the analysis of isotropic gas-phase diffraction
and the diffraction intensity were given in terms of a three- signals, the atomic scattering intensity is removed from the
dimensional Cartesian coordinate system, as is likely to be theisotropic part of the diffraction intensity before the inverse
case for polyatomic systems, we would not try to separate the transform is performed. If, as is in general the case, more than
radial and angular parts but rather invert the diffraction intensity two terms are included in eq 2.19, then at each scattering angle,
using a three-dimensional Fast Fourier Transform (FFT). o, a set ofN linear equations should be solved,Nadifferent

In a stationary isotropic gas-phase sample, the diffraction azimuthal angles, to isolate the isotopic part of the diffraction
intensity does not depend on the azimuthal scattering angle andsignal. (N is the number of terms that in general will be included
it is given by a sum of two terms: an atomic term (which does in the expression for the total scattering intensity, eq 2.19.) This
not carry any structural information and is given by the sum, result implies, as expected, that the higher the resolution that
over all atoms in the molecules, of the absolute value squaredwe require (i.e., the more terms we assume contribute to the
of the atomic structure factors) and a term that is proportional diffraction signal) the more data (diffraction intensities at
to the zero-order Bessel functiopp(sR = sin(sR/sR (1 = 0 different azimuthal angles) we need. In practice, the “classical-
term in eq 2.19). The analysis of such an isotropic gas-phaselike” behavior of the rotational degrees of freedom may allow
diffraction signal therefore can be done by an inverse sine the isolation of the isotropic part of the diffraction intensity using
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150 I ¥
100 Hdistance )
200
300 400 0 0 ) Figure 11. Same as Figure 10, but for molecular iodine. Here we show
B 300 600 100 (‘-\5\6 the full magnitude of the density and therefore the decrease in the
r-Br distapce (pm) ground-state probability due to the optical excitation is very clear. Note

the periodic bound vibrational motion of the excited state and the
Figure 10. Combined ground- and excited-state densities as a function resulting periodic increase in probability at short internuclear distances
of internuclear distance and time for molecular bromine. Upper panel: that occurs whenever the ground and excited states are at similar
the time-dependent radial part of the electronically incoherent density internuclear distances. Because the excited state is composed of a
m(®)lza(R, )2 + n(t)2lx2(R, 1)|? that is computed numerically and used ~ coherent superposition of high vibrational states (centered absut
as aninput for the computation of the diffraction intensity. Lower ~ 35), atlong times it develops a fine structure (see the upper panel density
panel: the radial distribution function computed by inversion of the at long (~1000 fs) delay times) which cannot be resolved with the
time-dependent diffraction intensity (see text for more details on the 56.1 pm (Ag Kx) X-ray wavelength used in this computation.
inversion). In this and all subsequent figures, a hard X-ray wavelength
of 56.1 pm (Ag Kx) and an X-ray pulse duration of 100 fs (fwrlr_n) COCOxRY,(RY, i = j =1, 2, is expected to average to
was used in order to achieve this good agreement between the “input zero upon integration over the time envelope of the diffraction

and “output”. The constant feature at a short internuclear distance is rob | Th reement between the input ntum
due to the ground state whereas the time-dependent feature is due t@'0P€ Ppulse.) The agreement between the input quantu

the excited state. Because, compared to the dissociating excited statedynamics (upper panel in both figures) and the output inversion
the ground state is very localized, its peak magnitude is much larger from diffraction (lower panel in both figures) is very good. The
compared to the dissociating excited state (even though we excite aboutconstant feature that appears at short internuclear distances is
26% to the e>§cited state; see i_nset in Figure 3). The_refore, we truncatedue to the ground state (in both figures) and in addition there
ey e ol it s e e et S 1 2 Te-dependert feaure whih in Figure 10 i de (0 he
the full magnitude of the density and there this decrease is observed.)d_ls‘soc_n"Jltlng eX_CIted state an_d in Figure 11 is due to the bc_)und
vibrational motion of the excited state. In the case of bromine,
Figure 10, we truncate the top of the vertical range of the density
the classical limit of eq 2.19. (In this limit, only two ternls, on the plot because the ground state is very localized (compared
= 0 andl = 2 contribute to the diffraction intensity.) to the excited state) and thus its magnitude is so much larger
This procedure for separating the isotropic part of the than that of the dissociating excited state that it would make
diffraction intensity from the total diffraction intensity was the latter almost invisible if shown fully on the same scale. Thus,
applied to both bromine and iodine. Once the isotropic part whereas in Figure 11 (where we show the full range of the
was isolated, the atomic part was subtracted from it and an density) we see both the decrease in the ground-state density
inverse jo(sR transform was performed on the remaining (due to the electronic excitation) and the periodic increase in
isotropic molecular part. The result of this procedure is the the magnitude of the features at short distances that occurs
radial probability density. In Figures 10 and 11, this probability whenever the ground and excited states are at similar inter-
density is compared to the original (radial part of the) quantum nuclear distances, because of truncation it is not possible to see
mechanical probability density which was used as an input for the decrease in intensity in Figure 10.
the computation of the diffraction intensities (eq 2.19, for ~ We next consider the angular part of the probability density.
bromine and iodine, respectively). In both figures, the densities Given eq 2.19 for the scattering intensity at each scattering angle
are plotted as a function of internuclear distance (in pm) and (o. andd), one can in principle construct numerically the inverse
time (in fs). (Note that only the electronically incoherent part transform that will recover the density as a function of
of the input radial densityp;(t)[x1(R1)|2 + na(t)|y2(RY)[% is internuclear distanceR, and polar anglef. (Note again that
plotted in the upper panels of Figures 10 and 11. This is this numerical construction of the inverse transform would not
because, as argued in section lll for two well-separated be required if the nuclear wave function and the diffraction
electronic states, the electronically coherent part of the density, intensity were given in terms of a three-dimensional Cartesian
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coordinate system, in which case a three-dimensional FFT would 400
be used to invert the data.) This inverse transform is much

more complicated than the simple inverke=(0) sine transform 1200
that is used in the analysis of isotropic gas-phase diffraction

intensities because it includes higher-( 0) Bessel functions 10
and because these Bessel functions are weighted by Legendre | 20
polynomials Pi(5-8)] that depend on the scattering angle :
However, it is important to note that this transform does exist , ‘ : ‘ 400
and therefore, in principle, one can recover the density as a Ushs = 1 400
function of internuclear density and polar angle [Because ﬁ\

of the symmetry of our system, the distribution Bf is ! 120
independent of, so that we need only to recove(R, 6) from 0
the two-dimensional diffraction intensity.] Since the numerical

transformation described above is so complicated, we try to 200
recover the angular information by a much simpler procedure: ¥/ @
a simple inversgg(sR transform of the scattering intensity at ‘ \ A0 8
each azimuthal angké. (Note that the angular dependence of 245}/’\{"“" woy
the diffraction intensity on the azimuthal angles similar to L
the angular dependence of the wave function on the polar angle

0;i.e.,0 —0.) As argued above, although the Bessel functions 10
are orthonormal, an inverge(sR transform doesot isolate

the isotropic part of the diffraction intensity because the weights 100
of all I > 0 Bessel functions that contribute to the total

diffraction intensity depend on the scattering angle. Thus, an : 4%%0
inversejo(sR transform will reflect both the isotropic and the

anisotropic parts of the diffraction intensity (although not in an 200
exact way). For not too long pumiprobe delay times, the

initial alignment will be retained and thus, in a polar representa- 10
tion, we expect to see the excited-state internuclear axes aligned m
preferentially along the electric vector direction of the light,

for this parallel transition, whereas the opposite is true for the ‘ . ‘ 440
ground state, which is expected to be depleted in this direction. A0 W 0 A0 40

In Figure 12, we show polar representations of the two- X (pm)

dimensional probability density(R, #), at a series of increasing
pump-probe delay times for molecular iodine. In these polar Figure 12. A polar representation of the probability density,o(R,
plots, the distance from the origin to a point on the graph is the ). computed by inversion of the time-dependent diffraction intensity,
internuclear distance (in pm) and the angle between this distance®l @ Series of increasing pumprobe delay times. (The three

. L snapshots” that we show are during the first vibrational period on the
and the vertical axis is _the pqlar angle Three of the pan_els . excited electronic state.) The distance from the origin to a point on the
show the result of the inversion procedure (at three points in graph is the +1 internuclear distance, and the angle between this
time during the first vibrational period on the excited electronic distance and the vertic#l axis is the polar anglé. The full contours
state), and in the third panel (from the top) we show, for are drawn at values of 0.1, 0.2, 0.3, 0.8, and 0.9, and the dashed ones
comparison, the input density at one point in time. Although &€ at 0.075 (uppermost panel) and 0.02 (lowermost panel). The time-
we have used an approximate procedure for the inversion, thedependent features that are due to the excited-state bound vibrational

dynamics are aligned predominantly along #haxis (as expected for

agreement between the input and the output is quite good. Thea parallel transition) and the ground state (features at internuclear

time-dependent features in these polar plots are mainly due togistances 0f~266 pm) is depleted in this direction. Note that because
the bound vibrational motion on the excited electronic state, the transition probability is not unity (but rather15%), after the

which is preferentially aligned along verticabixis. The ground ~ excitation the ground state is preferentially aligned perpendicular to
state is depleted in this direction and is aligned predominantly the optical polarization direction but it is not completely depleted along

(although not completely because onii5% of the ground- the direction of the electronic excitation and that when the ground and
excited states are at similar internuclear distances (lowest panel) we

state population is excited) along theaxis. After 245fs from o0 5 single feature that is almost isotropic. For comparison, in the
the electronic excitation (two middle panels), the excited third panel from the top, we also show (at one point in time) the three-
electronic state is at an outer turning point and it is thus more dimensional input density (incoherently averaged over the inltis
localized than at 80 fs (upper panel). At 495 fs (lower panel), distribution) used as an input for the computation of the diffraction
the ground- and excited-state densities are at very similar Intensity.

distances and therefore we see basically a single feature with

only traces of angular asymmetry. (The dashed contour line is take the difference between the density along the parallel and
drawn at a value that is 45 times lower than the hlgheSt one, perpendicu|ar directions (after proper|y norma”zing them ac-
which is the innermost contour.) cording to the peak that appears in both directions and therefore

Finally, we discuss how to use the difference in the ground- can be assumed to be due to the ground state), we should recover
and excited-state dynamics and symmetry of the electronic the excited state alone. As an example, this procedure is applied
dipole transition in order to isolate the excited-state dynamics to the diffraction intensity of iodine 245 fs after the optical
from the ground-state dynamics. From Figure 12 it is clear excitation. In the upper panel of Figure 13, we plot a slice of
that at early times the excited-state density is aligned along theFigure 12 (second panel from top) along thdirection where
polarization directiorzZ, whereas there is practically no density we see both the ground and the excited states. In the middle
in the direction perpendicular to . This implies that if we panel of Figure 13, we plot another slice of Figure 12 but this
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— — V. Concluding Remarks

Inversion along Z axis |
In this paper we have discussed a natural development of
stationary X-ray and electron diffraction experiments: time-
dependent measurements of nonstationary transient structures.
] The experimental scheme that has been proposed to enable the
Excited direct measurement of evolving structures is ultrafast X-ray and
| electron diffraction. In such experiments, the sample and the
pump and probe pulses are all time-dependent and the general
— theory presented in section Ill.A accounts for these features.
Inversion along X axis Unlike previous theoretical derivations of optical pump
| diffraction probe experiments, our formalism treats both the
] electronic and nuclear degrees of freedom quantum mechani-
cally, and it models the ultrafast optical pump process, the
subsequent quantum dynamics of the sample, and the ultrafast
diffraction probe process. With electronic excitation by the
pump pulse, more than one electronic state will usually
contribute to the measured diffraction intensity, and interferences
T S between ro-vibrational states involving different electronic states
Difference | and ro-vibrational interferences within a given electronic state
appeared explicitly in the expression for the instantaneous X-ray
] and electron scattering intensity (cf. eq 2.12 or 2.17). Since
the duration of currently available X-ray or electron pulses is
still long when compared to the period of the frequency
associated with the energy difference between two well-
LN\«/’ ] separated electronic states, we assumed that interference between
i different electronic states averages to zero (upon time integration
- i - over the envelope of the field intensity) so that the time-
200 300 400 500 600 integrated scattering intensity is given by a sum of the individual
I-I distance (pm) electronic-state scattering intensities, weighted by the appropriate
Figure 13. Upper panel: a slice of the iodine distribution function ~fractional populations (eqgs 2.14 and 2.15). This result has been
shown in the second panel (from the top) of Figure 12 along the light assumed in all previous gas-phase electron diffraction studies,
polarization direction (vertical axis). Middle panel: same as upper and although we have used it in the present computations, we
panel but this time along the perpendicular directi¥rakis) where at would like to emphasize that this is an approximation that will

short pump-probe delay times (compared to the rotational delocal- :
ization time) there are no traces of the excited electronic state. To isolatebreak down when electronic surfaces approach one another, for

the excited state, the upper two panels were normalized using the are€€X@MPple, in curve crossing, and more generally whenever the
under the constant feature which is assumed to be due to the stationany@uration of the probe X-ray or electron pulse is comparable to
ground state. Lower panel: the difference between the upper and middlethe period associated with the energy difference between two
panels, showing that the excited-state internuclear distribution can beelectronic states. In addition, the common assumption we have
isolated from the diffraction data by symmetry. Note that, as discussed made here that the observed scattering is inelastic with respect
In the text, when the ground- and excited-state wave functions are aty, e nyclear degrees of freedom and elastic with respect to
similar internuclear distances, such a simple procedure will not enable - . . e .
us to really isolate the excited state from the ground state but only to the electro_nlc degrees of freedom is a simplification Wh'(?h nee_ds
conclude that the two states are at similar internuclear separations. (0 be considered more deeply, with respect to electron diffraction
versus X-ray diffraction in general, and to time-dependent
phenomena in particular.
Two numerical examples were discussed in section Ill: the
ssociative and bound gas-phase dynamics for diatomic mol-
ecules. (The parallel case for a crystal, involving electronic

Ground

Ground

Radial distribution function

Excited

L

time along the perpendiculaX direction where there are

practically no traces of the excited state at short times (at longer di
times after the pump pulse we do expect to see again a mixture
of both states due to rotational delocalization). Once we subtract o, <itation and phonon nuclear dynamics could also be carried

the two results (after normalizing them so that the peak that ot ) |t js shown that, with the scattering involving both ground-
appears in both panels has the same area), we isolate the groungh ' excited-state molecules, significant changes are observed
state, shown in the lower panel of Figure 13. We have applied i, the time-dependent X-ray diffraction pattern. These results
this procedure, using the symmetry of the electric dipole gyggest that molecular, and in particular dissociative, dynamics
transition, for both iodine and bromine at various pufmobe  may be used to measure the duration of sub-picosecond X-ray
delay times and our experience is that in the weak field limit it o ejectron pulses with time resolution of tens of femtoseconds.
is a quite robust way to separate the short-time excited-stateas expected, the changes in diffraction intensity are less
dynamics from those of the ground state. [Of course, it will pronounced whenever the ground- and excited-state wave
not be always possible &eparatethe two states because when packets are at similar internuclear distances and even more so
the ground and excited states are at very similar internuclearif the wave packets are also delocalized. The computation of
distances we will see only a single peak in the distribution in the time-dependent molecular wave function is approximated
both directions (parallel and perpendicular, cf. Figure 12) and by dividing it into two parts by writing the wave function as a
thus will only be able to conclude that the ground and excited product of an angle-independent radial part and an angular part,
states are at similar internuclear distances.] Since, even forboth being time dependent. The former is computed numerically
polyatomic molecules there still exists a molecule-fixed elec- (by solving the radial time-dependent Sattirmger equation);
tronic transition dipole, it will be interesting to try and extend the latter is evaluated analytically in the Appendix (using first-
this procedure to more complex molecules. and second-order perturbation theory for the excited and ground
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states, respectively). Apart from reducing the computational and the United Statedsrael Educational Foundation for a
difficulty, this approximation enables us to analytically recover Fulbright Postdoctoral award.

the knowrt>16.57.7%reaking of cylindrical symmetry in gas- and

liquid-phase diffraction patterns that is expected whenever the Appendix: Rotational Dynamics

direction of the optical polarization (which is the only symmetry | this appendix we treat the rotational part of the quantum
axis in the sample after the optical excitation) does not coincide gynamics for electron and X-ray diffraction from a gas-phase
with the direction of the incident X-ray (or electron) beam. As  gjatomic sample pumped by a linearly polarized light pulse.
discussed in section Ill (and in more detail in the Appendix), As discussed in section Il (eq. 2.6), the molecular wave function,
the total diffraction intensity for an anisotropic gas-phase sample Wi(r, R, t), on each electronic stajés written as a product of
can be written as a sum of Bessel functiop&R in eq 2.19] an electronic pari;(r; R), and a time-dependent nuclear part,
weighted by Legendre polynomial®,(5-€). Since the latter (R, t), such that
depends on the scattering angle, a simple invgpteR
transformcannotisolate the isotropic part of the diffraction  W,(r, R, t) = C,()¢;(r; R)y(R, t) =
intensity, and in section IV we have suggested and applied an . Vi v
exact procedure for separating the isotropic part of the diffraction GO R)Zdj O (R) (A1)
pattern from the total diffraction pattern. This procedure enabled !
us to recover (very nicely) the radial part of the wave function i, \yhich v implies a summation over vibrational and rotational
as a function of time. _ Although we have discussed the exact indices, and//(R) is a nuclear eigenstate. In this appendix we
procedure for recovering the angular dependence of the prob-giqc 55 the computation of the angular part of the nuclear wave
ability density, in this paper we have only used an approximate ,nction for the illustrative specific case of a gas-phase diatomic
procedure to recover it. [The proposed approximate procedureygjecule, noting that the electronic part is assumed to be known
was based on the observation that an inves&R transform (o the potential energy surfaces are given as an input) and
cannot isolate the isotropic part of the diffraction intensity tyat the radial part (which, as is often done for computational
(because of thes dependence of the weights of the Bessel gimpiicity, is assumed to be independent3fis computed
functions), and therefore, if that transform is used to invert the numerically (see section IIl.A for more details). In addition,
total diffraction intensity, the resulting inverted density can have e show how to evaluate the integral needed to calculate the
a nonisotropic contribution.] This approximate procedure scattering intensity from the wave function.
enabled us to demonstrate how the short-time excited-state Since the computation of rotational selection rules and
dynamics can be isolated from that of the ground state using transition line strength is well documented in the literaftr&,
the symmetry induced by the electronic dipole transition. (At we try to make the discussion as short as possible and center
short times, the exact procedure for inverting the two- attention only the details that are specific to the diffraction
dimensional diffraction intensity could also be used to isolate probing scheme or to any approximation that we make. The
the excited-state dynamics from that of the ground state.) purpose of the somewhat tedious procedure that we outline is
Since our discussion in section Il was limited to diatomic to (i) provide an analytical expression for the rotational part of
molecules, we were able to compute the nuclear dynamicsthe molecular wave function and (ii) use this expression to
quantum mechanically. This will not be possible for any but reduce the three-dimensional Fourier transform needed for the
the smallest polyatomic systems, and other computationally lessScattering intensity (cf. eq 2.18) to a one-dimensional transform,
demanding methods will have to be used. We believe that, to In the radial coordinate, multiplied by an analytic expression.
correctly model optical pumpdiffraction probe experiments, Although the procedure is rather_ long, and it is dictated by the
these methods will have to retain some quantum mechanicalfact that we use a polar coordinate system and numerically

features (such as the notion of more than one electronic state€valuate only the radial part, the analytical result that we obtain
and phase interferences, for example). does provide a quantum insight to the breaking of symmetry in

. . . the diffraction pattern, which has been previously discussed
Throughout most of this paper (and in all our numerical classically!516.70
examples) we limited our discussion to the independent atom We first rewrite the nuclear wave function (of each electronic

model. Within the limits of this model, the electronic cloud is state) as a product of a radial pas(R, 1), and an angular part,
not allowed to deform as the atoms and molecules are movmg.Y,((9 @ 1)
Yy ¢y L)

Thus, the time dependence of the diffraction intensities was
associated only with the nuclear motion (or, in other words, W(r, R, 1) =COa: RyR DY, ¢, 1)  (A2)
with the spherical core electronic cloud) and did not reflect e PRI AR R
bonding changes in valence electrons. Such an approximation
limits the discussion to changes in bond distances and angle
and cannot account for the electron dynamics. Although it is

not expected that initial ultrafast diffraction measurements will

be qf sufficient accuracy to observe the_ dynamics of the | . e functions are given by a sum over vibrational and
relatively few bonding electrons, the evolution of the electron qiational eigenfunctions. Thus, within each electronic state,
density during the course of a chemical reaction is a basic partye rotational eigenfunctions depend on the vibrational level and
of our understanding of the making, altering, and breaking of e tg the nature of the electronic excitation there will be more
chemical bonds, and we do believe that ultrafast diffraction (X- than one occupied vibrational state on the excited electronic
ray and electron) may in time enable the direct imaging of state. Here we make an approximation whose character is
electronic (as well as nuclear) dynamics. dictated by the specific procedure used to compute the radial
part. Since in practice we generate a single radial wave packet
Acknowledgment. The authors thank Dr. J. Che, F I3 (which is assumed to be independentJoj and we do not
and Prof. P. M. Weber for many helpful discussions. M.B.N. decompose it into vibrational eigenstates, we assume that the
thanks the Rothschild Foundation for a Postdoctoral Fellowship rotational part carries a single vibrational (or more precisely

The polar anglé is the angle between the internuclear vector
and the lab fram& axis, and the azimuthal angte is the

projection (with respect to thé axis) of the internuclear vector

on theXY plane.] In principle, both the radial and the angular
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radial) index which is determined by the central vibrational

eigenstate in the wave packet. For the heavy diatomic molecules

in the specific cases discussed in section Il and for not too
long pump-probe delay times, this approximation is quite good
for the rotational dynamics, because of the very long rotational
period and the relatively weak dependence of the rotational
constant on the vibrational state, over the vibrational range
excited. Within this approximation, the angular wave function
can be written as a sum over rotational eigenstdteK( M')

Y0, 0,2, 1) =
;w a(d, K, M, J, K', M)|J' K’ M'Cexp(aoft) (A.3)
v

and, as discussed above, we associate a single “vibrational”

index, n, that corresponds to the central vibrational eigenstate
of the radial wave packet, to the rotational part. In eq A.3, we
follow the conventional notation used in the literafifrby
associating\ (the molecule fixed electronic component of the
total angular momentumy, along the internuclear axis) of a
diatomic molecule witiK of an asymmetric top molecule, and
the rotational frequency)j“ = BJJ + 1), whereB, = Be —

oe(n + 1/2) in which Be is the rotational term corresponding to
the equilibrium bond length and is a small positive number
that accounts for the coupling between the rotation and vibration
of the molecule. Each of the rotational statiKMD) in eq

A.3 can be written using rotation matric#&s6

2] + 112
| D 0.0.0) (a4

_a\M—K
1IKMO= (—1) ( o
After the interaction with polarized light, the excited state
becomes a coherent superposition of rotational (and vibrational)

states and the ground electronic state is partially coherent: the

polarized pump pulse creates a “hole” in the initial isotropic
ground-state distribution. What we would like to know are the
amplitudes of these states (i.e., tfactors in eq A.3), assuming
a single-photon process. (Note that this is only an assumption
and not an exact result because cycling between the two
electronic states can result in a tighter rotational distribution
than the one predicted hef®. We first consider the excited
state. The probability amplitude of finding the excited-state
rotor in a|J K' M'Ostate following the dipole absorption of
linearly polarized light [and assuming (A.4) as the initial ground
rotational state] is given by the ClebseBordan coefficient,
L) K" M'[ @, JIKMO (A.5)

where®gg is the so-called direction cosine matP.For light
polarized along th& axis (in the lab frame) and for a parallel
transition (i.e., the molecular dipole transition is along the
internuclear axisz), ®ry = $z, = cos6, which is the projection
of the molecular transition dipole on the lab fradexis. In
a perpendicular transition, the molecular dipole is in xhey
plane and hence one should ubgy = @z + ®zy = —sin 6
cosy + sinf cosy.8” (The spin angle should not be confused
with the molecular wave function.) Integrals of the form (A.5)
can be solved analytically by writing the direction cosine matrix
(as well as the rotational eigenfunction, eq A.4) in terms of
rotation matrices and using the ClebsegbBordan series to
evaluate the resulting integrals over three rotational matrices.
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CI)Zx = _2(D(1)71 - Dél)

7

i
q)Zy = _2(D(1>1 + Dé—1)

7%

The equivalent expression for the rotational wave function is
given by eq A.4. Thus, for example, if the ground state is
initially given by eq A.4 and the transition is parallel, then the
angular part of the excited state=t 2) is given by

(A.6)

Y0, ¢, t) = a(JOM,J + 1,0M)|J + 1,0MTexp(e?, ,t) +
a(JoM,J — 1,0M)|J — 1,0MCexp(a] ;t) (A.7)

where we have assumed the usual case for the ground-state
diatomic moleculeK = A = 0. i.e., itis ofZ (or Q = 0)
electronic symmetry. The values of the coefficients in eq A.7
are determined by eq A.5 using the uppermost equation in (A.6).

We now discuss the angular wave function of the ground
state,Y1(0, ¢, %, t). First note that the orthogonality of the
electronic wave functions and the chosen normalization of the
radial part of the wave function imply that

[W(r, R, IW(r, R, )= nyG [, QY | Y1 TH ny0 |y, Y, 0

=nY,Y,[H nY,|Y, (=1 (A.8)

in which the last equality is due to norm conservation. (Note

that during the electronic excitation the ground- and excited-

state populations vary as a function of time.) As discussed in

detail above (for a single-photon process), the excited-state wave

function is given by the result of the dipole operator on the

initial ground rotational stateY, = ®gglJKMOand therefore,
LYY, 0= DKM|(1 — ny @ D) [IKMO - (A.9)

In whichn; is the fractional population of thjéh electronic state.

Since we need to know the ground-state amplitdewe take

the square root of eq A.9 and, keeping only linear terms in the

excited-state fractional population, write

n
NONARS (1 - EzclyF*GcDFg)uKMD (A.10)

Physically what eq A.10 implies is that the ground-state
distribution is derived using second-order perturbation theory
(or alternatively first-order perturbation theory applied twice)
and that after the electronic excitation the initially isotropic
ground state becomes an anisotropic linear superposition of the
original state and any state that can be accessed via a two-photon
process (absorption and emission) given the appropriate selection
rules. Hence, the amplitude for finding the ground state in a
[J K' M'| state after the interaction with linearly polarized light

is computed just as for the excited state: i.e., by bracketing the
left-hand side of eq A.10 with &' K' M’'| state; cf. eq A.5. We
then write both the initial and the final states, as well as the
square of the dipole operato®#;®Prg, in terms of rotation
matrices, eq A.6, and use the Clebs¢bordan series to
analytically evaluate the amplitudes. The end result for the
ground state is somewhat more complicated than for the excited

Since these integrals appear in many text books (see, forstate (this is particularly so for a perpendicular transition) and

example, chapter 2 in ref 87), here we only write the direction
cosine matrix in terms of rotation matrices,

—nl
cI)Zz - DOO

its general form is given by eq A.3.

Once the angular parts of both the ground and the excited
states have been determined (analytically) and the radial part
computed numerically, we still need to evaluate three-
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dimensional integrals of the form (cf. eq 2.18 in text) for both electronic state§ & 1, 2) at any point in time for
which we compute the diffraction pattern. (We reiterate that
2n Y6, @, )x(R Y)I1 + cos&R)Ix(R 1)Y(0, ¢, )T because of the even symmetry in our problem only dwerms

j=1,2 (A.11) contribute to the sum in eq A.16.) The Clebschordan
theorem determines that the upper bound on the infinite sum in
in order to compute the diffraction intensity from the wave eq A.17 equals (2 + 2), whereJ is the initial rotational
function. eigenstate on the ground electronic state. In the classical limit
In what fO"OWS, we rewrite these integrals as a prOdUCt of a (of h|gh \]), On|y two termsj =0 and 2, contribute to the sum

radial part and an angular part and evaluate the latter analyti-in eq A.16.
cally, thereby reducing the dimensionality of the numerical  The angles between the optical polarization vecéorand
integration from three to one. This is done by expanding the the Scattering Vectors do not depend on the azimuthal
cos&R) in eq A1l in terms of products of even Bessel scattering anglé (see Figure 2, lower panel) when the incident
functions,ji(sR), and Legendre polynomial&(cosj), X-ray (or electron) beam and the polarization vector are parallel

> cosy = &&= sin@/2 A.18
cosE&R) = Z(:i:i)'j,(sR)(Zl + 1)P,(cospB) (A.12) v @/2) (A.18)
= whereas it does when they are perpendicular (incoming beam

. . A A . is along theX direction for example; cf. upper panel in Figure
in which, cos3 = &R is the angle between the scattering vector 2) g P pperp 9

sand the internuclear vecté, the” symbol is used to denote

a unit vector, and only evdrterms contribute to the sum. Using cosy = cos@/2) cosd (A.19)
the addition theorer®, the Legendre polynomials are written
in terms of spherical harmonics In egs A.18 and A.19¢ is the angle between the incident and

scattered X-rays or electrons afds its azimuthal projection

AL a on the detector plane (see Figure 2). Thus, it is clear that in

(2 + 1)P(cosp) = 4n z Y'(RY'(®) (A13) the perpendicular arrangement, eq A.19, the diffraction intensity
== will not be symmetrical with respect to rotation éfabout the

axis of the incoming X-ray or electron beam whereas it will be

in the parallel arrangement. In the main text we elaborate on

this point in more detail.

Finally, we note (as discussed in section 11.B) that the ground-
and excited-state angular distributions and the resulting diffrac-
tion intensity should be computed (using the procedure outlined
in this appendix) for each of the ground rotational states that is
Y°(§) _ (ZI + 1)1/2P (§-2) (A.14) initially populated. The total scattering intensity, for an initially

! ! ’ thermal sample, is given by a Boltzmann average of these

) ) o ) individual diffraction intensities (each of which corresponds to
by Iett|ng the Iab frami axis C0|nC|de W|th the m0|eCU|I a given |n|t|a| ground rota“onal state)

axis. Note that the unit vector in thg direction is the
polarization directiong, and therefore, using eqs A.14 and A.13 References and Notes
we can rewrite eq A.12 as

m=l
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