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Time-dependent ultrafast diffraction measurements can be directly inverted to obtain the dynamics of atomic
motions, in contrast to ultrafast spectra which require detailed knowledge of the sample (e.g., potential energy
surfaces) for their inversion. We consider here how to derive time-dependent diffraction (the X-ray and
electron diffraction cases being very similar) from nuclear quantum dynamics and vice versa and how this
may be used to directly observe the atomic motions in molecules, in particular how chemical reactions take
place. Two simple examples of dissociative and bound quantum (vibrational and rotational) dynamics in a
gas-phase sample of diatomic molecules, excited by an optical pump pulse and measured by an electron or
X-ray probe pulse, are presented. The quantum mechanical basis of the breaking of symmetry due to the
linearly polarized optical pump pulse and the superposition and interference between the ground and excited
electronic states are discussed. We demonstrate how to isolate the short-time excited-state dynamics from
that of the ground state using the symmetry of the electronic dipole transition. We illustrate that the time-
evolving distribution of interatomic distances can be clearly resolved from the ultrafast diffraction data and
thus illustrate that the detailed dynamics of molecular vibration and the progress of a photodissociation reaction
could be watched as they occur. In addition, we show that the duration of ultrafast X-ray and electron pulses
can be measured with a time resolution of tens of femtoseconds by clocking it against such atomic motion.

I. Introduction

X-ray and in many cases electron diffraction have been used
to resolve the electron density and equilibrium structure of a
large number of small molecules as well as of many important
biomolecules and biopolymers.1-5 Our knowledge of time-
evolving structures, on the other hand, is much more limited
and it is mainly due to optical pump-probe experiments,6 which
can now be carried out with a routine resolution of tens of
femtoseconds. Although the time resolution in these optical
experiments allows in principle a detailed observation of atomic
motions, more often than not it is impossible to “invert” the
measurements to the desired positions of the atoms because the
connection between the atomic positions and the experimental
observable requires knowledge of such properties as the potential
energy surfaces as well as polarizabilities (nonresonance Ra-
man), dipole moments (infrared), and transition dipole moments
(electronic absorption and resonance Raman). Unlike this rather

complicated (and often unknown) relation between the experi-
mental observable and the interatomic distances for optical probe
experiments, the connection between the atomic positions and
the scattering (X-ray or electron) amplitude is clear and
well-known: the two are linked by a Fourier relation.1-5 In
addition, the theoretical treatments of electron and X-ray
diffraction are very similar. With this in mind, it has been
proposed (see refs 7-9 for a recent review and collections of
papers) that ultrafast time-resolved X-ray and electron diffraction
may be used to directly watch structural changes and atomic
motions during chemical (and biochemical) reactions and/or
physical changes (such as phase transitions).
Conceptually, the method is similar to an ultrafast optical

pump-probe experiment. The essential new ingredient is that
the probing is not optical but is via X-ray or electron diffraction.
This combines the direct inversion advantages of X-ray and
electron techniques (the experimental measurements are done
in momentum,k, space and are inverted to real,r , space) with
the high temporal resolution of ultrafast optical pump-probe
techniques. In an optical pump-diffraction probe experiment,
the dynamics is initiated by an ultrafast light pulse and then
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probed (at various increasing delay times) by ultrafast diffraction
(X-ray or electron), as shown in Figure 1. By taking “snap-
shots” of the atomic positions as a function of delay time after
the reaction is initiated by a pulse of light, and stringing them
together as frames in a “movie”, one can watch the dynamics
as the structures of molecules evolve in time, for example,
during the course of a chemical reaction.
Although the idea of ultrafast time-resolved diffraction

experiments is appealing, it is experimentally very challenging
because the X-ray or electron source must satisfy particular
requirements concerning pulse duration, synchronization with
the optical pump pulse, energy width, brightness, and flux. In
addition, for electron pulses, special attention must be paid to
the effect of repulsion between the electrons and of the
difference in electron and photon velocities.10 In the next few
paragraphs, we discuss some of the experimental and theoretical
studies on ultrashort X-ray and electron diffraction. In each
case (X-ray and electron), we first discuss the experimental work
and then proceed with the theoretical one. We begin with fast
X-ray diffraction.
Various sources have been used to generate ultrafast X-ray

pulses. The early work (beginning in the late 1960s) on time-
resolved X-ray diffraction was based on electron impact
sources.11-14 More recently, picosecond X-ray pulse time scales
were achieved using vacuum X-ray diodes with a laser-triggered
photocathode.15-24 Laser-produced plasma X-ray sources offer
exceptionally short X-ray pulses whose duration has been
systematically reduced from the nanosecond range to the
subpicosecond range.25-40 As recently demonstrated in a pulsed
Laue X-ray protein crystal diffraction experiment,41 with a
nanosecond time resolution, synchrotrons provide exceptionally
bright X-ray sources that can produce X-ray pulses of 40-100
ps.42 (For a recent collection of papers on time-resolved
macromolecular crystallography, see ref 43.) Finally, the best
X-ray pulse temporal resolution (300 fs) has been achieved by
utilizing Thomson scattering of optical photons from a relativ-
istic electron beam.44-46

Relatively, few theoretical studies have discussed the use of
ultrafast X-ray pulses as a tool for studying ultrafast molecular
dynamics. The first theoretical treatment of molecular dynamics
and ultrafast diffraction, by Wilson and co-workers,15,16 used
classical MD simulations to compute the diffraction resulting
from I2 photodissociation in the gas phase and from the
subsequent caging and possible recombination in various
solvents. More recently, Lin et al.47 discussed the theory of
ultrafast time-resolved X-ray diffraction and applied their theory
to the vaporization kinetics of finite systems. Recently, we have
discussed some theoretical aspects of ultrafast X-ray absorption
and diffraction48 and, in addition, have theoretically illustrated
that the change in electron density distribution upon electronic

excitation of atoms can significantly change their X-ray and
electron diffraction intensities,49 suggesting that electronic
structures of excited electronic states may be directly observed
using optical pump-diffraction probe techniques.
Although gas-phase X-ray diffraction was demonstrated in

1929 when Debye and co-workers imaged the scattering pattern
of carbon tetrachloride vapor,50 it is more common to use
electrons for gas-phase samples in order to overcome the
problem of the low-scattering cross section for hard X-rays. The
first gas-phase experiments with a pulsed electron beam
synchronous with photoexcitation were performed by Ischenko
et al.51,52and Rood and Milledge.53 Nanosecond electron pulses,
produced by light-stimulated emission,54-57 have been used to
study structural kinetics in various photoexcitation processes.
Zewail and co-workers have studied the effect of UV photo-
dissociation58,59on electron diffraction intensities using femto-
second optical pulses for the photoexcitation process and
picosecond range electron pulses for the probing process.
Stroboscopic electron diffraction has not been limited to the
gas phase. Laser-induced melting of films and laser-induced
transient temperature changes in a single crystal have been
directly observed using picosecond range electron pulses.60-67

A comprehensive review on recent developments in time-
resolved surface electron diffraction studies can be found in ref
68.
From a theoretical point of view, Williamson and Zewail have

discussed aspects of the experimental methodology of ultrafast
gas-phase electron diffraction69 and in particular the problem
of velocity mismatch and temporal resolution in crossed-beam
experiments.10 The effect of spatial alignment induced by the
polarization of the optical pump pulse has been discussed both
by Williamson and Zewail70 and by Ischenko et al.57 (In both
studies only one potential surface was considered.) Ewbank et
al.56 have also discussed in detail the inversion of the scattering
intensities to real space and the computation of potential energy
surfaces for the case of a diatomic molecule. Finally, a
stochastic approach to structural and vibrational kinetics that
can be used to model time-resolved gas-phase electron diffrac-
tion has also been presented by Ischenko et al.71-73

Although the experimental scheme that we discuss in this
paper is a direct extension of stationary diffraction experiments,
it poses new theoretical questions because the pump pulse, the
sample, and the probe pulse are all time-dependent.48 If, as
discussed in this paper, the molecular dynamics is initiated by
an ultrashort optical pulse, then the probe pulse scatters from a
sample that consists of an initially coherent superposition of
rotational, vibrational, and electronic states. The presence of
more than one electronic state in the sample implies that one
cannot restrict attention to the nuclear dynamics of a single state
but may have to consider the dynamics of multiple electronic
states. This can lead to interference among states, as discussed
in this paper. This problem is not unique to optical pump-
diffraction probe experiments and it is encountered in any
modeling of a photochemical reaction where the interesting
dynamics begins on an electronically excited state. The multi-
electronic-state problem is, however, more severe for optical
pump-diffraction probe experiments. Unlike optical probing
that is usually electronic-state specific, X-ray and electron
probing has the disadvantage of being insensitive to electronic-
state labeling (in other words, all electronic states contribute to
the diffraction pattern). To properly treat and understand the
coherence and interference among states, both the nuclear and
electronic degrees of freedom need to be considered quantum
mechanically. Later, after the quantum effects are understood,
appropriate approximations can be made. Exact quantum

Figure 1. An illustration of the optical pump-diffraction probe (X-
ray or electron) experimental scheme. An ultrafast optical pulse initiates
a chemical reaction, or other time-dependent process, and at various
increasing delay times,τ, the system is probed with a short X-ray or
electron pulse.

8744 J. Phys. Chem. A, Vol. 101, No. 47, 1997 Ben-Nun et al.



mechanical computations cannot be performed for large poly-
atomic systems (and/or condensed phases) and other, compu-
tationally less demanding, methods will have to be invoked to
model such systems.74,75

As in previous time-dependent diffraction studies, we, in this
paper, also limit our discussion to the nuclear dynamics and
ignore the electron dynamics.49 Our derivation approximates
the electron density by a sum of nonoverlapping densities (each
of which is localized about the instantaneous position of an atom
in the molecule), and thus, it cannot account for the deformation
of the electron density during the course of reaction. Within
this approximation, the time dependence of the diffraction
intensities that we compute and discuss is associated only with
the nuclear motion, and bonding changes in valence electrons
are ignored. This approximation is sufficient at this time
because the current accuracy (as well as signal-to-noise ratio)
of pulsed electron and X-ray experiments is insufficient to
resolve the scattering of a few bonding electrons from that of
the dominant core electrons. Elsewhere, we have discussed the
changes in diffraction given by valence electron excitation which
may in time be resolved in ultrafast experiments.49

The general theory for ultrafast optical pump-diffraction (X-
ray or electron) probe experiments is presented in section II.A.
This general derivation (for both X-ray and electron diffraction)
is followed by a more specific discussion of X-ray diffraction
for a two-electronic-state diatomic molecule, section II.B. Two
simple numerical examples are presented in section III: the
ultrafast photodissociation of molecular bromine and the bound
vibrational motion in electronically excited iodine. We point
out that such molecular motions can be used as a clock to
measure the duration of X-ray and electron pulses with tens of
femtoseconds time resolution. In section IV we discuss the
inversion of the data from momentum space,k, to coordinate
space,r . In both sections III and IV, special attention is given
to the previously discussed15,16,57,70breaking of symmetry in
the sample due to the linearly polarized optical pump pulse
(electrostatic hexapole techniques76,77 have also been used to
demonstrate symmetry breaking in diffraction from gas-phase
samples). In section IV we use the symmetry of the electronic
dipole transition in order to isolate the excited-state dynamics
from that of the ground state. Many technical details regarding
the computation of the angular part of the molecular wave
function (and the scattering integrals) are summarized in the
Appendix. As discussed in section III and in the Appendix,
our treatment of the nuclear wave functions is only ap-
proximate: the three-dimensional two-electronic-state wave
function is written as a product of an angular independent radial
part and an angular part. The radial part is computed numeri-
cally, by propagating the two-electronic state one-dimensional
Schrödinger equation, and the angular part is evaluated analyti-
cally assuming a single photon process for the excited state and
a two photon process for the ground state.

II. Theory

In this section the theoretical treatments of gas-phase X-ray
and electron diffraction (which are quite similar) are discussed
for the case when more then one electronic state contributes to
the measured scattering intensity. The general theory (for both
X-ray and electron diffraction) is presented in section II.A, and
it is followed by a more specific discussion of a two-electronic-
state diatomic molecule in section II.B. Like previous deriva-
tions of stationary4,78 and time-dependent X-ray and electron
diffraction theories,15,16,54,56-59,70we assume that the scattering
process is elastic with respect to the electronic degrees of
freedom and inelastic with respect to the (rotational and

vibrational) nuclear degrees of freedom. Hence, the scattering
(amplitude and) intensity is first evaluated for a fixed nuclear
configuration and then averaged over the nuclear degrees of
freedom (i.e., vibrations and rotations). However, we do differ
from all previous time-dependent studies in that (i) we explicitly
compute the optical excitation stage and do take into account
the resulting mixture of ground and excited electronic states.
(ii) We treat the resulting coherent superposition of ro-
vibrational states quantum mechanically, and (iii) we pay special
attention to the coherence length and pulse duration of the probe
X-ray or electron pulse. As will be shown in section II.B these
considerations imply that for a multi-electronic-state system the
instantaneous X-ray (and electron) scattering intensity (eq 2.12)
is not given by the sum of the individual electronic-state
scattering intensities. It has cross terms that are a product of
scattering amplitudes from different electronic states. However,
these cross terms can only be observed if the duration of the
probe X-ray or electron pulse is approximately of the order of,
or shorter than, the oscillation period of these terms (eq 2.16,
2.15).
A. General Derivation of Time-Dependent X-ray and

Electron Diffraction Theory. Our derivation begins with a
short summary of conventional (i.e., time-independent) X-ray
and electron diffraction theory, whose theoretical principles are
similar and very well established: X-ray photons (away from
specific resonances) are solely scattered by the electronic charge
density cloud whereas electrons have an additional scattering
term that is due to the nuclear charge density. In this paper,
we consider only scattering using the first Born approximation79

(i.e., first-order perturbation theory) and ignore the effect of
any absorption processes. This approximation is very reasonable
for the examples shown, and for wavelengths that are far from
any absorption edge.78 Within the first Born approximation [and
the independent atom model (IAM)4,78 see below], the elastic
X-ray scattering intensity of rigid centers moving according to
quantum dynamics of the nuclei on a single Born-Oppenheimer
potential energy surface is given by

In eq 2.1 the following standard definitions have been used.
First, the total wave function,ψ(r , R), was written as a product
of an electronic wave function,φ(r ; R), with the usual
parametric dependence on the nuclear coordinatesR, and a ro-
vibrational nuclear eigenfunction,øν(R): ψ(r ,R) ) φ(r ;R)øV-
(R). In what follows, we use Greek letters for nuclear indices.
Next, the exact electronic wave function,φ(r ; R), was ap-
proximated by a sum of nonoverlapping electronic wave
functions (the IAM4,78), each of which is localized about the
position of an atom in the molecule:

The summation in eq 2.2 (and eq 2.1) extends over allN atoms
in the molecule, and we used a set of electronic coordinates,
rR, that refers to the nuclear positions,RR, as the origin. Within
the IAM approximation,fR(s) is the scattering amplitude of
atomR

in which s is the difference between the incident,ko, and
scattered,k, wave vectors,

Ix(s) ) 〈øν(R)|∑
R,â

N

f(s)R* f(s)â exp[is‚(Râ - RR)]|øν(R)〉 (2.1)

φ(r ; R) ≈∑
R)1

N

æR(rR ) r - RR; RR) (2.2)

f R(s) ≡ f R )∫drRæR* exp(is‚rR)æ
R (2.3)
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As noted above, electrons scatter from the total charge density
(electronic plus nuclear),Fe + Fn, in which Fe is the electronic
density andFn is the nuclear charge density, the latter taken
here as aδ function.80 There is thus an additional “nuclear”
term which is due to the scattering of the electrons from the
Rth nucleus with chargeZR, and within the IAM and first Born
approximation the elastic electron scattering amplitude of atom
R is given by81

Using eq 2.5, the electron scattering intensity is derived by
replacing the X-ray operator (f R) with the electron operator (gR).
Finally, since in general the system is initially in vibrational
and rotational equilibrium, the scattering intensity (X-ray and/
or electron) needs to be averaged over a ro-vibrational Boltz-
mann distribution (at the appropriate temperature).
We now discuss the scattering amplitudes, and subsequently

intensities, for the case of a sample that is driven synchronously
by an ultrafast coherent optical pump pulse and then probed
(at various delay times with respect to the optical pump pulse)
by an ultrafast X-ray or electron pulse. After an interaction
with coherent laser light, the total molecular wave function is
given by a linear combination of product wave functions, each
one being taken as a Born-Oppenheimer product of an
electronic part,φj(r ; R), and an associated time-dependent
nuclear part,øj(R, t),82

In eq 2.6, the IAM has not yet been invoked, and thusφj(r ; R)
is the exactjth orthonormal electronic eigenfunction.øj

ν(R) is
theνth ro-vibrational nuclear eigenfunction on thejth electronic
surface [with a time-dependent coefficientdj

ν(t)], the indexν
implying a summation over all nuclear indices, i.e., vibrational
and rotational. Both the nuclear and the electronic wave
functions are normalized to unity so that|Cj(t)|2 is the time-
dependent (fractional, i.e.,∑jnj(t) ) 1), population of thejth
electronic state. [Note thatΨ(r , R, t) is anM dimensional
vector, whereM is the number of electronic states and that the
use of a time-dependent nuclear wave packet is dictated by the
nature of the optical excitation by the pump pulse that results
in a nonstationary nuclear wave function.82]
Using this multi-electronic-state wave function we next want

to evaluate the scattering amplitude and intensity. Before doing,
so we need to discuss the properties of the ultrafast probe pulse.
Consider, for example, laser-produced plasma X-ray sources.
These sources produce pulses that can be considered as an
incoherent sum of many ultrashort subpulses. The duration of
each of these ultrashort subpulses is determined by the (fem-
tosecond) lifetime of the atomic hole state that emitted the X-ray
photon. The computation of the scattering intensity will
therefore be divided into two parts. We first compute the
instantaneous scattering amplitude and intensity (eqs 2.9-2.12).
This amplitude and/or intensity corresponds to the scattering
of a single X-ray photon (or electron) from a coherent multi-
electronic-state sample. Second, the total X-ray or electron
scattering intensity is evaluated by a weighted summation of
the instantaneous scattering intensities (integrated over the
nuclear ro-vibrational degrees of freedom), with the weights

given by the temporal profile of the X-ray or electron field
intensity (eqs 2.13-2.16).
Given eq 2.6 for the multi-electronic-state wave function, and

the above discussion of the properties of the X-ray probe pulse,
the instantaneous X-ray scattering amplitude (for a fixed nuclear
configuration) is given by

Equation 2.7 implies that, for a sample composed of more than
one electronic state, the instantaneous scattering amplitude is
given by a sum of electronic-state scattering amplitudes,fj(s),
each of which is weighted by its appropriate coefficient,Cj(t).
The instantaneous X-ray scattering amplitude,f(s, t), directly

reflects the electronic dynamics and indirectly reflects the
nuclear dynamics since the electrons closely follow the nuclear
motions. The evaluation of the exact scattering amplitude (eq
2.7) is at an unnecessary level of detail if our focus is only on
the nuclear dynamics. Thus, in a manner similar to the single-
electronic-state problem, we invoke the IAM and approximate
the exact amplitude by a sum of atomic scattering amplitudes:

where fj
R is the atomic scattering amplitude of atomR in

electronic statej:

In eq 2.9, æj
R ≡ æj

R(rR; RR) is the IAM electronic wave
function of atomR in electronic statej, and for each electronic
statej we have approximated the exact electronic wave function
φj(r ; R) by a sum of such localized atomic electronic wave
functions. At the end of this subsection, the implications of
this assumption for the interpretation of time-dependent dif-
fraction patterns are discussed. As implied by the IAM, there
are no cross terms that involve electronic wave functions that
are localized on different atoms and hence the innermost
summation in eq 2.8 is just over allN atoms of the molecule.
The equivalent equation for the electron scattering amplitude
is easily derived by replacing the atomic X-ray scattering
amplitude (eq 2.9) by the electron scattering amplitude:

The instantaneous X-ray scattering intensity (prior to integra-
tion over the nuclear coordinates) is given by the absolute value
squared of its amplitude (eq 2.8):

and we have used the∼ sign to indicate that the instantaneous
intensity has not yet been integrated over the nuclear coordinates.
In eq 2.11, the outermost double summation is over all electronic
states in the sample whereas the innermost one is the usual
double summation over all atoms in the molecule. As for the
scattering amplitude, the equivalent expression for the electron
scattering intensity is derived by replacing the atomic X-ray
scattering amplitudes (eq 2.9) by the electron scattering
amplitude (eq 2.10).

s) ko - k (2.4)

gR(s) ≡ gR ) 1

s2
[ZR - f R(s)] (2.5)

Ψ(r , R, t) ) ∑
j

Cj(t)φj(r ; R)øj(R, t) )

∑
j

Cj(t)φj(r ; R)∑
ν

dj
ν(t)øj

ν(R) (2.6)

f(s, t) ) ∑
j

Cj(t)fj(s) ) ∑
j

Cj(t)〈φj(r ; R)|eis‚r|φj(r ; R)〉 (2.7)

f(s, t) ) ∑
j

Cj(t)fj(s) ≈∑
j

Cj(t)∑
R)1

N

exp(is‚RR)f j
R (2.8)

fj
R ≡ fj

R(s) )∫drRæj
R* exp(is‚rR)æj

R (2.9)

gj
R ≡ gj

R(s) ) 1

s2
[ZR - fj

R(s)] (2.10)

Ĩ inst(s, t) ) |∑
j

Cj(t)fj(s)|2 )

∑
i,j

C*i(t)Cj(t)∑
R,â
fi
R*fj

â exp[is‚(Râ - RR)] (2.11)
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To evaluate the total scattering intensity, we need to average
the instantaneous scattering intensity, eq 2.11, over the nuclear
degrees of freedom and then integrate it over the time envelope
of the incident X-ray or electron pulse. Equation 2.11 describes
anM × M matrix (M is the number of electronic states in the
sample) whose elements are given byĨ inst(s, t)i,j ) C*i(t)Cj(t)f*i
(s)fj(s). The required averaging over the nuclear degrees of
freedom therefore implies a right and left multiplication by the
M dimensional vector of the nuclear wave function,ø(R, t) [the
jth element of this vector is the time-dependent nuclear wave
packet of thejth electronic state,øbj(R, t), cf. eq 2.6]:

[The reader can easily verify that for a one-electronic-state (and
ro-vibrational nuclear state) wave function, eq 2.12 reduces to
the IAM equation 2.1.] Finally, the scattering intensity for a
noninstantaneous measurement, i.e., the X-ray or electron
scattering intensity time integrated over the total diffraction
pulse, is given by a weighted sum of the instantaneous scattering
intensity (eq 2.12 and its electron equivalent) with the weights
given by the time envelope of the incident X-ray or electron
field intensity,A(t, τ)

As illustrated in Figure 1, the time envelope of the ultrafast
X-ray or electron probe pulse,A(t, τ), is centered at timet ) τ,
whereτ is the time delay between the optical pump pulse and
the diffraction probe pulse.
Equations 2.12 and 2.13 are the central equations of this

paper, and we discuss them in some detail. We first consider
the interference among ro-vibronic states. These can be divided
into two classes: ro-vibronic interferences involvingdifferent
electronic states and ro-vibrational interferences within asingle
electronic state. All these interference terms appear explicitly
in the expressions for the instantaneous and total X-ray scattering
intensity (eqs 2.12 and 2.13, respectively) and its electron
equivalent. Due to the nature of the optical excitation (an
ultrashort coherent laser pulse), the off-diagonal elements of
the electronic,C*i(t)Cj(t) ) |Ci||Cj| exp[i(ωj - ωi)t], ,and
nuclear, di

µ*(t) dj
ν(t) ) |diµ||djν| exp[i(ωj

ν - ωi
µ)t], density

matrices are nonzero and thus in principle the total scattering
intensity (eq 2.13) does include products of scattering amplitudes
that involve two different electronic and nuclear states. It
implies that, in principle, the scatteringintensityfor a system
composed of more than one electronic state is not given by the
incoherent sum of the individual scattering intensities (weighted
by the fractional populations of the states) but rather by a
coherent sum that includes cross terms that are products of
scattering amplitudes from different electronic states. In
practice, one can observe such interferences only if the time
resolution of the experiment, which is expected to be limited
by the duration of the probe pulse,A(t, τ), is approximately of
the order of or shorter than the oscillation period of these terms.
This oscillation period,τij ) 2π/|ωj - ωi| is determined by the
energy difference between the two states (i and j) in question
and is thus very short for well-separated electronic states and
much longer for vibrations and/or rotations. As a subpicosecond
X-ray or electron pulse is still long when compared to the period

2π/|ωj - ωi| associated with the energy difference between two
well-separated electronic states, we can assume that upon time
integration over the envelope of the field intensity the cross
electronic terms average to practically zero so that eq 2.13
reduces to

where

The equivalent expression for electron scattering is derived by
replacing the X-ray scattering amplitude,fj(s), (in eq 2.15) with
the electron amplitude:

The approximation (2.14) to the scattering intensity is the
result that has been assumed (and never really derived) in all
previous studies of ultrafast gas-phase electron diffraction. Since
its derivation is quite long (eqs 2.9-2.14), it is useful to reiterate
the two basic steps that led to it: (i) the instantaneous X-ray
and electron scattering intensities were computed for a coherent
multi-electronic-state system (eqs 2.6-2.12). (ii) These instan-
taneous intensities were integrated over the total diffraction pulse
with the weights given by the time envelope of the incident
probe (X-ray or electron) field (eqs 2.13-2.16). Although we
too will use eq 2.14 in our numerical examples, we note that
this is an approximation that will break down when electronic
surfaces approach one another, for example, in curve crossing,
and more generally whenever the duration of the probe X-ray
or electron pulse is comparable to the period associated with
the energy difference between two electronic states.
Finally, we consider the implications of using the IAM in

time-dependent diffraction studies. The dynamics of atoms and
molecules, particularly in chemical reactions, involve the
dynamics of both the nuclei and of the electrons. As seen from
eq 2.6, in principle, both are reflected in ultrafast X-ray and
electron diffraction. If we consider, for example, the cleavage
of a diatomic bond, then the electronic density deforms from a
peanutlike shape (where the valence electrons are partially
localized between the two atoms) to two clouds that are localized
about the two separated atoms. The IAM does not allow for
such deformations of electronic densities, and hence, the time
dependence is associated only with the nuclear motion: the
localized electronic cloud is assumed to remain spherical and
nonoverlapping, instantaneously adjusting itself to the changing
nuclear positions. Thus, the IAM time dependence of the X-ray
diffraction pattern does not reflect bonding changes in valence
electrons. Although in the future it may be possible to
experimentally measure such electron dynamics, it will be a
more difficult task than measuring the nuclear dynamics where
the required spatial resolution is lower and where the information
is carried by the scattering from all the electrons instead of just
by the valence electron scattering. The diffraction pattern is
dominated by the nearly spherical core electronic clouds, and
under usual circumstances one cannot separately discern the few
bonding electrons. Thus, the IAM approximation is usually
reasonable. There are, however, clear cases where the basic

I inst(s, t) ) ∑
i,j

〈øi(R, t)|Ĩ inst(s, t)i,j|øj(R, t)〉 )

∑
i,j

C*i(t)Cj(t)〈øi(R, t)|f*i(s)fj(s)|øj(R, t)〉 )

∑
i,j

C*i(t)Cj(t)∑
µ,ν

di
µ*(t) dj

ν(t)〈øi
µ(R)|f*i(s)fj(s)|øjν(R)〉 (2.12)

I(s, τ) )∫-∞

+∞
dtA(t, τ)I inst(s, t) (2.13)

I(s, τ) ≈∑
j

I j(s, τ) (2.14)

Ij(s, τ) )∫-∞

+∞
dtA(t, τ)nj(t)〈øj(R, t)|f*j(s)fj(s)|øj(R, t)〉 )

∫-∞

+∞
dtA(t, τ)nj(t)∑

µ

dj
µ*(t)∑

ν

dj
ν(t)〈øj

µ(R)|f*j(s)fj(s)|øjν(R)〉
(2.15)

gj(s) ) ∑
R)1

N

gj
R ) ∑

R)1

N 1

s2
(ZR - fj

R(s)) (2.16)
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IAM picture breaks down and a more detailed approach is
needed, for example to treat the time-dependent migration of
charge during a charge-transfer reaction.
B. Time-Dependent Diffraction from a Two-Electronic-

State Diatomic Molecule. As a more specific simple illustra-
tion of the general formulas derived in the previous subsection,
we discuss diffraction for the special case of an ultrafast
electronic excitation of a homonuclear diatomic molecule in the
gas phase. While we explicitly write out only the X-ray case,
the electron diffraction case can be easily written out in a parallel
manner. Two electronic states (the indices 1 and 2 refer to the
ground and excited states, respectively) are included in the
electronic expansion, and by transforming the two-atom homo-
nuclear system to a relative coordinate system,81 R ) RR -
Râ, the instantaneous scattering intensity is written as a sum of
four terms:

and the intensity integrated over the diffraction pulse as a sum
of two terms:

In writing eq 2.18, we have assumed that cross products of
scattering amplitudes from different electronic states average
to zero (cf. eqs 2.14 and 2.15). (Note also that here and in
what follows,R is a three-dimensional vector that denotes the
internuclear separation vector between the two atoms.) The
fractional populations,nj, of the different electronic states are
determined by the optical excitation. Prior to the application
of the optical pump pulse, only the ground state (j ) 1) is
populated and causes scattering. Once we excite part of the
ground-state population to the excited electronic state, the
scattering intensity is given by a weighted sum of ground- and
excited-state scattering intensities, with the weights given by
the fractional populations.
The scattering intensities that we compute in section III are

evaluated using eq 2.18. We reiterate that electronic cross-
scattering amplitudes exist in principle at the scattering intensity
level, eq 2.12, but can be assumed to average to zero when the
two electronic states are well separated in energy (see discussion
following eq 2.13).
The evaluation of the scattering intensity requires as an input

the three-dimensional time-dependent nuclear wave function,
cf. eq 2.18. We choose an initially isotropic gas-phase sample
as a simple illustration. Prior to the optical excitation we assume
that the ground state is spherically symmetric (i.e., all the
different M states of a given rotational level are equally
populated). Once we apply the optical pulse, this spherical
symmetry is broken as the optical pump pulse creates a “hole”
in the initial isotropic distribution. Furthermore, the ultrafast
excitation also creates a coherent superposition of rotational
levels in the excited-state vibrational manifold. (The amplitudes
of the vibrational states are determined by the detailed shape
of the pump pulse; see section III.A below.) For ease of
computation, we approximate the nuclear wave function,øj(R,
t), as a product of an angle-independent radial part,øj(R, t),

and an angular part,Yj(θ, æ, t). [The polar angleθ is the angle
between the internuclear vectorR and the lab frameZ axis,
and the azimuthal angleæ is the projection (with respect to the
Z axis) of the internuclear vector on the labXYplane.] In the
Appendix we provide analytical expressions for the rotational
part of the wave functions for both the ground and the excited
states, assuming a single-photon process for the latter (i.e., first-
order perturbation theory) and a two-photon process for the
former (i.e., second-order perturbation theory). It should be
noted that the two assumptions that we make (radial part is
independent of the angular part and computing the latter using
first- and second-order perturbation theory) are approximations
and in particular cycling between the ground and excited states
can result in angular distributions that are tighter than predicted
by first- and second-order perturbation theory.83 Since the
sample is of diatomic molecules, we limit our discussion to two
cases: a parallel transition,∆J ) (1, ∆Λ and ∆M ) 0,
(electronic transition dipole parallel to the internuclear axis) and
a perpendicular transition,∆J ) 0,(1,∆Λ ) (1, and∆M )
0 (dipole perpendicular to the internuclear axis.84) [J is the total
angular momentum,Λ the molecule fixed (in the diatomic case
electronic) component along the internuclear axis, andM the
component in the chosen space fixed direction.] Here we only
outline the various steps and discuss the final result.
First we write the three-dimensional nuclear wave function

as a product of a radial part and an angular part. The discussion
of the radial part is deferred to section III.A and here we only
note that the one-dimensional quantum computation gives both
the time-dependent radial part of the two electronic-state wave
function and the time-dependent ground- [n1(t)] and excited-
[n2(t) ) 1 - n1(t)] state fractional populations. The angular
part of the wave function (of both the ground and the excited
state) is written as a coherent sum over rotational eigenstates
whose amplitudes are computed using the Clebsch-Gordan
series and its inverse.85,86 (Note that whereas the excited-state
rotational wave packet is fully coherent, the ground-state
rotational wave packet is only partially coherent because the
optical excitation creates a hole in the initially isotropic
distribution.) Next, the three-dimensional Fourier transform,
eq 2.18, is reduced to a one-dimensional numerical integration
by expanding the cos(s‚R) in terms of products of even spherical
harmonics and spherical Bessel functions (cf. eqs A.13 and
A.16). Using the orthonormality of the rotational wave func-
tions and the Clebsch-Gordan series, the integrals over three
spherical harmonics [two from the rotational eigenfunctions and
one from the expansion of cos(s‚R)] are evaluated analytically
and written in terms of products of Clebsch-Gordan coef-
ficients.85,87 This procedure is applied for both the ground and
excited states. In analogy to optical pump-probe experiments,
this results in a scattering intensity that is a sum over even
products of spherical Bessel functions [jl(sR)] with Legendre
polynomials, Pl(ŝ‚ê), in the angle,γ, between the optical
polarization unit vector,ê, and the scattering vectors, cosγ )
ŝ‚ê. (ŝ is the unit scattering vector whose two lab frame polar
coordinate angles determine the scattering direction, see Figure
2):

where

I inst(s, t) ) 2∑
i,j)1

2

C*i(t)Cj(t)f*i(s)fj(s)〈øi(R, t)|1+

cos(s‚R)|øj(R, t)〉 (2.17)

I(s, τ) ) 2∫-∞

+∞
dtA(t, τ)n1(t)|f1(s)|2〈ø1(R, t)|1+

cos(s‚R)|ø1(R, t)〉

+ 2∫-∞

+∞
dtA(t, τ)n2(t)|f2(s)|2〈ø2(R, t)|1+

cos(s‚R)|ø2(R, t)〉 (2.18)

Ij(s, τ) ) 2∫-∞

+∞
dtA(t, τ)nj(t)|fj(s)|2[1+

∑
l)0

∞

(i)l4πx(2l + 1

4π )Pl(ŝ‚ê) ¥l(t) 〈øj(R, t)|j l(sR)|øj(R, t)〉]
(2.19)
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In eq 2.20,Yj(θ, æ, t) is the time-dependent angular wave
function of thejth electronic state (cf. eq A.3) andYl0(θ, æ) is
a J ) l, M ) 0 spherical harmonic function. Because of the
even symmetry in our problem (a homonuclear diatomic
molecule has an inversion symmetry which the dipole interaction
with the electric field does not alter), only evenl states contribute
to the sum in eq 2.19 whose upper bound, (2J + 2), is
determined by the Clebsch-Gordan theorem. In practice we
find that this sum converges quite rapidly. Physically, the
“classical-like” behavior of the rotational motion is the reason
for this fast convergence. (In the classical limit onlyl ) 0 and
2 states contribute to the sum in eq 2.20.) As noted in the
Appendix, and illustrated in Figure 2, the angleγ depends on
the details of the experimental arrangement, and just as in any
optical pump-probe experiment, two different experimental
arrangements, parallel (lower drawing in Figure 2) and perpen-
dicular (upper drawing in Figure 2), should be considered.57,70

In the parallel configuration, the optical polarization vectorê
is parallel to the incident X-ray or electron propagation wave
vectork0, and hence the laser and X-ray or electron beams must
be perpendicular in their propagation direction. In the perpen-
dicular arrangement the two beams may co-propagate so that
the optical polarization vector is perpendicular tok0. These
two arrangements give significantly different results (cf. eqs
A.12 and A.15) because the system is now symmetric only about
one axis that of the optical polarization.16,70 Hence, when the

propagation axis and the optical axis do not coincide, i.e., a
perpendicular arrangement, the scattering pattern loses its
cylindrical symmetry because the spatial distribution (of both
the ground and the excited states) is symmetric with respect to
the polarization vectorêbut it is not symmetric with respect to
rotation about the axis of the incident probe beam,k0.
Experimentally, in particular for the X-ray case, the perpen-
dicular arrangement is more amenable to short-time resolution,
because the optical and X-ray pulses can co-propagate in
synchrony in the sample. It also offers more information, as
the noncircular shape of the diffraction pattern will be used in
section IV to separate the diffraction signal of the excited state
from that of the ground state. Hence, in the next section we
only discuss the perpendicular arrangement.
If one considers a thermal ensemble of ground-state molecules

to which our excitation pulse is applied, then any initial ground
ro-vibrational eigenstate results in a particular coherent super-
position on the excited state. As argued above, the latter is
determined by the nature of the excitation pump pulse and by
the rotational selection rules. This implies that the diffraction
intensity should be computed, using eq 2.18, for each of these
initial states (and the resulting excited states). The total,
thermally averaged, diffraction intensity is then given by the
Boltzmann average of these diffraction intensities.47 (Note that
this average is performed on the level of intensities and not
amplitudes since the ground state is assumed to be thermal, i.e.,
in terms of its nuclear ro-vibrational density matrix the off-
diagonal elements average to zero.) The small spacing between
rotational levels combined with their (2J+ 1) degeneracy results
at room temperature in a rotational distribution that peaks for
bromine, for example, atJ ) 35.

III. Numerical Examples

Two simple examples of bound and dissociative motion in a
diatomic molecule are discussed in this section, using respec-
tively, I2 (where ultrafast diffraction has previously been
considered from a classical viewpoint by our group15,16and by
Williamson and Zewail70) and Br2. Special reference is given
to the breaking of symmetry in the system by the linearly
polarized optical pump pulse. This symmetry breaking is further
used in the next section where we show how to isolate the
excited-state dynamics from that of the ground state using the
symmetry of the electronic transition.
A. Technical Details. Our computation attempts to provide

a realistic quantum modeling of an optical pump-diffraction
probe experiment. We begin the simulation with all the
population on the ground electronic surface. This state is then
coupled to an excited electronic state via an external optical
field: a temporally Gaussian-shaped pulse with fwhm of 70 fs,
intensity of 2× 1011 W/cm2, and a wavelength of 400 nm
(25 000 cm-1) for Br2 and 520 nm (19 320 cm-1) for I2. The
radial part of the time-dependent Schro¨dinger equation is solved
numerically (for this two-electronic-state system) using the
Newton interpolating polynomial and Fourier techniques.88 This
computation provides the time-dependent vibrational part of the
nuclear wave function,øj(R, t), as well as the electronic-state
fractional populations,nj(t). [Note that, strictly speaking, the
exact population depletion is given by the product ofnj(t) and
a geometric factor which we compute in the Appendix.] The
angular part (which is also time-dependent) is evaluated
analytically using the appropriate selection rules (see previous
section and the Appendix). At each point in time, we then write
the nuclear wave function (for each electronic state) as a product
of a radial part and an angular part. The two-electronic-state
time-dependent diffraction pattern is computed using eqs 2.18-

Figure 2. Upper drawing: Schematic of the perpendicular experimental
arrangement simulated in the computations. The polarization vector
(ê) of the optical pulse (Z axis) and the propagation direction of the
incident (ko) X-ray or electron beam (Y axis) are perpendicular. X-ray
photons or electrons with the wave vectork scatter at angleR and
intersect the (XZ) plane of the detector at angleδ. The scattering vector
s is the difference between the incident and scattered wave vectors. In
the parallel arrangement (lower panel) the optical polarization vector
is parallel to the incident X-ray or electron propagation vector (along
theZ axis) and the area detector is placed in theXYplane.

¥l(t) )〈Yj(θ, æ, t)|Yl0(θ, æ)|Yj(θ, æ, t)〉 (2.20)
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2.20 for various (increasing) pump-probe delay times,τ. Probe
X-ray pulses with fwhm between 100 and 300 fs are used and
a wavelength of either 154 or 56.1 pm (corresponding to the
Cu and Ag KR lines, respectively). As discussed in the previous
section, only the perpendicular pump-probe arrangement is
considered and thus, as shown in the upper panel of Figure 2,
the optical laser pulse is polarized along the lab frameZ
direction, the incident X-ray beam propagates along theY
direction, and an area detector is placed in theXZ plane. In
the present computation, we use the same atomic form factor
for both the ground and the excited states, i.e.,f1(s) ) f2(s) (this
is a reasonable approximation for the heavy atoms discussed in
this paper), and the diffraction intensities are averaged over the
ground-state rotational distribution. For simplicity, we treat only
a single vibrational state in the initial ground electronic-state
distribution. Extension to an average over an initial vibrational
distribution is straightforward.
Before we discuss the results, we consider the role of rotation.

As discussed in detail in the previous section and else-
where,15,16,57,70 the pump laser pulse converts the isotropic
sample into an anisotropic mixture of two electronic states.
Immediately after a perpendicular (parallel) transition, the
excited-state internuclear axes are aligned predominantly per-
pendicular (parallel) to the polarization vector of the optical
field, whereas the ground state is depleted in this direction. The
exact amount that is depleted (excited) is determined by the
excitation probability multiplied by a geometric factor (1/3 for
a parallel transition and2/3 for a perpendicular one). At any
time t after the excitation, the angular distribution (of both the
ground and the excited states) is determined by the time
evolution of the coherent superposition of rotational levels in
the ground and excited electronic-state vibrational manifolds.
As both states are composed of different rotational levels that
have different rotational periods, this initial rotational coherence
decays on the picosecond time scale.70 (Under collisionless
conditions one can observe the relocalization of rotational
coherences and this relocalization does not vanish upon thermal
averaging.89) This delocalization of the rotational coherences
is expected to progressively reduce the observed changes in the
anisotropy of the diffraction pattern. In the present computation,
we average over 50 ground-state rotational levels (and all the
correspondingM levels) and still observe significant changes
in the diffraction pattern and in particular the effect of
anisotropy. This somewhat weak sensitivity to rotational motion
is due to a combination of two effects. First, the heavy masses
of the atoms implies a slow rotational period and hence we do
not expect to see a significant reduction in the anisotropy at
short times. This is even more so in the case of dissociative
motion where the excited-state explodes apart very rapidly,
freezing in the angular distribution. (A classical computation
shows that for excitation at 400 nm an excited-state bromine
molecule formed atJ ) 35 rotates by only 4° from its initial
configuration as the atoms separate. In our computation for
the bromine molecule, we therefore assume that the excited state
is frozen at its initial angular distribution determined by the
rotational selection rules. For the iodine molecule, we make
no such assumption and both the ground and excited states are
allowed to rotate.) The second effect is due to the ground state
(which in the example of dissociative motion is in practice the
only one that is appreciably rotating). As the effect of the
ground-state anisotropy is only second order in the field (see
the discussion in the previous section and the Appendix), it is
of somewhat less importance. We do note, however, that since
the radial part of the wave function is assumed to be angular
momentum independent (i.e., we ignore vibrational-rotational

coupling, for example theJ-dependent centrifugal term in the
internuclear potential) our computation underestimates the role
of rotational delocalization.
B. Results. 1. Br2. To be able to observe the detailed

atomic motions by which chemical reactions take place, one
needs a probe X-ray or electron pulse whose time duration is
similar and preferably shorter than that of the making and
breaking of chemical bonds. (An alternative would be to use
time-resolved detection.) Ideally one would therefore like to
be able to produce and measuree100 fs X-ray and electron
pulses. Since streak cameras for measuring X-ray or electron
pulse duration do not have this time resolution, the main
objective of the first example that we discuss is to provide a
nonconventional (yet hopefully feasible) procedure for measur-
ing the time profile of ultrafast probe X-ray or electron pulses.
We suggest the use of a fast chemical reaction as a clock.37-39,48

Our example “chemical clock” is the simplest chemical reaction,
the photodissociation of a homonuclear diatomic molecule: Br2

f Br + Br. In Figure 3 the potential energy curves84,90for the
two electronic states (along with an arrow that indicates the
electronic transition) are shown. An ultrafast optical pulse
pumps the ground X(1∑g

+)-state molecule into a steeply dis-
sociative1Π1u state. As a result, the dissociation of the diatomic
molecule is very rapid. For our specific choice of pulse duration
and intensity (70 fs fwhm and 2× 1011W/cm2), about 26% of
the ground-state population is pumped into the excited state, as
shown in the inset to Figure 3. To characterize the X-ray (or
similarly electron) pulse, we first compute the diffraction pattern
(for Cu KR 154 pm X-rays) as a function of time at a specific
angle (R, δ; see Figure 2) where the change in intensity is
predicted to be most pronounced. Hence, in the case of bromine,
where the electronic transition is perpendicular, we choose the
azimuthal angleδ to be in the direction perpendicular to the
optical polarization. The polar angleR is set to the first crest
in the ground-state molecular diffraction. In an ideal hypotheti-
cal experiment one would like to be able to record the diffraction
intensity [at a given (R, δ)] of only the ground, or excited, state.
As a function of time one would then observe a simple steplike
depletion, or rise, in the scattering intensity as the latter would
be proportional to the scattering population (see eq 2.15, for
example). In general, however, both states will contribute to
the time-dependent diffraction intensity. Thus, to still be able
to use the photodissociation reaction as a “chemical clock”, the
diffraction intensity with contributions from both states should
still exhibit pronounced changes in intensity (as a function of
time) that can be detected in an experiment with a reasonable

Figure 3. The ground,X(1Σg
+), and excited,B(1Π1u), electronic state

potentials of the bromine molecule (as a function of internuclear
distance) used in the computations. The arrow illustrates the electronic
excitation (25 000 cm-1), and the inset shows the excited-state fractional
population as a function of time in fs, for a transform-limited Gaussian-
shaped pulse of 70 fs fwhm duration. The steep excited-state potential
curve results in very rapid dissociation.

8750 J. Phys. Chem. A, Vol. 101, No. 47, 1997 Ben-Nun et al.



signal-to-noise ratio. An easily readable “chemical clock”
requires that the time profile of the diffraction intensity be
governed by the duration of the probe pulse (in other words,
we would like the X-ray or electron pulse duration to be long
with respect to the optical pump duration and the time scale of
the observed molecular dynamics). In the upper panel of Figure
4, we compute the difference in diffraction intensity as a function
of time using three X-ray probe pulses with varying time
duration (100, 200, and 300 fs). [In this figure and all the other
diffraction intensity (and differences thereof) figures, the
intensity is computed using eq 2.18 and the changes in intensity
as a function of time are predominantly due to the excited-state
dynamics.] This figure confirms our suggestion that a simple
chemical reaction can be used as a tool to measure the duration
of the probe X-ray pulse: although both states scatter, the
intensity does change rapidly as a function of time and the time
profile of the change is governed by the probe pulse and not
by the photodissociation dynamics. To better illustrate this point
we also show the time derivative of the change in intensity,
lower panel of Figure 4, which approximately, but quite well,
measures the X-ray pulse envelope. As shown in eq 2.16, this
time profile convolutes in it both the time dependence of the
probe X-ray pulse,A(t, τ), and the time dependence of the
nuclear dynamics,I inst(s, t). If the latter is known theoretically,
one can deconvolute this time profile to recover more accurately

the time profile of the probe X-ray pulse. The distinct
oscillations in intensity (upper panel of Figure 4), observed only
with the shorter probe pulse, are due to the dissociative dynamics
on the excited electronic state. Again they could be removed
from the lower panel curve by a more accurate deconvolution
procedure. Their qualitative features can be reproduced by
invoking an Ehrenfest type of approximation for the scattering
intensity, i.e., by replacing the expectation value of the scattering
intensity by the scattering intensity at the average position of
the wave packet.
In this initial example, a fast chemical reaction has been

chosen so that the time resolution is predominantly determined
by the probe X-ray pulse. Once the probe X-ray pulse is
characterized, one would prefer to shift the emphasis to
measuring molecular dynamics rather than pulse duration. Thus,
it is worthwhile to compute the diffraction intensity as a function
of time and see if we can discern observable changes that can
be detected using X-ray pulses with nonzero duration. Hence,
in Figure 5 we show a series of Cu KR diffraction patterns at
various pump-probe delay times. (Note that because we are
probing a dissociative motion (leading to large spacing between
the two bromine atoms) we observe changes as a function of
time at small diffraction angles. At larger scattering angles,R
> 20°, the changes occur at very early times after which the
intensity is basically constant; cf. Figure 4.
In the uppermost panel of Figure 5, we show the computed

initial diffraction pattern of ground-state molecular bromine.
(This is the total scattering intensity and not only the “molecular”
part.) For the initially isotropically distributed molecules, the
pattern is cylindrically symmetric. As argued above and shown
in Figure 4, once the molecule interacts with the optical pump
field, one expects to see changes in this pattern. The other
panels in Figure 5 show a series of diffraction patterns at
increasing pump-probe time delays. Even though these pat-
terns have been evaluated using a Cu KR (154 nm) 200 fs X-ray
probe pulse, and thermally averaged over the ground-state
rotational distribution, at certain small diffraction angles the
changes in intensity are substantial. (Experimentally this result
is encouraging since the intensity decreases very rapidly with
the scattering angle and thus the signal is higher at small angles.)
The magnitude of these changes is determined by three
factors: (i) the amount of excited-state fractional population,
(ii) the radial part of the nuclear wave function, and (iii) the
angular part. The more population that is excited, the larger
the changes. The effect of the radial wave function is twofold:
the larger the difference between the ground- and excited-state
internuclear distributions the more pronounced are the differ-
ences in the diffraction pattern. (A dissociative excited state
therefore serves as a very favorable example.) The width of
the radial wave function also affects the diffraction pattern: the
more localized the wave function, the sharper the observed
pattern. (In the present example the ultrafast excitation into
the 1Π1u state establishes a localized nonstationary vibrational
state whose subsequent evolution can be well approximated at
the short times treated here by an ensemble of classical
trajectories.) The role of the angular part is discussed in detail
in the Appendix.
2. I2. To check the effects on the diffraction pattern of radial

delocalization and of the similarity between ground- and excited-
state radial wave functions, it is useful to look at a bound motion
in a diatomic molecule where at certain points in time the
ground- and excited-state internuclear distributions may be
similar and in addition the latter may at different times show
considerable delocalization (due to the nature of the optical
excitation and the potential surfaces). Since molecular iodine

Figure 4. Upper panel: the variation in diffraction intensity as a
function of delay timeτ (in fs) for molecular bromine at an angle ofR
) 30° andδ ) 90° using three Gaussian-shaped X-ray probe pulses of
different fwhm time duration: 100 (full thick line), 200 (full thin line),
and 300 (dashed line). (In all three cases, the duration (fwhm) of the
optical pump pulse is 70 fs.) The polar angle,R, corresponds to the
first crest in the ground-state molecular diffraction, and the azimuthal
angle,δ, is chosen perpendicular to the polarization direction of the
optical light. In this figure (and in all the other scattering figures and
differences thereof), both the ground and the excited states contribute
to the diffraction intensity (see eq 2.18) and the changes in intensity
(or differences thereof) as a function of time are predominantly due to
the excited-state dynamics. Because the photodissociation dynamics is
very rapid, the time profile of the change is governed by the duration
of the probe X-ray pulse, thereby suggesting that a fast chemical reaction
can be used as a tool to measure the duration of the probe X-ray or
electron pulse. Lower panel: the time derivative of the variation in
diffraction intensity shown in the upper panel, which measures the X-ray
pulse envelope. The oscillations shown for the 100 fs pulse could be
eliminated by a more sophisticated treatment.
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has been the subject of numerous pump-probe experimental
and theoretical studies,15,16,70,91-95 and its relevant potential
energy surfaces are well-known,84,96we use it as an example.
An iodine molecule is excited from the groundX state into the
bound region of the excitedB (Ou

+) state and the system is
probed via either X-ray (Figure 7) or electron (Figure 8)
diffraction at two delay times, 215 and 435 fs after the optical
excitation. (The duration of the probe X-ray and electron pulses
is 100 fs.) Snapshots of the ground- and excited-state wave
functions at these two delay times (as well as the relevant
potential energy surfaces) are shown in Figure 6. At 215 fs

the ground- and excited-state wave functions are localized at
very different internuclear distances, and indeed, if we look at
a difference (τ ) 215 fs minusτ ) -∞) scattering intensity
plot (upper panels in Figures 7 and 8), we see that the differences
are significant (the highest and lowest difference contours are
drawn at 0.04 and-0.04, respectively, compared to the highest
X-ray diffraction intensity at forward scattering of 1.) On the
other hand, atτ ) 435 fs, when the ground and excited states
are at more similar internuclear distances and in addition the
excited state is delocalized (see Figure 6), the difference (τ )
435 fs minusτ ) -∞) in the X-ray and electron scattering
intensity is less pronounced (lower panels of Figures 7 and 8).
Comparing Figures 7 and 8, note how similar the X-ray and
electron difference results are, illustrating the fundamental
theoretical similarity of X-ray and electron diffraction. For both,
the changes in the diffraction intensity are greater along the
direction of the optical polarization (theZ axis), as expected
for a parallel transition. (We do note, however, that the two
figures would be less similar had electronically inelastic
scattering been included in the calculation, a point that needs
to be treated more deeply for time-dependent diffraction than
we have done here.)
The initial coherent vibrational motion (and subsequent

delocalization) of ultrafast pumped iodine has been extensively
studied using ultrafast optical spectroscopy.92,94,95 In a typical
ultrafast optical experiment, the excited-state dynamics are
probed by monitoring the laser-induced fluorescence from a third
electronic state into which the excitedB state molecule is
promoted by the probe pulse. Although the most common (and
intuitive) observable that one would like to derive when
discussing coherent vibrational motion is the expectation value
of the position on the excited electronic state, none of these
time domain experiments (and their frequency domain ana-
logues) probe this observable directly. On the other hand,
inversek (momentum) space (the domain of diffraction experi-
ments) and realr (coordinate) space are directly related by a
Fourier transform. In Figure 9, we plot the difference in the
X-ray diffraction intensity (at the fixed scattering angle for
which, on the basis of Figure 7, we expect to see large changes)
as a function of time (dashed line and right axis), as well as the
expectation value of the position on the excited electronic state
(full line and left axis),〈R(τ)〉, from the quantum dynamics.
The coherent motion of the excited state and its subsequent
delocalization is reflected in the single-angle time-dependent
diffraction intensity in a manner almost identical with〈R(τ)〉.

Figure 5. Two-dimensional polar contour plots (arbitrary units) of
X-ray scattering intensities of molecular bromine at a series of
increasing pump-probe time delays,τ, measured between the centers
of the 70 fs optical pump and the 200 fs Cu KR (154 pm) X-ray probe
pulses. The pump and probe pulses co-propagate, i.e., a perpendicular
pump-probe arrangement (see Figure 2). Here, and in all subsequent
scattering (and differences thereof) figures the horizontal axis isX and
the vertical isZ, as in Figure 2. The results are averaged over the
ground-state rotational distribution, and the contours are equally spaced.
The distance from the origin to any point on the graph is the scattering
angleR (a circle inscribed within the bounding box would be at a
scattering angle of 20°), and the angle between this line and the vertical
Z axis is the azimuthal angleδ (0e δ e 2π). The changes in intensity
as a function of time are mainly due to the time evolution of the excited
state and because we are probing a dissociative motion (large
internuclear distances) the changes are concentrated at small diffraction
angles. The most pronounced features in these diffraction patterns are
the collapse of the scattering intensity toward smaller diffraction angles
and the anisotropy in the azimuthal angle induced by the interaction
with the polarized pump pulse. Note that, because the molecular
electronic transition dipole is perpendicular to the internuclear axis (a
perpendicular transition), the changes in intensity are most pronounced
in the direction perpendicular to the optical polarization direction.

Figure 6. The ground,X, and excited,B, electronic-state potentials of
I2 as a function of internuclear distance (in pm). An ultrafast pump
pulse with a carrier frequency of 19 230 cm-1 excites the ground,X,
state molecule into the bound region of the excitedB state. About 15%
of the population (not shown) is excited. Superimposed on the potentials
are the ground-state wave function (before the excitation) and two
“snapshots” of the excited-state wave function (215 and 435 fs after
the electronic excitation).
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(Note again that the diffraction intensity used to produce this
figure is computed for a sample that consists ofboth ground-
and excited-state molecules, using eq 2.18.) This figure
demonstrates that ultrafast diffraction experiments can be used
as direct, real-time, probes of nuclear dynamics. In the next
section we will continue this discussion by showing the inversion
of the time-dependent data fromk space to real space.

We now return to the role of rotation. In these two examples
(and in particular in the bromine case), the excited state does
not appreciably rotate and the ground state is rotating slowly
compared to the time periods illustrated in Figures 3-9. (Care
should be taken when discussing Figure 9 whose time scale is
somewhat longer; see below.) Thus, the effect of the rotational
dynamics is somewhat diminished. We reiterate that this is not
a general result, and we do expect the rotation to play a more
significant role in other reactions. Furthermore, we point out
that our neglect of the coupling between vibration and rotation
underestimates the role of rotation in delocalization and thus
expect the loss of vibrational coherence to be actually somewhat

faster than what is shown in Figure 9. (Other figures will also
be affected, but to a much lesser extent because of their shorter
time scale.)

IV. Inversion

The inversion of the data from the momentum,k, domain
into the coordinate,r , domain is discussed in this section. Our
ultimate goal for optical pump-diffraction probe experiments
is to provide real-time information about the nuclear (and

Figure 7. Three-dimensional polar contour plots for molecular iodine
at two pump-probe delay times of the X-ray scattering intensity at
that delay time minus the intensity for the unpumped ground state.
(The excited-state wave functions at these two time points are shown
in Figure 6, and the duration of the probe X-ray pulse is 100 fs, fwhm.)
The solid (dashed) contours are equally spaced (0.01 apart) between
0.01 (-0.01) and 0.04 (-0.04) with the highest (absolute) value being
the innermost one. The scattering vectors for a circle bounded by the
box of the figure is 4.0 Å-1 for both panels. (The magnitude of the
scattering intensity at forward scattering does not depend on time and
for undifferentiated data equals 1.) As expected for a parallel transition,
the intensities in these difference plots are greater along the optical
polarization direction (Z axis). Their magnitude reflects the width of
the ground- and excited-state wave functions and the extent of their
overlap in space. When the ground and excited states are at different
internuclear distances, and both are localized (upper panel), see Figure
6, the differences in intensity are most significant (the highest and lowest
values in the upper panel are 0.04 and-0.04, respectively). When they
are at similar distances, lower panel, and furthermore the excited-state
wave function is delocalized (see Figure 6), the differences are less
pronounced (the highest and lowest values in the lower panel are 0.02
and-0.02, respectively).

Figure 8. As in Figure 7 but for electron diffraction substituting the
electron scattering amplitude,gj(s), [from eq 2.10], for the X-ray
scattering amplitude,fj(s), in eq 2.18. The vertical and horizontal scales
in these two plots are the same as in Figure 7, and the contours (both
dashed and solid) are drawn at the same values as in Figure 7. Note
that these difference plots for electron diffraction are very similar to
those for X-ray diffraction, Figure 7, reflecting the similarity of their
theoretical foundations.

Figure 9. Normalized difference diffraction intensity atR ) 24°, δ )
0° (right axis and dashed line) compared to the quantum expectation
value of the internuclear distance (left axis and solid line) on the excited
electronic state as a function of delay timeτ for molecular iodine. (In
this figure, the difference in diffraction intensity is defined as the
intensity at timeτ minus the intensity before the optical excitation, the
result being divided by this last value.) The probe X-ray pulse duration
is 100 fs, fwhm. That the difference in diffraction intensity at just a
single angle reflects so clearly the initial coherent vibrational motion
and subsequent vibrational delocalization shows the direct and close
relationship between time-resolved diffraction experiments and nuclear
dynamics.
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hopefully one day also electronic) dynamics during the course
of chemical reactions. In addition, the|Ψ(R, t)|2 measurements
may be used to compute the potential energy surface on which
the atoms are evolving. In a classical mechanical study,
Williamson and Zewail have analyzed theoretical transient
electron diffraction patterns, giving special attention to the
spatial anisotropy induced in the sample by the optical pump
pulse70 and have also fitted their experimental data by assuming
that a certain fraction of the molecules in the sample was
photoexcited.58,59 Ewbank et al.56 have also discussed the
inversion of scattering intensities to real space and the computa-
tion of the potential energy surface for the case of a diatomic
molecule and gas-phase electron diffraction. Their elegant
formalism relates the time-dependent intensities to intramo-
lecular potential energy surface parameters and to other
parameters taken from spectroscopic investigations, yet it
addresses only one electronic surface at a time and it does not
simulate the optical excitation stage. (Only least-squares data
analysis was used to model experimental data with more than
one electronic state.) Our purpose is therefore to complete the
quantum modeling of an optical pump-diffraction probe
experiment by showing that diffraction intensities from non-
stationary samples composed of more than one electronic state
can be inverted to recover internuclear distributions and that
excited-state dynamics can be isolated using the symmetry of
the electronic dipole transition. A hard X-ray wavelength of
56.1 pm (Ag KR) and a pulse duration of 100 fs (fwhm) are
used in all the computations presented in this section (i.e.,
Figures 10-13).
As is clear from the two-dimensional polar plots of the

scattering intensities (Figures 5, 7, and 8), there is both radial
and angular information in these gas-phase diffraction intensities.
The procedure that we suggest for extracting the radial and
angular information from the gas-phase diffraction intensities
is motivated by the specific method that we have used to
evaluate the nuclear wave function and the diffraction inten-
sity: the wave function was written as a product of an angle-
independent radial part and an angular part (which was
computed using first- and second-order perturbation theory) and
the diffraction intensity as a sum over even products of spherical
Bessel functions and Legendre polynomials in the angle between
the optical polarization vector and the scattering vector. (In
the strong field limit, this approximate procedure for evaluating
the nuclear wave function is likely to be less quantitative and
a more accurate procedure will have to be used. In such a case,
the procedure for inverting the diffraction intensities from the
momentum domain to the coordinate domain will have to be
modified accordingly.) Our analysis of the diffraction intensities
begins with a discussion of the radial information which is then
generalized to include the angular information. Before doing
so we would like to point out that if the molecular wave function
and the diffraction intensity were given in terms of a three-
dimensional Cartesian coordinate system, as is likely to be the
case for polyatomic systems, we would not try to separate the
radial and angular parts but rather invert the diffraction intensity
using a three-dimensional Fast Fourier Transform (FFT).
In a stationary isotropic gas-phase sample, the diffraction

intensity does not depend on the azimuthal scattering angle and
it is given by a sum of two terms: an atomic term (which does
not carry any structural information and is given by the sum,
over all atoms in the molecules, of the absolute value squared
of the atomic structure factors) and a term that is proportional
to the zero-order Bessel function,j0(sR) ) sin(sR)/sR, (l ) 0
term in eq 2.19). The analysis of such an isotropic gas-phase
diffraction signal therefore can be done by an inverse sine

transform. (To reveal the fine features of the scattering signal,
it is customary to first remove the atomic scattering intensity
and then analyze the remaining molecular part.) As discussed
in the previous section (and in more detail in the Appendix)
the diffraction intensity of an anisotropic gas-phase sample can
be written as a sum of Bessel functions [j l(sR) in eq 2.19] that
includes alll g 0 terms with their proper weights,Pl(ŝ‚ê). In
this sum, thel ) 0 term is referred to as the isotropic term,
because its weight does not depend on the azimuthal,δ, angle
[P0(ŝ‚ê) ) 1]. In a perpendicular arrangement, the weights of
all the otherl > 0 terms depend on both the scattering,R, and
azimuthal,δ, angles (cf. eq A.19), and hence they are referred
to as the anisotropic part of the diffraction intensity. (In a
parallel arrangement, these weights depend only on the scattering
angle,R; cf. eq A.18.) To recover the radial part of the wave
function, we need to isolate the isotropic term from all the other
terms and then analyze it as for an isotropic sample, i.e., via an
inversej0(sR) transform. If the weights of all thel > 0 would
not depend on the scattering angle, then an inverse transform
of the total intensity would in fact isolate the isotropic term
because of the orthonormality of the Bessel functions. However,
since the weight of each of thel > 0 terms does depend on the
scattering angle (i.e., ons), an inversej0(sR) transform cannot
isolate the isotropic part and as will be shown below it can
actually incorporates into it much of the anisotropic part. Thus,
to isolate the isotropic part of the diffraction intensity, a more
elaborate procedure is required.

To illustrate the procedure that we use, we consider first a
simple case where only thel ) 0 andl ) 2 terms are included
in the expression for the diffraction intensity, eq 2.19. (This is
the classical limit of eq 2.19.) In such a case, both the isotropic
and anisotropic parts consist of one term whose weight is known
at each scattering direction: it equals 1 for the isotropic part
andP2(cosγ) ≡ P2[cos(R/2) cosδ] for the anisotropic part. If
we now consider the diffraction intensity at two different
azimuthal angles,δ, but at the same scattering angle,R, then
we have a set of two linear equations with two unknowns: the
isotropic part and the anisotropic part. (Note that both electronic
states, ground and excited, contribute to each of these two terms,
isotropic and anisotropic.) By solving this set of equations for
the two parts (isotropic and anisotropic) at each scattering angle,
R, we can determine both the isotropic part and the anisotropic
part. (Again, we emphasize that this procedure does not isolate
the ground-state scattering from that of the excited state. What
it does is separate the isotropic and anisotropic contributions to
the diffraction signal, each of which is composed of both
ground- and excited-state terms.) Once we have isolated the
isotropic part we can recover the radial part of the wave function
by computing its inversej0(sR) transform. Again, as is
commonly done in the analysis of isotropic gas-phase diffraction
signals, the atomic scattering intensity is removed from the
isotropic part of the diffraction intensity before the inverse
transform is performed. If, as is in general the case, more than
two terms are included in eq 2.19, then at each scattering angle,
R, a set ofN linear equations should be solved, atN different
azimuthal angles, to isolate the isotopic part of the diffraction
signal. (N is the number of terms that in general will be included
in the expression for the total scattering intensity, eq 2.19.) This
result implies, as expected, that the higher the resolution that
we require (i.e., the more terms we assume contribute to the
diffraction signal) the more data (diffraction intensities at
different azimuthal angles) we need. In practice, the “classical-
like” behavior of the rotational degrees of freedom may allow
the isolation of the isotropic part of the diffraction intensity using
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the classical limit of eq 2.19. (In this limit, only two terms,l
) 0 andl ) 2 contribute to the diffraction intensity.)
This procedure for separating the isotropic part of the

diffraction intensity from the total diffraction intensity was
applied to both bromine and iodine. Once the isotropic part
was isolated, the atomic part was subtracted from it and an
inverse j0(sR) transform was performed on the remaining
isotropic molecular part. The result of this procedure is the
radial probability density. In Figures 10 and 11, this probability
density is compared to the original (radial part of the) quantum
mechanical probability density which was used as an input for
the computation of the diffraction intensities (eq 2.19, for
bromine and iodine, respectively). In both figures, the densities
are plotted as a function of internuclear distance (in pm) and
time (in fs). (Note that only the electronically incoherent part
of the input radial density,n1(t)|ø1(R,t)|2 + n2(t)|ø2(R,t)|2, is
plotted in the upper panels of Figures 10 and 11. This is
because, as argued in section III for two well-separated
electronic states, the electronically coherent part of the density,

C*i(t)Cj(t)ø*i(R,t)øj(R,t), i * j ) 1, 2, is expected to average to
zero upon integration over the time envelope of the diffraction
probe pulse.) The agreement between the input quantum
dynamics (upper panel in both figures) and the output inversion
from diffraction (lower panel in both figures) is very good. The
constant feature that appears at short internuclear distances is
due to the ground state (in both figures) and in addition there
is a time-dependent feature which in Figure 10 is due to the
dissociating excited state and in Figure 11 is due to the bound
vibrational motion of the excited state. In the case of bromine,
Figure 10, we truncate the top of the vertical range of the density
on the plot because the ground state is very localized (compared
to the excited state) and thus its magnitude is so much larger
than that of the dissociating excited state that it would make
the latter almost invisible if shown fully on the same scale. Thus,
whereas in Figure 11 (where we show the full range of the
density) we see both the decrease in the ground-state density
(due to the electronic excitation) and the periodic increase in
the magnitude of the features at short distances that occurs
whenever the ground and excited states are at similar inter-
nuclear distances, because of truncation it is not possible to see
the decrease in intensity in Figure 10.
We next consider the angular part of the probability density.

Given eq 2.19 for the scattering intensity at each scattering angle
(R andδ), one can in principle construct numerically the inverse
transform that will recover the density as a function of
internuclear distance,R, and polar angle,θ. (Note again that
this numerical construction of the inverse transform would not
be required if the nuclear wave function and the diffraction
intensity were given in terms of a three-dimensional Cartesian

Figure 10. Combined ground- and excited-state densities as a function
of internuclear distance and time for molecular bromine. Upper panel:
the time-dependent radial part of the electronically incoherent density
n1(t)|ø1(R, t)|2 + n(t)2|ø2(R, t)|2 that is computed numerically and used
as aninput for the computation of the diffraction intensity. Lower
panel: the radial distribution function computed by inversion of the
time-dependent diffraction intensity (see text for more details on the
inversion). In this and all subsequent figures, a hard X-ray wavelength
of 56.1 pm (Ag KR) and an X-ray pulse duration of 100 fs (fwhm)
was used in order to achieve this good agreement between the “input”
and “output”. The constant feature at a short internuclear distance is
due to the ground state whereas the time-dependent feature is due to
the excited state. Because, compared to the dissociating excited state,
the ground state is very localized, its peak magnitude is much larger
compared to the dissociating excited state (even though we excite about
26% to the excited state; see inset in Figure 3). Therefore, we truncate
the full magnitude of the density, and the decrease in the ground-state
density due to the optical excitation is not seen. (In Figure 11 we show
the full magnitude of the density and there this decrease is observed.)

Figure 11. Same as Figure 10, but for molecular iodine. Here we show
the full magnitude of the density and therefore the decrease in the
ground-state probability due to the optical excitation is very clear. Note
the periodic bound vibrational motion of the excited state and the
resulting periodic increase in probability at short internuclear distances
that occurs whenever the ground and excited states are at similar
internuclear distances. Because the excited state is composed of a
coherent superposition of high vibrational states (centered aboutν )
35), at long times it develops a fine structure (see the upper panel density
at long (>1000 fs) delay times) which cannot be resolved with the
56.1 pm (Ag KR) X-ray wavelength used in this computation.
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coordinate system, in which case a three-dimensional FFT would
be used to invert the data.) This inverse transform is much
more complicated than the simple inverse (l ) 0) sine transform
that is used in the analysis of isotropic gas-phase diffraction
intensities because it includes higher (l > 0) Bessel functions
and because these Bessel functions are weighted by Legendre
polynomials [Pl(ŝ‚ê)] that depend on the scattering angleR.
However, it is important to note that this transform does exist
and therefore, in principle, one can recover the density as a
function of internuclear density and polar angleθ. [Because
of the symmetry of our system, the distribution ofR is
independent ofæ, so that we need only to recoverF(R, θ) from
the two-dimensional diffraction intensity.] Since the numerical
transformation described above is so complicated, we try to
recover the angular information by a much simpler procedure:
a simple inversej0(sR) transform of the scattering intensity at
each azimuthal angleδ. (Note that the angular dependence of
the diffraction intensity on the azimuthal angleδ is similar to
the angular dependence of the wave function on the polar angle
θ; i.e.,δ f θ.) As argued above, although the Bessel functions
are orthonormal, an inversej0(sR) transform doesnot isolate
the isotropic part of the diffraction intensity because the weights
of all l > 0 Bessel functions that contribute to the total
diffraction intensity depend on the scattering angle. Thus, an
inversej0(sR) transform will reflect both the isotropic and the
anisotropic parts of the diffraction intensity (although not in an
exact way). For not too long pump-probe delay times, the
initial alignment will be retained and thus, in a polar representa-
tion, we expect to see the excited-state internuclear axes aligned
preferentially along the electric vector direction of the light,
for this parallel transition, whereas the opposite is true for the
ground state, which is expected to be depleted in this direction.
In Figure 12, we show polar representations of the two-
dimensional probability density,F(R, θ), at a series of increasing
pump-probe delay times for molecular iodine. In these polar
plots, the distance from the origin to a point on the graph is the
internuclear distance (in pm) and the angle between this distance
and the vertical axis is the polar angleθ. Three of the panels
show the result of the inversion procedure (at three points in
time during the first vibrational period on the excited electronic
state), and in the third panel (from the top) we show, for
comparison, the input density at one point in time. Although
we have used an approximate procedure for the inversion, the
agreement between the input and the output is quite good. The
time-dependent features in these polar plots are mainly due to
the bound vibrational motion on the excited electronic state,
which is preferentially aligned along verticalZ axis. The ground
state is depleted in this direction and is aligned predominantly
(although not completely because only∼15% of the ground-
state population is excited) along theX axis. After 245 fs from
the electronic excitation (two middle panels), the excited
electronic state is at an outer turning point and it is thus more
localized than at 80 fs (upper panel). At 495 fs (lower panel),
the ground- and excited-state densities are at very similar
distances and therefore we see basically a single feature with
only traces of angular asymmetry. (The dashed contour line is
drawn at a value that is 45 times lower than the highest one,
which is the innermost contour.)
Finally, we discuss how to use the difference in the ground-

and excited-state dynamics and symmetry of the electronic
dipole transition in order to isolate the excited-state dynamics
from the ground-state dynamics. From Figure 12 it is clear
that at early times the excited-state density is aligned along the
polarization directionZ, whereas there is practically no density
in the direction perpendicular to it.70 This implies that if we

take the difference between the density along the parallel and
perpendicular directions (after properly normalizing them ac-
cording to the peak that appears in both directions and therefore
can be assumed to be due to the ground state), we should recover
the excited state alone. As an example, this procedure is applied
to the diffraction intensity of iodine 245 fs after the optical
excitation. In the upper panel of Figure 13, we plot a slice of
Figure 12 (second panel from top) along theZ direction where
we see both the ground and the excited states. In the middle
panel of Figure 13, we plot another slice of Figure 12 but this

Figure 12. A polar representation of the I2 probability density,F(R,
θ), computed by inversion of the time-dependent diffraction intensity,
at a series of increasing pump-probe delay times. (The three
“snapshots” that we show are during the first vibrational period on the
excited electronic state.) The distance from the origin to a point on the
graph is the I-I internuclear distance, and the angle between this
distance and the verticalZ axis is the polar angleθ. The full contours
are drawn at values of 0.1, 0.2, 0.3, 0.8, and 0.9, and the dashed ones
are at 0.075 (uppermost panel) and 0.02 (lowermost panel). The time-
dependent features that are due to the excited-state bound vibrational
dynamics are aligned predominantly along theZ axis (as expected for
a parallel transition) and the ground state (features at internuclear
distances of∼266 pm) is depleted in this direction. Note that because
the transition probability is not unity (but rather∼15%), after the
excitation the ground state is preferentially aligned perpendicular to
the optical polarization direction but it is not completely depleted along
the direction of the electronic excitation and that when the ground and
excited states are at similar internuclear distances (lowest panel) we
see a single feature that is almost isotropic. For comparison, in the
third panel from the top, we also show (at one point in time) the three-
dimensional input density (incoherently averaged over the initialJ, M
distribution) used as an input for the computation of the diffraction
intensity.

8756 J. Phys. Chem. A, Vol. 101, No. 47, 1997 Ben-Nun et al.



time along the perpendicularX direction where there are
practically no traces of the excited state at short times (at longer
times after the pump pulse we do expect to see again a mixture
of both states due to rotational delocalization). Once we subtract
the two results (after normalizing them so that the peak that
appears in both panels has the same area), we isolate the ground
state, shown in the lower panel of Figure 13. We have applied
this procedure, using the symmetry of the electric dipole
transition, for both iodine and bromine at various pump-probe
delay times and our experience is that in the weak field limit it
is a quite robust way to separate the short-time excited-state
dynamics from those of the ground state. [Of course, it will
not be always possible toseparatethe two states because when
the ground and excited states are at very similar internuclear
distances we will see only a single peak in the distribution in
both directions (parallel and perpendicular, cf. Figure 12) and
thus will only be able to conclude that the ground and excited
states are at similar internuclear distances.] Since, even for
polyatomic molecules there still exists a molecule-fixed elec-
tronic transition dipole, it will be interesting to try and extend
this procedure to more complex molecules.

V. Concluding Remarks

In this paper we have discussed a natural development of
stationary X-ray and electron diffraction experiments: time-
dependent measurements of nonstationary transient structures.
The experimental scheme that has been proposed to enable the
direct measurement of evolving structures is ultrafast X-ray and
electron diffraction. In such experiments, the sample and the
pump and probe pulses are all time-dependent and the general
theory presented in section III.A accounts for these features.
Unlike previous theoretical derivations of optical pump-
diffraction probe experiments, our formalism treats both the
electronic and nuclear degrees of freedom quantum mechani-
cally, and it models the ultrafast optical pump process, the
subsequent quantum dynamics of the sample, and the ultrafast
diffraction probe process. With electronic excitation by the
pump pulse, more than one electronic state will usually
contribute to the measured diffraction intensity, and interferences
between ro-vibrational states involving different electronic states
and ro-vibrational interferences within a given electronic state
appeared explicitly in the expression for the instantaneous X-ray
and electron scattering intensity (cf. eq 2.12 or 2.17). Since
the duration of currently available X-ray or electron pulses is
still long when compared to the period of the frequency
associated with the energy difference between two well-
separated electronic states, we assumed that interference between
different electronic states averages to zero (upon time integration
over the envelope of the field intensity) so that the time-
integrated scattering intensity is given by a sum of the individual
electronic-state scattering intensities, weighted by the appropriate
fractional populations (eqs 2.14 and 2.15). This result has been
assumed in all previous gas-phase electron diffraction studies,
and although we have used it in the present computations, we
would like to emphasize that this is an approximation that will
break down when electronic surfaces approach one another, for
example, in curve crossing, and more generally whenever the
duration of the probe X-ray or electron pulse is comparable to
the period associated with the energy difference between two
electronic states. In addition, the common assumption we have
made here that the observed scattering is inelastic with respect
to the nuclear degrees of freedom and elastic with respect to
the electronic degrees of freedom is a simplification which needs
to be considered more deeply, with respect to electron diffraction
versus X-ray diffraction in general, and to time-dependent
phenomena in particular.
Two numerical examples were discussed in section III: the

dissociative and bound gas-phase dynamics for diatomic mol-
ecules. (The parallel case for a crystal, involving electronic
excitation and phonon nuclear dynamics could also be carried
out.) It is shown that, with the scattering involving both ground-
and excited-state molecules, significant changes are observed
in the time-dependent X-ray diffraction pattern. These results
suggest that molecular, and in particular dissociative, dynamics
may be used to measure the duration of sub-picosecond X-ray
or electron pulses with time resolution of tens of femtoseconds.
As expected, the changes in diffraction intensity are less
pronounced whenever the ground- and excited-state wave
packets are at similar internuclear distances and even more so
if the wave packets are also delocalized. The computation of
the time-dependent molecular wave function is approximated
by dividing it into two parts by writing the wave function as a
product of an angle-independent radial part and an angular part,
both being time dependent. The former is computed numerically
(by solving the radial time-dependent Schro¨dinger equation);
the latter is evaluated analytically in the Appendix (using first-
and second-order perturbation theory for the excited and ground

Figure 13. Upper panel: a slice of the iodine distribution function
shown in the second panel (from the top) of Figure 12 along the light
polarization direction (verticalZ axis). Middle panel: same as upper
panel but this time along the perpendicular direction (X axis) where at
short pump-probe delay times (compared to the rotational delocal-
ization time) there are no traces of the excited electronic state. To isolate
the excited state, the upper two panels were normalized using the area
under the constant feature which is assumed to be due to the stationary
ground state. Lower panel: the difference between the upper and middle
panels, showing that the excited-state internuclear distribution can be
isolated from the diffraction data by symmetry. Note that, as discussed
in the text, when the ground- and excited-state wave functions are at
similar internuclear distances, such a simple procedure will not enable
us to really isolate the excited state from the ground state but only to
conclude that the two states are at similar internuclear separations.
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states, respectively). Apart from reducing the computational
difficulty, this approximation enables us to analytically recover
the known15,16,57,70breaking of cylindrical symmetry in gas- and
liquid-phase diffraction patterns that is expected whenever the
direction of the optical polarization (which is the only symmetry
axis in the sample after the optical excitation) does not coincide
with the direction of the incident X-ray (or electron) beam. As
discussed in section III (and in more detail in the Appendix),
the total diffraction intensity for an anisotropic gas-phase sample
can be written as a sum of Bessel functions [j l(sR) in eq 2.19]
weighted by Legendre polynomials,Pl(ŝ‚ê). Since the latter
depends on the scattering angle, a simple inversej0(sR)
transformcannot isolate the isotropic part of the diffraction
intensity, and in section IV we have suggested and applied an
exact procedure for separating the isotropic part of the diffraction
pattern from the total diffraction pattern. This procedure enabled
us to recover (very nicely) the radial part of the wave function
as a function of time. Although we have discussed the exact
procedure for recovering the angular dependence of the prob-
ability density, in this paper we have only used an approximate
procedure to recover it. [The proposed approximate procedure
was based on the observation that an inversej0(sR) transform
cannot isolate the isotropic part of the diffraction intensity
(because of thes dependence of the weights of the Bessel
functions), and therefore, if that transform is used to invert the
total diffraction intensity, the resulting inverted density can have
a nonisotropic contribution.] This approximate procedure
enabled us to demonstrate how the short-time excited-state
dynamics can be isolated from that of the ground state using
the symmetry induced by the electronic dipole transition. (At
short times, the exact procedure for inverting the two-
dimensional diffraction intensity could also be used to isolate
the excited-state dynamics from that of the ground state.)
Since our discussion in section III was limited to diatomic

molecules, we were able to compute the nuclear dynamics
quantum mechanically. This will not be possible for any but
the smallest polyatomic systems, and other computationally less
demanding methods will have to be used. We believe that, to
correctly model optical pump-diffraction probe experiments,
these methods will have to retain some quantum mechanical
features (such as the notion of more than one electronic state
and phase interferences, for example).
Throughout most of this paper (and in all our numerical

examples) we limited our discussion to the independent atom
model. Within the limits of this model, the electronic cloud is
not allowed to deform as the atoms and molecules are moving.
Thus, the time dependence of the diffraction intensities was
associated only with the nuclear motion (or, in other words,
with the spherical core electronic cloud) and did not reflect
bonding changes in valence electrons. Such an approximation
limits the discussion to changes in bond distances and angles
and cannot account for the electron dynamics. Although it is
not expected that initial ultrafast diffraction measurements will
be of sufficient accuracy to observe the dynamics of the
relatively few bonding electrons, the evolution of the electron
density during the course of a chemical reaction is a basic part
of our understanding of the making, altering, and breaking of
chemical bonds, and we do believe that ultrafast diffraction (X-
ray and electron) may in time enable the direct imaging of
electronic (as well as nuclear) dynamics.
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Appendix: Rotational Dynamics

In this appendix we treat the rotational part of the quantum
dynamics for electron and X-ray diffraction from a gas-phase
diatomic sample pumped by a linearly polarized light pulse.
As discussed in section II (eq. 2.6), the molecular wave function,
Ψj(r , R, t), on each electronic statej is written as a product of
an electronic part,φj(r ; R), and a time-dependent nuclear part,
øj(R, t), such that

in whichν implies a summation over vibrational and rotational
indices, andøj

ν(R) is a nuclear eigenstate. In this appendix we
discuss the computation of the angular part of the nuclear wave
function for the illustrative specific case of a gas-phase diatomic
molecule, noting that the electronic part is assumed to be known
(i.e., the potential energy surfaces are given as an input) and
that the radial part (which, as is often done for computational
simplicity, is assumed to be independent ofJ) is computed
numerically (see section III.A for more details). In addition,
we show how to evaluate the integral needed to calculate the
scattering intensity from the wave function.
Since the computation of rotational selection rules and

transition line strength is well documented in the literature,85,87

we try to make the discussion as short as possible and center
attention only the details that are specific to the diffraction
probing scheme or to any approximation that we make. The
purpose of the somewhat tedious procedure that we outline is
to (i) provide an analytical expression for the rotational part of
the molecular wave function and (ii) use this expression to
reduce the three-dimensional Fourier transform needed for the
scattering intensity (cf. eq 2.18) to a one-dimensional transform,
in the radial coordinate, multiplied by an analytic expression.
Although the procedure is rather long, and it is dictated by the
fact that we use a polar coordinate system and numerically
evaluate only the radial part, the analytical result that we obtain
does provide a quantum insight to the breaking of symmetry in
the diffraction pattern, which has been previously discussed
classically.15,16,70

We first rewrite the nuclear wave function (of each electronic
state) as a product of a radial part,øj(R, t), and an angular part,
Yj(θ, æ, t),

[The polar angleθ is the angle between the internuclear vector
R and the lab frameZ axis, and the azimuthal angleæ is the
projection (with respect to theX axis) of the internuclear vector
on theXYplane.] In principle, both the radial and the angular
wave functions are given by a sum over vibrational and
rotational eigenfunctions. Thus, within each electronic state,
the rotational eigenfunctions depend on the vibrational level and
due to the nature of the electronic excitation there will be more
than one occupied vibrational state on the excited electronic
state. Here we make an approximation whose character is
dictated by the specific procedure used to compute the radial
part. Since in practice we generate a single radial wave packet
(which is assumed to be independent ofJ ) and we do not
decompose it into vibrational eigenstates, we assume that the
rotational part carries a single vibrational (or more precisely

Ψj(r , R, t) ) Cj(t)φj(r ; R)øj(R, t) )

Cj(t)φj(r ; R)∑
ν

dj
ν(t)øj

ν(R) (A.1)

Ψj(r , R, t) ) Cj(t)φj(r ; R)øj(R, t)Yj(θ, æ, t) (A.2)
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radial) index which is determined by the central vibrational
eigenstate in the wave packet. For the heavy diatomic molecules
in the specific cases discussed in section III and for not too
long pump-probe delay times, this approximation is quite good
for the rotational dynamics, because of the very long rotational
period and the relatively weak dependence of the rotational
constant on the vibrational state, over the vibrational range
excited. Within this approximation, the angular wave function
can be written as a sum over rotational eigenstates (|J′ K′ M′〉)

and, as discussed above, we associate a single “vibrational”
index,n, that corresponds to the central vibrational eigenstate
of the radial wave packet, to the rotational part. In eq A.3, we
follow the conventional notation used in the literature87 by
associatingΛ (the molecule fixed electronic component of the
total angular momentum,J, along the internuclear axis) of a
diatomic molecule withK of an asymmetric top molecule, and
the rotational frequencyωj

n ) BnJ(J + 1), whereBn ) Be -
Re(n + 1/2) in whichBe is the rotational term corresponding to
the equilibrium bond length andRe is a small positive number
that accounts for the coupling between the rotation and vibration
of the molecule. Each of the rotational states (|JKM〉) in eq
A.3 can be written using rotation matrices:85,86

After the interaction with polarized light, the excited state
becomes a coherent superposition of rotational (and vibrational)
states and the ground electronic state is partially coherent: the
polarized pump pulse creates a “hole” in the initial isotropic
ground-state distribution. What we would like to know are the
amplitudes of these states (i.e., thea factors in eq A.3), assuming
a single-photon process. (Note that this is only an assumption
and not an exact result because cycling between the two
electronic states can result in a tighter rotational distribution
than the one predicted here.83) We first consider the excited
state. The probability amplitude of finding the excited-state
rotor in a |J′ K′ M′〉 state following the dipole absorption of
linearly polarized light [and assuming (A.4) as the initial ground
rotational state] is given by the Clebsch-Gordan coefficient,

whereΦFg is the so-called direction cosine matrix.87 For light
polarized along theZ axis (in the lab frame) and for a parallel
transition (i.e., the molecular dipole transition is along the
internuclear axis,z),ΦFg ) ΦZz) cosθ, which is the projection
of the molecular transition dipole on the lab frameZ axis. In
a perpendicular transition, the molecular dipole is in thex-y
plane and hence one should useΦFg ) ΦZx + ΦZy ) -sin θ
cosø + sinθ cosø.87 (The spin angleø should not be confused
with the molecular wave function.) Integrals of the form (A.5)
can be solved analytically by writing the direction cosine matrix
(as well as the rotational eigenfunction, eq A.4) in terms of
rotation matrices and using the Clebsch-Gordan series to
evaluate the resulting integrals over three rotational matrices.
Since these integrals appear in many text books (see, for
example, chapter 2 in ref 87), here we only write the direction
cosine matrix in terms of rotation matrices,

The equivalent expression for the rotational wave function is
given by eq A.4. Thus, for example, if the ground state is
initially given by eq A.4 and the transition is parallel, then the
angular part of the excited state (j ) 2) is given by

where we have assumed the usual case for the ground-state
diatomic molecule,Κ ≡ Λ ) 0. i.e., it is ofΣ (or Ω ) 0)
electronic symmetry. The values of the coefficients in eq A.7
are determined by eq A.5 using the uppermost equation in (A.6).
We now discuss the angular wave function of the ground

state,Y1(θ, æ, ø, t). First note that the orthogonality of the
electronic wave functions and the chosen normalization of the
radial part of the wave function imply that

in which the last equality is due to norm conservation. (Note
that during the electronic excitation the ground- and excited-
state populations vary as a function of time.) As discussed in
detail above (for a single-photon process), the excited-state wave
function is given by the result of the dipole operator on the
initial ground rotational state,Y2 ) ΦFg|JKM〉 and therefore,

In whichnj is the fractional population of thejth electronic state.
Since we need to know the ground-state amplitude,Y1, we take
the square root of eq A.9 and, keeping only linear terms in the
excited-state fractional population, write

Physically what eq A.10 implies is that the ground-state
distribution is derived using second-order perturbation theory
(or alternatively first-order perturbation theory applied twice)
and that after the electronic excitation the initially isotropic
ground state becomes an anisotropic linear superposition of the
original state and any state that can be accessed via a two-photon
process (absorption and emission) given the appropriate selection
rules. Hence, the amplitude for finding the ground state in a
〈J′ K′ M′| state after the interaction with linearly polarized light
is computed just as for the excited state: i.e., by bracketing the
left-hand side of eq A.10 with a〈J′ K′ M′| state; cf. eq A.5. We
then write both the initial and the final states, as well as the
square of the dipole operator,Φ*FgΦFg, in terms of rotation
matrices, eq A.6, and use the Clebsch-Gordan series to
analytically evaluate the amplitudes. The end result for the
ground state is somewhat more complicated than for the excited
state (this is particularly so for a perpendicular transition) and
its general form is given by eq A.3.
Once the angular parts of both the ground and the excited

states have been determined (analytically) and the radial part
computed numerically, we still need to evaluate three-

Yj(θ, æ, ø, t) )

∑
J′,K′,M′

a(J, K,M, J′, K′,M′)|J′ K′ M′〉 exp(iωj
nt) (A.3)

|JKM〉 ) (-1)M-K(2J+ 1
8π )1/2D-M-K

J (θ, æ, 0) (A.4)

〈J′ K′ M′|ΦFg|JKM〉 (A.5)

ΦZz) D00
1

ΦZx ) 1

x2
(D0-1

1 - D01
1 )

ΦZy ) i

x2
(D01

1 + D0-1
1 ) (A.6)

Y2(θ, æ, t) ) a(J0M,J+ 1,0M)|J+ 1,0,M〉 exp(iωJ+1
n t) +

a(J0M,J- 1,0M)|J- 1,0,M〉 exp(iωJ-1
n t) (A.7)

〈Ψ(r , R, t)|Ψ(r , R, t)〉 ) n1〈ø1|ø1〉〈Y1|Y1〉 + n2〈ø2|ø2〉〈Y2|Y2〉

) n1〈Y1|Y1〉 + n2〈Y2|Y2〉 ) 1 (A.8)

n1〈Y1|Y1〉 ) 〈JKM|(1- n2Φ*FgΦFg)|JKM〉 (A.9)

xn1|Y1〉 ≈ (1-
n2
2

Φ*FGΦFg)|JKM〉 (A.10)
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dimensional integrals of the form (cf. eq 2.18 in text)

in order to compute the diffraction intensity from the wave
function.
In what follows, we rewrite these integrals as a product of a

radial part and an angular part and evaluate the latter analyti-
cally, thereby reducing the dimensionality of the numerical
integration from three to one. This is done by expanding the
cos(s‚R) in eq A.11 in terms of products of even Bessel
functions,jl(sR), and Legendre polynomials,Pl(cosâ),

in which, cosâ ) ŝ‚R̂ is the angle between the scattering vector
s and the internuclear vectorR, theˆ symbol is used to denote
a unit vector, and only evenl terms contribute to the sum. Using
the addition theorem,97 the Legendre polynomials are written
in terms of spherical harmonics

The∆m) 0 selection rule (for the electronic transition) implies
that onlym) 0 terms in this expansion should be considered,
for which one can write

by letting the lab frameZ axis coincide with the molecularz
axis. Note that the unit vector in theZ direction is the
polarization direction,ê, and therefore, using eqs A.14 and A.13
we can rewrite eq A.12 as

Equation A.15 enables us to invoke the Clebsch-Gordan
theorem again and evaluate analytically the integral over three
spherical harmonics [two from the angular part of the nuclear
wave function, eq A.13, and one from the expansion of cos-
(s‚R), eq A.15]. Thus, using the expansion in eq A.15 and eq
A.2 for the molecular wave function, we can write the time
integrated scattering intensity as

where

The one-dimensional radial part [〈øj(R, t)|j l(sR)|øj(R, t)〉 in eq
A.16] is computed numerically, and this procedure is repeated

for both electronic states (j ) 1, 2) at any point in time for
which we compute the diffraction pattern. (We reiterate that
because of the even symmetry in our problem only evenl terms
contribute to the sum in eq A.16.) The Clebsch-Gordan
theorem determines that the upper bound on the infinite sum in
eq A.17 equals (2J + 2), where J is the initial rotational
eigenstate on the ground electronic state. In the classical limit
(of high J), only two terms,l ) 0 and 2, contribute to the sum
in eq A.16.
The angles between the optical polarization vector,ê, and

the scattering vector,ŝ, do not depend on the azimuthal
scattering angleδ (see Figure 2, lower panel) when the incident
X-ray (or electron) beam and the polarization vector are parallel

whereas it does when they are perpendicular (incoming beam
is along theX direction for example; cf. upper panel in Figure
2)

In eqs A.18 and A.19,R is the angle between the incident and
scattered X-rays or electrons andδ is its azimuthal projection
on the detector plane (see Figure 2). Thus, it is clear that in
the perpendicular arrangement, eq A.19, the diffraction intensity
will not be symmetrical with respect to rotation ofδ about the
axis of the incoming X-ray or electron beam whereas it will be
in the parallel arrangement. In the main text we elaborate on
this point in more detail.
Finally, we note (as discussed in section II.B) that the ground-

and excited-state angular distributions and the resulting diffrac-
tion intensity should be computed (using the procedure outlined
in this appendix) for each of the ground rotational states that is
initially populated. The total scattering intensity, for an initially
thermal sample, is given by a Boltzmann average of these
individual diffraction intensities (each of which corresponds to
a given initial ground rotational state).
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