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ABSTRACT 

The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties.  

The semisynthetic analogue PPI-2458 demonstrates rapid inactivation of its molecular target, 

methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer 

and inflammation with oral dosing, despite low apparent oral bioavailability.  To probe the basis 

of in vivo efficacy, the metabolism of PPI-2458 was studied in detail.  Reaction phenotyping 

identified cytochrome P450 3A4/5 as the major source of metabolism in man.  Six metabolites 

were isolated from liver microsomes and characterized by mass spectrometry and nuclear 

resonance spectroscopy, and their structures were confirmed by chemical synthesis.  The 

synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular 

endothelial cell growth.  In an ex vivo experiment, MetAP2 inhibition in white blood cells, 

thymus, and lymph nodes in rats following single dosing with PPI-2458 and the isolated 

metabolites was found to correlate with the in vitro activity of the individual species.  In a Phase 

1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg 

administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 h, 

although the exposure of parent was only ~10% that of the summed P450 metabolites.  Taken 

together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-

2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-

470.  The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-

derived therapeutics for angiogenic diseases. 
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Introduction 

The fungal metabolite fumagillin (Fig. 1A) has been associated with a potent cytostatic 

activity on endothelial cells that led to demonstrations of an antiangiogenic effect in vivo, 

thereby offering a novel mechanism for treatment of cancer and other diseases dependent on 

blood vessel formation (Ingber et al, 1990; Folkman, 2007; Ribatti, 2009; Szekanecz et al, 2009; 

Mauriz et al, 2010; Yin et al, 2012; Gamba-Sanchez, 2012).  An early medicinal chemistry 

campaign seeking to develop fumagillin analogues as therapeutics culminated in the discovery 

of the analogue TNP-470 (Marui et al, 1992).   This compound potently inhibited tumor 

progression in a number of animal models, and entered the clinic in 1992.  Despite encouraging 

preliminary findings against several cancers (Folkman, 1998; Bernier et al, 2005; Lefkove et al, 

2007), further progress of TNP-470 in the clinic was hampered by dose-limiting CNS toxicity, 

lack of oral bioavailability, and rapid clearance.  The chloroacetimide functionality was found to 

be highly labile, degrading to an unsubstituted carbamate that was processed further by epoxide 

hydrolase (Placidi et al, 1995).   

 The molecular target of fumagillin has been identified as the enzyme methionine 

aminopeptidase-2 (MetAP2), whose cellular role is to cleave the N-terminal methionine residue 

from newly synthesized polypeptide chains (Sin et al, 1997; Griffith et al, 1997).  A crystal 

structure of the fumagillin-enzyme complex subsequently revealed a covalent binding 

interaction, wherein the active site His-231 was irreversibly modified by reaction with the 

fumagillin spiroepoxide (Liu et al, 1998; Fig. 1B).   In this complex, the hexenyl chain of 

fumagillin mimics the Met thioether functionality, whereas the polyolefinic carboxylate extends 

out of the active site.  PPI-2458 differs from fumagillin in that the polyolefinic chain is replaced 
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by a carbamoyl-linked D-valinamide moiety (Olson et al, 2003; Arico-Muendel et al, 2009). 

PPI-2458 has demonstrated efficacy in rodent models for non-Hodgkin lymphoma (Cooper et al, 

2006), melanoma (Hannig et al, 2006), and arthritis (Bernier et al, 2004; Hannig et al, 2007; 

Bainbridge et al, 2007; Lazarus et al, 2008; Brahn et al, 2009; Ashraf et al, 2010; Ashraf et al, 

2011).  In preclinical studies, PPI-2458 was approximately equipotent in several in vivo efficacy 

models by both oral and parenteral routes of administration, despite an apparently modest oral 

bioavailability (F% = 6, Arico-Muendel et al, 2009).  To resolve this issue, we initiated efforts to 

identify the metabolites of PPI-2458 and to characterize their MetAP-2 inhibitory activity.  Here, 

we report the structures of the six predominant metabolites formed by exposure of PPI-2458 to 

liver microsomal preparations from multiple species, and characterize their formation by 

cytochrome P450.  All metabolites retained significant, though varying, MetAP2 inhibitory and 

antiproliferative activities.  We also describe the in vivo inhibition of MetAP2 in blood and 

several tissues of rats found by dosing with the individually synthesized metabolites and 

comparing with PPI-2458, using an ex vivo ELISA assay to determine free MetAP2 levels 

(Bernier et al, 2004).  Lastly we report PK and PD results from two cancer patients treated with 

PPI-2458 as part of a Phase 1 clinical trial.  This study revealed highly efficient inhibition of 

circulating MetAP2 in conjunction with rapid metabolite formation, confirming the importance 

of active metabolites in the efficacy of PPI-2458. 
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Materials and Methods 

General.  Commercially available reagents and solvents were used as purchased without further 

purification.  Midazolam, nifedipine, 1’-hydroxymidazolam, oxidized nifedipine and 

ketoconazole were from Ultrafine (Manchester, UK).  PPI-2458 was prepared from fumagillin 

(Arico-Muendel et al., 2009).  NADPH (Sigma) was prepared as a 10 or 20 mM stock solution 

in H2O.  Potassium phosphate buffer (KPO4) was prepared as a 100 mM stock solution and the 

pH adjusted to 7.4.  Microsomes (human, cynomolgus monkey, beagle dog, Sprague-Dawley rat, 

and CD1 mouse) and S9 liver fractions (male Sprague-Dawley rat) were obtained from In Vitro 

Technologies (IVT, Baltimore, MD) or XenoTech (Lenexa, KS).  Equal volumes of microsomes 

derived from male and female were combined for each species.  Supersomes containing 

recombinant human CYP3A4 or CYP3A5 plus P450 reductase were purchased, along with the 

insect expression system control, from BD Gentest (Franklin Lakes, NJ).  Internal LC-MS 

standards for PPI-2458 consisted of either D-Leucine or D-Valine-d8 analogues.  All animals 

were maintained according to the Praecis Pharmaceutical Institutional Animal Care and Use 

Committtee (IACUC) guidelines, in accordance with the Guide for the Care and Use of 

Laboratory Animals as adopted by the US National Institutes of Health.   

LC-MS analysis of in vitro metabolism of PPI-2458 by liver microsomes.   

Sample preparation.  Three incubations were prepared for each microsome evaluation:  (A) 

time zero control, (B) no-NADPH control, and (C) complete incubation.  A stock solution was 

prepared for each microsome evaluation by combining 891 μL of 100 mM KPO4, 25 μL 

male/female pooled microsomes, and 4 μL 5 mM PPI-2458.  Stock solution (230 μL) was then 

aliquoted into each of three 1.5 mL microfuge tubes.  The tubes were pre-incubated for 5 

minutes at 37°C.  Time zero control samples were then quenched with 500 μL CH3CN followed 
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by the addition of 20 μL of 10 mM NADPH.  No-NADPH control samples were treated with 20 

μL H2O while complete incubation samples received 20 μL of 10 mM NADPH, and the samples 

were then incubated at 37°C for 20 min with constant shaking at 600 rpm, followed by 

quenching with 500 μL CH3CN.  The samples were then vortexed briefly, centrifuged at 14,000 

rpm, and the supernatants were evaporated under nitrogen for 20 min at 45°C.  The samples 

were then taken up in 100 μL H2O, recentrifuged, and the supernatants were transferred to 

autosampler vials for LC-MS analysis.  An additional control incubation was performed 

substituting water in place of PPI-2458.  Incubations with male Sprague-Dawley rat liver S9 

were performed as described above except that the initial stock solution was prepared by 

combining 816 μL 100 mM KPO4, 100 μL male rat liver S9, and 4 μL 5 mM PPI-2458.   

LC-MS for full scan analysis of microsome incubations.  Chromatograms were acquired on an 

Applied Biosystems API 4000 triple quadrupole mass spectrometer operating in ESI+ full scan 

mode with acquisition from 300 to 800 amu.  LC was performed as follows: column, 2.1 x 150 

mm Symmetry C18; mobile phases: A = 85:5:10 H2O: CH3CN: 25 mM NH4OAc (aq),  B = 

90:10 CH3CN: 25 mM NH4OAc (aq); flow rate, 200 μL/min; column temperature, 35°C; 

injection volume, 20 μL; gradient, 10% B for 5 min, then 10 � 50% B in 30 min. 

Inhibition of PPI-2458 metabolism by ketoconazole.  Co-incubations of PPI-2458 with KTZ 

were performed using male human liver microsomes.  A stock was prepared by combining 3.161 

mL 100 mM KPO4, 93.75 μL male human microsomes, and 7.5 μL 5 mM PPI-2458, and 

divided among 12 microfuge tubes as 217.5 μL aliquots.  Duplicate tubes were then treated with 

12.5 μL of KTZ stock solutions (10 mM in ethanol) diluted to 2% ethanol-water at the following 

KTZ concentrations: 200 μM, 20 μM, 2 μM, 200 nM, 0 nM (vehicle) and 0 nM (vehicle, no 

NADPH).  All of the tubes were pre-incubated for 5 min at 37°C prior to addition of 20 μL 20 
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mM NADPH (or 20 μL water in the case of the no NADPH control).  Final KTZ concentrations 

were 10 μM, 1 μM, 100 nM, 10 nM, or 0 nM in a volume of 250 μL; final concentrations of 

PPI-2458 were 150 μM.  The samples were then incubated for 20 min at 37°C with shaking at 

600 rpm.  The incubations were quenched with 500 μL of CH3CN followed by 100 μL of 

internal standard solution.  The samples were vortexed and then centrifuged at 14,000 rpm for 

10 min.  A 10 μL aliquot of each supernatant was transferred to an autosampler vial containing 

190 mL H2O and the samples were analyzed by multiple reaction monitoring by LC-MS.  Area 

ratios of parent to internal standard were averaged between the duplicates. 

LC-MS/MS analysis of KTZ inhibition samples.  Chromatograms were acquired on an Applied 

Biosystems API 3000 triple quadrupole mass spectrometer operating in ESI+ mode with 

monitoring at 442.4, 450.4, 458.4, and 474.4 amu for Q1 mass, and 375.2, 383.3, 391.2, and 

231.2 amu for Q3 mass for PPI-2458, PPI-2458-d8 (internal standard), +16 metabolite, and +32 

metabolite, respectively.  LC was performed as follows: column, 2.1 x 30 mm Clipeus C8; 

mobile phases: A = 85:5:10 H2O: CH3CN: 25 mM NH4OAc (aq),  B = 90:10 CH3CN: 25 mM 

NH4OAc (aq); flow rate, 400 μL/min; column temperature, 35°C; injection volume, 20 μL; 

gradient, 20 � 90% B in 3.0 min. 

NMR analysis of in vitro metabolism of PPI-2458 by liver microsomes.   

Large scale sample preparation.  A general procedure for microsomal incubations of PPI-

2458 on a 5 mg scale was developed as follows.  PPI-2458 and mouse liver microsomes were 

combined in 100 mM KPO4 buffer (pH 7.4) and pre-incubated at 37°C for 3 minutes with 

constant orbital shaking at 600 rpm.  After the pre-incubation period, NADPH was added to 

initiate the reaction.  Final concentrations after addition of NADPH were 80 µg/mL PPI-2458, 

40 µL/mL microsomes, and 1.3 mg/mL NADPH.  Incubations proceeded at 37°C with continued 
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shaking for a total of 60 minutes.  An additional aliquot of PPI-2458 (~80 µg/mL) was added 15 

minutes into the incubation, and an additional aliquot of NADPH (~0.66 mg/mL) was added 20 

minutes into the incubation, in an effort to maximize the yield of metabolites.  After 60 minutes, 

the preparations were centrifuged to remove the microsomes, and the aqueous layer was 

extracted with dichloromethane (3 x 60 mL).  The organic extract was concentrated by rotary 

evaporation and the resulting residue dissolved in ethanol.  Individual metabolites were purified 

from the metabolite mixture obtained from the microsomal incubations using analytical HPLC 

and fraction collection.  Preparative LC was performed as follows: column, 4.6 x 150 mm 

Waters Symmetry C18 column; mobile phases: A = H20, B = CH3CN; flow rate, 700 μL/min; 

column temperature, ambient; gradient, 20% B for 10 min, then 20 � 40% B in 30 min. As 

necessary, fractions were analyzed by LC-MS to confirm identity and purity.  Fractions were 

pooled to obtain individual metabolites at >90% homogeneity, and lyophilized prior to NMR 

studies to yield 100 – 500 μg of each metabolite. 

NMR Spectroscopy.  Samples of metabolites purified from microsomal preparations were 

dissolved in 20% CH3CN in D2O and lyophilized to reduce the NMR signal due to residual 

water.  The lyophilisates were then dissolved in 200 μL of CD3OD (Cambridge Isotope 

Laboratories, 99.96% atom D) and transferred to CD3OD susceptibility matched microcell NMR 

tubes (Shigemi, Inc., Allison Park, PA; part MMS-005V).  Chemically synthesized metabolites 

were dissolved in the CD3OD (~10 mg in 1 mL) and tested in standard 5 mm NMR tubes.  NMR 

was performed on a Varian Unity Innova 600 MHz spectrometer operated by the Chemistry 

Department at Brandeis University, and on a Varian MercuryPlus 400 MHz spectrometer at 

Praecis Pharmaceuticals, Inc.  One-dimensional 1H spectra were recorded at 25°C on the 600 

MHz spectrometer, and at ambient temperature on the 400 MHz spectrometer.  One-dimensional 
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13C and gradient enhanced two-dimensional double quantum filtered correlation (DQF-COSY), 

total correlation (TOCSY), and rotating Overhauser effect spectroscopy (ROESY) were recorded 

using standard acquisition and processing parameters. 

Chemical synthesis of metabolites.  To confirm structures as deduced by LCMS and NMR 

analysis, and to provide materials in sufficient quantities for in vivo testing, the six major 

metabolites (M1 – M6) were chemically synthesized (Supplemental Data protocol, references, 

and Figure 1). 

Determination of P450 Enzymes Involved in the Metabolism of PPI-2458.   The study 

employed a reaction phenotyping kit from XenoTech (part no. H0500, version 6).  The NADPH 

regenerating system solution was prepared from 15 mg NADP+, 195 μL 1 M glucose-6-

phosphate in 100 mM phosphate buffer, 60 μL 325 U/mL glucose-6-phosphate dehydrogenase 

in 100 mM phosphate buffer, 60 μL 1 M MgCl2, and 7.5 mL phosphate buffer, pH 7.4.  PPI-

2458 (2.5 mL of 10 μg / mL aqueous solution) was diluted into 12.0 mL phosphate buffer, and 

725 μL was aliquotted into each of 17 silanized Eppendorf tubes.  Human liver microsomes (20 

mg / mL) from the phenotyping kit were rapidly thawed from frozen 40 μL aliquots stored at -

80°C, and 25 μL of each was added to a separate aliquot of PPI-2458 / buffer mixture.  Each 

PPI-2458 / microsome sample was then divided into 4 aliquots of 150 μL each (one To sample 

plus triplicate reaction runs).  Samples were equilibrated at 37°C for 5 minutes, and To samples 

were then immediately quenched with 500 μL CH3CN, then treated with NADPH regenerating 

solution.  The other samples were treated with 100 μL NADPH regenerating solution, mixed, 

and quenched with CH3CN after 4 min of incubation.  Internal standard solution (2 μL of 

deuterated PPI-2458, 1 mg / mL in ethanol) was then added to each sample.  Samples were then 

each diluted with 250 μL water, vortexed and centrifuged at 14,000 rpm for 10 min, and 80 μL 
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of supernatant were then further diluted with 120 μL water and analyzed by LC-MS/MS MRM 

for parent, +16, and +32 metabolites.  Chromatograms were acquired on an Applied Biosystems 

API 4000 triple quadrupole mass spectrometer operating in ESI+ mode with MRM Q1 and Q3 

transition mass (amu) as follows: PPI-2458, 442.4 and 375.2; PPI-2458-d8 (internal standard), 

450.4 and 383.3; +16 metabolites, 458.4 and 391.2; +32 metabolites, 474.4 and 231.2.  LC was 

performed as follows: column, 2.1 x 150 mm Symmetry C18; mobile phases: A = 85:5:10 H2O: 

CH3CN: 25 mM NH4OAc (aq),  B = 95:5 CH3CN: 25 mM NH4OAc (aq); flow rate, 200 μL/min; 

column temperature, 35°C; injection volume, 20 μL; gradient, 10% B for 5 min, then 10 � 50% 

B in 30 min. 

Inhibition of P450s in microsomal preparations and kinetics of PPI-2458 by recombinant 

CYP3A4 and CYP3A5.   

Enzyme Assays.  Microsomal incubations were carried out in silanized microcentrifuge tubes 

at 37°C in a Thermomixer (Eppendorf, Hauppauge, NY) with constant mixing at 400 rpm.  

Microsomes were initially diluted to 5 times (5X) the final concentrations in cold phosphate 

buffer and kept on ice along with a 5X NADPH-generating solution.  Substrate and inhibitor 

stock solutions were diluted into water, and final incubation mixtures contained 0.45% 

acetonitrile or less.  Aliquots of the 5X NADPH-generating solution were warmed in the mixer 

for at least 5 minutes prior to use.  Microsomes were pre-incubated for 5 or 10 minutes with the 

test articles by adding 40 µL of the cold 5X microsome suspension to 120 µL of warmed 

substrate ± inhibitor solution in the mixer.  Incubations were initiated by adding 40 µL of 5X 

NADPH-generating solution.  The final incubation volume was 200 µL and contained 1.0 mM 

NADP+, 5.0 mM glucose-6-phosphate, 1.0 U/mL glucose-6-phosphate dehydrogenase, 3.0 mM 

magnesium chloride and 50mM phosphate buffer.  The reactions were halted by protein 
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precipitation, transferring 100 µL of the mixtures to 600 µL of ice-cold 80% acetonitrile 

containing PPI-2458 D-Leu analogue as internal standard.  Matrix standards were prepared by 

stepwise additions of product solutions and each incubation mixture component to cold internal 

standard solution.  Samples and standards were stored at -20°C and then centrifuged at 14,000 

rpm for 10 minutes.  The supernatants were decanted into fresh silanized microcentrifuge tubes 

and either diluted 1:20 into 10% CH3CN or dried under nitrogen in a TurboVap (Zymark, 

Hopkinton, MA) set to 55°C and reconstituted in 100 µL of 10% CH3CN for quantitation by 

LC-MS/MS.   

Initial rate conditions and estimates of Km were established by incubating 1.5-15 µM 

midazolam, 7.5-50 µM nifedipine or 15-55 µM testosterone for 1-8 min in the presence of 0.1 or 

0.2 mg/mL human liver microsomes.  Inhibition of 1’-hydroxymidazolam, oxidized nifedipine 

and 6β-hydroxytestosterone formation by 0.02-0.5 µM ketoconazole or 25-400 µM PPI-2458, in 

the presence of 0.05 or 0.2 mg/mL human liver microsomes, was evaluated over a range of 1.5-9 

µM midazolam, 20-100 µM nifedipine or 25-150 µM testosterone for 1-4 min.  The kinetics of 

formation for the four major single oxidation metabolites of PPI-2458 by CYP3A4 and CYP3A5 

Supersomes were evaluated over a range of 25-800 µM in the presence of 40 nM P450, 80 nM 

P450 or 40 nM P450 plus 40 nM equivalent insect cell protein control for 3-18 min. 

LC/MS/MS Analysis.  Samples (5-25 µL injections) were analyzed by LC-MS/MS using an 

API 3000 (Applied Biosystems, Framingham, MA) triple quadrupole mass spectrometer in ESI+ 

ionization mode with MRM Q1 and Q3 transition mass (amu) as follows: midazolam, 326.1 and 

291.1; 1’-hydroxymidazolam, 342.2 and 203.2; nifedipine, 347.2 and 254.3; oxidized 

nifedipine, 345.1 and 284.3; testosterone, 456.3 and 389.2; 6β-hydroxytestosterone, 305.2 and 

269.2; +16 metabolites, 458.4 and 391.4; +32 metabolites, 474.3 and 231.1; PPI-2458, 442.3 

and 375.2; PPI-2458-Leu (IS), 456.3 and 389.2.  HPLC mobile phases were as follows: A = 
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85:5:10 H2O: CH3CN: 25 mM NH4OAc (aq), pH 3.5;  B = 90:10 CH3CN: 25 mM NH4OAc 

(aq), pH 3.5.  Probe substrate metabolites were monitored using a Clipeus C8 column (5 µm; 2.1 

x 30 mm; Higgins Analytical, Mountain View, CA), with a linear gradient of 20 � 90% B over 

3 min at a flow rate of 0.4 mL/min.  PPI-2458 metabolites were monitored using a Symmetry 

C18 column (3.5 µm; 2.1 x 50 mm; Waters, Milford, MA), with a gradient of 15 � 22%B over 

3 min and 22 � 90% B over 3 min at a flow rate of 0.5 mL/min.  Column temperatures were 

maintained at 35°C. 

Data Analysis.  Kinetic parameters were determined by nonlinear regression analysis of the 

data using Excel Solver (Version 2002; Microsoft, Redmond, WA).  PPI-2458 metabolite 

production data from recombinant CYP3A4 and CYP3A5 incubations were fit to the Michaelis-

Menten model (eq 1).  CYP3A substrate inhibition data from human liver microsome 

incubations with and without inhibitor were simultaneously fit to the Michaelis-Menten model 

of competitive inhibition (eq 2), as well as several models of atypical kinetics (Galetin et al., 

2003) for single binding site positive cooperative inhibition or negative cooperativity with 

partial inhibition (eq. 3 and 4), as well as multiple binding site substrate inhibition or 

heterotropic inhibition (not shown).   
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where α, γ, and δ correspond to interaction factors associated with inhibitor binding affinity, 

efficiency of product formation, and substrate binding affinity, respectively. 

The choice of best fitting model was based on a minimized sum of the squared residuals 

(SSR), the average SSR from 100 Monte Carlo simulations, visual inspection of the fit and 

simplicity of the model.  A weighting factor of 1/y was used in the final inhibition kinetics 

analysis.  

MetAP2 and HUVEC activity.  Metabolites were tested against hMetAP2 and HUVEC as 

described previously (Arico-Muendel et al, 2009).  For the HUVEC assay, metabolites were 

tested at final concentrations ranging from 0.02 pM to 2 μM. 

In vivo MetAP2 inhibition by PPI-2458 and metabolites in rodents.   

Compound formulation.  PPI-2458 and metabolites were formulated in 11% HPCD in WFI at 

0.03, 0.06, and 0.3 mg / mL.   

Species.  Male Sprague-Dawley rats (200-225 g) were purchased from Charles River 

Laboratories and housed 2 per cage, with water and chow available ad libitum, and allowed to 

acclimate 5 days prior to the study start.   
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Dose.  Animals administered test articles PO were dosed using 18G feeding needles and 3 cc 

syringes.  Animals administered test article IV were dosed using 25G butterfly infusion sets and 

5 cc syringes.  Each study group contained 3 animals.  PPI-2458 and M1, M2, M3, and M4 were 

each dosed IV at 0.3 mg / kg, and PO at 0.3 and 3.0 mg / kg.   

Sample collection.  Blood (approximately 500 μL) was collected from the jugular vein of each 

conscious rat ~4 hours following compound administration.  Approximately 24 hours following 

compound administration, animals were anesthetized using Isoflurane inhalant anesthetic and 

blood was collected via cardiac puncture prior to sacrificing animals with carbon dioxide.  

Following euthanasia, the lungs, liver, thymus, and pooled lymph nodes (various, not including 

mesenteric) were collected from each animal. 

Sample preparation.  Immediately following 4 hour collection, blood was placed into 

microtainers containing EDTA.  Samples were placed briefly on a tilt table, then centrifuged at 

6000g for 8 min in an Eppendorf centrifuge (Brinkmann Inc., Westbury NY).  Plasma 

supernatant was pipetted into 1.2 mL silanized Eppendorf tubes (Corning, Corning NY) and 

stored at -80°C until analysis.  Immediately following 24 hour collection, approximately 500 μL 

of each sample was placed into microtainers containing EDTA, then processed to plasma as at 4 

hours.  The remaining blood samples, ~ 5 mL/rat, were placed into 5 mL tubes containing 

EDTA, then pooled by study group into 50 mL conical tubes and placed on ice until analyzed 

for MetAP2 content.  Organs were immediately snap frozen with liquid nitrogen and stored at -

80 °C until analysis. 

Plasma sample analysis.  Plasma samples were thawed to room temperature to determine drug 

levels of PPI-2458 and metabolites.  For each sample, 200 μL was transferred to a 

microcentrifuge tube to which 50 μL of a 50 ng / mL solution of PPI-2458-d8 was added as an 
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internal standard.  Standard curves were prepared for each analyte in blank plasma over a 

compound range from 0.1 – 100 ng / mL.  Plasma protein was precipitated by adding 500 μL of 

acetonitrile and vortexing.  The tubes were then centrifuged at 14,000 rpm for 10 min at room 

temperature.  The resulting supernatants were transferred to clean microcentrifuge tubes and 

dried under nitrogen for 30 min at 80°C.  The samples were then reconstituted with water to 

~100 μL, followed by vortexing and centrifugation.  The resulting supernatants were transferred 

to autosampler vials, and 40 μL were injected onto a Clipeus C8 HPLC column and separated by 

a 4.5 min gradient elution.  LC-MS/MS analysis was achieved with an API 4000 triple 

quadrupole mass spectrometer using multiple reaction monitoring data acquisition including 

transitions for PPI-2458 (442�375), PPI-2458-d8 internal standard (450�383), and a single 

transition appropriate to metabolites (458�391 for M1-M4).  Quantitation was performed using 

Analyst 2.1 software (PE Sciex). 

Determination of in vivo MetAP2 inhibition.    Whole blood samples were lysed for 30 min at 

2 – 8°C (50 mM TrisHCl, pH 7.4; 1% NP-40 (Calbiochem), 0.25% Na deoxycholate, 150 mM 

NaCl, 1 mM EDTA, 2 mM Na3VO4, 1 mM NaF), vortexed, centrifuged 10 min at 13-14 K rpm, 

decanted, and supernatants frozen and stored at -80°C.  Tissue samples (~0.2 g each) were 

homogenized in disposable tissue grinders (Corning) in ~5 volumes of PBS and complete 

protease inhibitor.  Samples were then treated with 120 mL of 10% NP-40 in PBS, centrifuged, 

and supernatants frozen and stored at -80°C.  Levels of free MetAP2 were quantitated as 

described previously (Bernier et al, 2004).  Briefly, samples were treated with a biotinylated 

analogue of PPI-2458 to covalently label all non-inhibited MetAP2 in the sample.  The complex 

of MetAP2 with inhibitor-biotin conjugate was then captured on streptavidin plates (Pierce) and 

detected in ELISA format using an anti-MetAP2 antibody. 
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PK / PD of PPI-2458 in man 

Study design, subjects, and dosing.  This was an open label, Phase 1 safety / tolerance study of 

PPI-2458 in patients with non-Hodgkin’s lymphoma.  The study was conducted at Dana Farber 

Cancer Institute, Boston, MA.  Written informed consent was obtained from each patient after 

explanation of the aims, methods, anticipated benefits, and potential hazards of the study.  

Informed consent was obtained before any study-related procedures were performed.  The study 

was conducted in accordance with generally accepted standards for the protection of subject 

safety and welfare and in compliance with the informed consent regulations of 21 CFR §50, 

institutional review board / ethics committee regulations of 21 CFR §56, and the principles of 

the Declaration of Helsinki and its amendments. 

Two patients were enrolled in the initial cohort of the study.  Patient 01-01 was a 70-year-old 

Caucasian female who weighed 61.9 kg; her diagnosis was diffuse large B cell lymphoma.  

Patient 01-02 was a 66-year-old Caucasian male who weighed 104.5 kg; his diagnosis was 

follicular lymphoma.  The planned dosing schedule was for 15 mg PPI-2458 administered PO 

(capsules) QOD for 21 days (11 doses total), followed by a 7-day recovery period.  Patient 01-01 

completed 21 days of dosing and was withdrawn from the study due to disease progression.  Due 

to a pre-clinical neurotoxicity finding, patient 01-02 was withdrawn from the study on Day 5 of 

dosing, and the study was terminated. 

Sample collection and analysis.  Samples for pharmacokinetic analyses were collected before 

the initial dose and at the following sampling times following the first dose: 15 minutes, 30 

minutes, 1 hour, and 2, 3, 4, 6, 8, 24, and 48 hours.  Pharmacokinetic samples were also 

scheduled for collection at pre-dose and at 4 hours post dose on Day 15.  Processing of 

pharmacokinetic samples was performed at Charles River Laboratories, Worcester, MA.  

Specifically, an LC-MS/MS method was developed to quantitate levels of PPI-2458 and the four 
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+16 metabolites in blood plasma, following precipitation of plasma protein, evaporation, and 

sample reconstitution.  The method was validated for the analysis of PPI-2458 in 200 μL human 

plasma samples over a concentration range from 0.0200 ng/mL to 10.0 ng/mL in 200 μL sample 

volumes, and from 5.00 ng/mL to 2500 ng/nL in 100 μL sample volumes.  Aliquots of study 

samples were transferred to 2 mL 96 deep well plates.  To these were added 50 μL of PPI-2458-

d8 internal standard at 2 ng / mL and 100 ng / mL for low range and high range samples, 

respectively.  Samples were then treated with 50 μL 95:5 H2O : CH3CN and briefly vortexed.  

Samples were then precipitated with 400 μL (high range) or 800 μL (low range) CH3CN, and 

centrifuged at 3250 rpm for 10 min.  Aliquots of supernatant (400 μL, high range; 800 μL, low 

range) were then evaporated to dryness under nitrogen at 55°C in a Turbovap concentrator.  The 

dried residues were then reconstituted with 100 mL of 90:10 H2O : CH3CN.  Quantitation was 

performed using LC conditions as follows: column, 2.0 x 20 mm Phenomenex Mercury MS 

Luna C8; mobile phases: A = 85:5:10 H2O: CH3CN: 25 mM NH4OAc (aq, pH 3.5), B = 90:10 

CH3CN: 25 mM NH4OAc (aq, pH 3.5); flow rate, 700 μL / min; injection volume: 30 μL (low 

range), 5 μL (high range); gradient, 20% B for 0.5 min, then 20 � 60% B in 1.1 min, then 60 

� 90%  B in 0.1 min.  Chromatograms were acquired on an Applied Biosystems API-4000 

triple quadrupole mass spectrometer operating in ESI+ mode with MRM Q1 and Q3 transition 

mass (amu) as follows: PPI-2458, 442.4 and 375.2; PPI-2458-d8 (internal standard), 450.4 and 

383.3; +16 metabolite, 458.4 and 391.2; +32 metabolite, 474.4 and 231.2.  Chromatograms 

were integrated using Applied Biosystems Analyst software, and plasma concentrations of the 

metabolites were determined from peak areas and averaged response factors of the appropriate 

calibration standards. 
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Pharmacodynamic analyses were performed on white blood cell lysates obtained pre-first-

dose; 4 hour, 24 hour, and 48 hours (prior to second dose); and on Day 15 pre-dose and 4 hours 

post-dose for patient 01-01.  For patient 01-02, the Day 15 samples were not obtained due to 

withdrawal from the study.  Blood samples of 4 mL were collected into 4 mL Sodium Citrate 

Vacutainer Tubes (Becton-Dickinson 362760) and mixed gently by inversion.  They were then 

centrifuged at room temperature in a swinging bucket rotor for 30 – 45 min at 1700 x g to 

separate red blood cells.  Mononuclear cells and platelets were then resuspended into plasma and 

decanted.  The cell suspension was then diluted to 11 mL with cold PBS, divided into two 5 mL 

aliquots.  Each tube was further diluted with 10 mL cold PBS and centrifuged at 500 x g in a 

swinging bucket rotor for 10 min at 4 °C.  The duplicate cell pellets were then frozen and stored 

at ≤ -70 °C and shipped to TGA Sciences in Medford, MA for further processing.  Free MetAP2 

levels were determined by ELISA as described above (Bernier et al, 2004).  Total protein content 

in the lysates was determined using the bicinchoninic acid (BCA) method (Stoscheck, 1990).  
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Results 

Identification of metabolites.  PPI-2458 was incubated with microsomes from five species 

(mouse, rat, dog, monkey, human), and the products were analyzed by LC-MS.  Four prominent 

metabolite peaks were generated by all species evaluated.  All four of these metabolites (M1, 

RT=26.7 min; M2, RT=20.8 min; M3, RT=20.1 min; M4; RT=17.6 min) had molecular ion 

masses of 441, corresponding to an addition of 16 amu and consistent with the addition of one 

oxygen atom into the molecular structure of PPI-2458 (Supplemental Figure 2).  The intensity of 

these metabolite peaks correlated with the CYP3A activity of the microsomes as obtained from 

the supplier (ie, mouse and monkey > human and dog).  Likewise, microsomal metabolism of 

PPI-2458 was efficiently blocked by KTZ, a potent inhibitor of CYP3A, with IC50[KTZ] ~ 100 

nM.  Additional metabolite peaks of lower intensity and earlier retention times were also 

observed in some of the samples.  These peaks had molecular ions corresponding to addition of 

32 (M5, M6; incorporation of two oxygen atoms) or 2 amu (incorporation of one oxygen (+16) 

and demethylation (-14)) relative to PPI-2458.  Incubations with rat S9 revealed the formation of 

a glutathione conjugate of PPI-2458 (RT 20.8 min, m/z = 732) in addition to M1 – M4.  The 

formation of this conjugate was independent of NADPH and its mass was consistent with direct 

addition to the parent compound. 

 Analysis of product ion spectra of the prominent +16 amu metabolites in comparison 

with that of PPI-2458 provided little structural information due to the complex fragmentation 

patterns of these molecules.  It was possible to determine that M1, with a retention time of 26.7 

min, had undergone modification on the valine moiety of PPI-2458.  It was also apparent that 

the other +16 metabolites were unmodified on valine.  The +16 metabolites with retention times 

of 20.1 and 20.8 min, in particular, had nearly identical fragmentation patterns suggesting that 

these two metabolites might be stereoisomers.  To establish the detailed structures of M1 – M6, 
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representing the most prominent metabolites, microsomal preparations were generated at a large 

scale, and samples of each metabolite was isolated in sufficient quantity for NMR (~100 μg in 

low volume, susceptibility-matched NMR tubes).  The structures deduced by NMR were then 

confirmed by chemical synthesis and are shown in Figure 2.  In all cases, NMRs of the synthetic 

compounds closely matched those of the microsomal isolates (Supplemental Figure 3).  1H NMR 

assignments for the metabolites are presented with those of PPI-2458 (Supplemental Table 1). 

M1.  In agreement with the MS data, the NMR of M1 showed a loss of the βCH D-Val 

resonance (H19) at 2.04 ppm in PPI-2458.  In addition, the αCH and γCH3 resonances (H20 

and Me18) shifted downfield and collapsed to singlets.  The data are thus consistent with β-

hydroxylation of the PPI-2458 valine moiety.  Chemical synthesis of M1 was accomplished by 

acylation of the N-hydroxysuccinimidyl carbonate ester of fumagillol with H-D-β-hydroxyvaline 

amide, which was prepared in five steps from methyl (S)-(-)-3-(tert-butoxycarbonyl)-2,2-

dimethyl-4-oxazolidinecarboxylate (Supplemental Figure 1). 

M2 and M3.  Metabolites M2 and M3 eluted with very similar retention times by LC 

(Supplemental Figure 2), and their NMR spectra were also found to resemble each other.  The 

distinguishing features of each were the disappearance of the olefinic proton H3 at 5.24 ppm, 

the appearance of new signals near 3 ppm, and the upfield shift of the prenyl methyl groups 

(Me1 and Me2) to ~1.3 ppm.  These data are consistent with nonstereospecific epoxidation of 

the side chain double bond, rather than hydroxylation at a single carbon.   The NMR spectra of 

M2 and M3 differ only slightly, with the most noticeable dissimilarities in the region between 

1.5 and 3 ppm containing H3, 4, 5, and 6.  H3 and H6 could be distinguished from each other 

by ROE’s between H3 and H2, and between H6 and H11. 
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 M2 and M3 could be synthesized simultaneously by treatment of PPI-2458 with 

dimethyldioxirane (DMDO), generated in situ from potassium peroxomonosulfate and acetone, 

followed by resolution of the diastereomers by preparative HPLC.  A tentative stereospecific 

assignment of M2 and M3 was achieved by oxidation of PPI-2458 with Shi’s fructose-based 

catalyst, 1,2:4,5-di-O-isopropylidene-β-D-erythro-2,3-hexodiulo-2,6-pyranose (Wang et al, 

1997).  A single species was produced which coeluted with M2.  In analogy with the 

determinations published by Shi and coworkers, the structures of M2 and M3 were assigned to 

the R and S configurations at C3, respectively, as shown in Figure 2. 

M4.  The NMR spectrum of M4 shows a disappearance of a methyl singlet corresponding to 

Me2 in the spectrum of PPI-2458, and the appearance of a two-proton singlet at 3.9 ppm.  The 

resonance of H3 also shifts downfield by over 0.2 ppm.  These data suggest hydroxylation of C2 

to form M4.   

 Chemical synthesis of M4 was accomplished by oxidation of PPI-2458 with SeO2, which 

is known to yield the trans-allylic alcohol when applied to prenyl groups (Bhalerao and 

Rapoport, 1971).  The NMR of the synthetic product lacked two small signals seen in the 

authentic metabolite at 1.9 and 4.1 ppm, although the major signals were in good alignment 

(Supplemental Figure 3).  This suggests that M4 consists predominantly of the trans allylic 

alcohol, with a minor component of the cis alcohol, in an approximate ratio of 5 to 1 (Fig. 2). 

M5 and M6.  MS studies indicated that M5 and M6 were doubly oxidized (+32) with one 

oxygen on the D-Val.  NMR spectra of the compounds were found to combine features of the 

spectra of M1 and M2 for M5, and M1 and M3 for M6.  The structures of M5 and M6 were thus 

assigned as diastereomeric hydroxyvaline triepoxides, which were confirmed synthetically by 

DMDO oxidation of M1. 

Interaction of metabolites with Cytochrome P450. 
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     Determination of P450 enzymes.  A reaction phenotyping kit consisting of human liver 

microsomes from 16 individuals and one pooled microsomal mixture was used to identify which 

CYP enzymes were primarily responsible for the metabolism of PPI-2458.  Initial rate conditions 

were determined by monitoring the disappearance of 1 μg / mL PPI-2458 incubated with varying 

concentrations of pooled human liver microsomes (0.05, 0.1, 0.2, and 0.4 mg / mL).   PPI-2458 

(1 μg / mL) was then incubated with 0.40 mg / mL microsomes from individuals for 4 min, and 

the formation of primary metabolites M1 – M4 was tracked by LC-MS/MS.  Table 1 shows the 

Pearson product  moment correlation coefficients (R) produced by comparison of the normalized 

metabolite peak areas to the CYB5 and CYP450 enzyme activity levels reported for each test 

microsome.  All oxidation metabolites were strongly correlated (R > 0.75) with CYP3A4/5 

activity, and weakly correlated (R > 0.45) with CYP2C19 activity. 

      Kinetics of metabolite formation.  PPI-2458 was incubated with recombinant CYP3A4 and 

CYP3A5 to compare the metabolite production kinetics of M1 – M4.  In each case, linear 

formation rates were fit to the Michaelis-Menten model, yielding kinetic parameters for 

recombinant CYP3A4 and CYP3A5 that are shown in Table 2.  Km values for the four 

oxidations were very similar, differing by less than 2-fold and averaging 19 μM for both 

enzymes.  The intrinsic clearance (Vmax/Km) was more variable, ranging from a 3-fold higher 

CYP3A4 rate for M4 to a 5-fold higher CYP3A5 rate for M1.  The average rates across all the 

metabolites, however, were comparable: 0.12 μL/min/pmol CYP3A4 and 0.094 μL/min/pmol 

CYP3A5.   

   PPI-2458 inhibition of CYP activity.  Concentrations of PPI-2458 up to 40 μM failed to 

inhibit CYP3A4 mediated oxidation of dibenzofluorescene, whereas KTZ inhibited this reaction 

with IC50 = 9.8 nM  (data not shown).  To explore the potential for inhibition of other CYP3A 
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substrates, PPI-2458 was incubated with midazolam, nifedipine, or testosterone in pooled 

human liver microsomes and compared to inhibition by KTZ.  Initial rate conditions, linear with 

respect to time and microsomal protein concentration, were established and then inhibition was 

assessed in the presence of 25 – 400 μM PPI-2458 or 0.02 – 0.5 μM ketoconazole.  Lineweaver-

Burk and Dixon analysis indicated that inhibition by PPI-2458 was consistent with a 

competitive mechanism.  Data was fit to the Michaelis-Menten model of competitive inhibition, 

as well as to several models of atypical kinetics.  The resulting kinetic parameters are shown in 

Table 3.  The Michaelis-Menten model was the best fit for all but KTZ inhibition of nifedipine 

oxidation, which displayed negative cooperativity.  KTZ inhibited the CYP3A mediated 

formation of 1’-hydroxymidazolam, oxidized nifedipine, and 6β-hydroxytestosterone with Ki 

values of 0.007, 0.011, and 0.049 μM respectively.  The corresponding Ki values exhibited by 

PPI-2458 were 58, 403, and 287 μM. 

In vitro inhibition of MetAP2 activity and HUVEC proliferation. 

Determination of hMetAP2 inhibition.  We have reported an assay that is suitable for analysis 

of slow, tight binding fumagillin-based MetAP-2 inhibitors (Arico-Muendel et al, 2009).  Thus, 

this assay records the fraction of active enzyme remaining during 8-hour incubation with 

inhibitor.  Activities of M1 – M6 in this assay are shown in Table 4.  PPI-2458 inhibited 

MetAP2 to approximately 12% of enzyme-only control in 1 h, and to 3% at 8 h.  Of the six 

metabolites, M1 demonstrated a similar level of activity.  M2 and M4 showed slower initial 

activity but reached ~90% inhibition at the end of the experiment, whereas M3 was only ~40% 

inhibited at this time.  The potencies of M5 and M6 roughly tracked those of M2 and M3, 

respectively.  A non-metabolite analogue of M4, PPI-4338, was nearly inactive. 
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   Inhibition of HUVEC proliferation.  HUVEC cultures were incubated with purified 

metabolites for three days, and the percent cell growth was determined with MTT relative to 

vehicle control.  A representative HUVEC assay is shown in Figure 3, and all the assay data are 

summarized in Table 4.  Under these conditions, M1 exhibited the highest potency, close to that 

of PPI-2458 (EC50 = 0.3 nM vs 0.1 nM).  The activity of M2 was reduced ~10 fold, to 1.3 nM, 

whereas the remaining metabolites inhibited near 10 nM.   

Metabolite PD and PK studies. 

   MetAP2 inhibition following single dose administration of PPI-2458 in rats.  An ELISA 

based assay was employed to determine free MetAP2 levels in rat blood and tissue samples 

following treatment with PPI-2458 and its synthesized metabolites.  Briefly, cells were lysed and 

treated with a PPI-2458 – biotin conjugate, which enabled capture of free MetAP2 onto 

immobilized streptavidin and detection / quantitation by an anti-MetAP / HRP dual antibody 

system (Bernier et al, 2004).  Compounds were administered as single doses, either IV or PO, at 

0.3 and 3.0 mg / kg.  To follow up earlier research suggesting the utility of PPI-2458 for 

treatment of non-Hodgkin’s lymphoma (Cooper et al, 2006), samples were collected from blood, 

lungs, lymph nodes and thymus 24 h after administration.  Free MetAP2 levels, as a percentage 

of vehicle, are shown in Figure 4.  Following IV administration, similar profiles for average free 

MetAP2 levels in different compartments were observed across all the compounds tested; 

however, individual measurements except for blood were also highly variable.  In contrast, PPI-

2458 and the metabolites exhibited more differentiated activity following oral administration.  

PPI-2458 and M1 showed similar levels of inactivation, followed by somewhat less effective 

M2, M3, and M4.  Thus, significant inhibition by a 0.3 mg/kg dose PO was only observed for 

PPI-2458 and M1, whereas all compounds were effective at 3 mg/kg.  Effectiveness as a 

function of compartment followed the order blood > liver > lungs > lymph nodes > thymus. 
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 Plasma samples were also obtained for all studies at 4 h and 24 h post dose to assess 

exposure.  For the IV arm, levels of parent and metabolites were below the level of quantitation 

for all compounds at both time points, and only trace quantities (≤0.3 ng/mL) could be detected 

at the lower oral dose (data not shown).  For animals dosed at 3.0 mg / kg PO, quantifiable levels 

of each analyte could be observed at 4 h for the 3 mg/kg dose, but only for M1 at 24h (Table 5).  

M2, M3, and M4 could also be detected following a 3 mg / kg PO dose of PPI-2458.   

   PK / PD studies in man.  As part of a Phase 1 dose escalation study, PPI-2458 was 

administered to two patients with non-Hodgkin’s lymphoma.  Oral doses of PPI-2458 at 15 

mg/kg were given every other day, and plasma samples for PK / PD analysis were collected at 15 

min, 30 min, and 1, 2, 3, 4, 6, 8, 24, and 48 h following the first dose, as well as pre- and 4h 

post-dose on day 15 (one patient).  For both subjects, uninhibited (free) MetAP2 levels in white 

blood cell samples was below the quantitation limit 4h post dose (Table 6), indicating rapid 

target engagement and inactivation after oral dosing.  As a percentage of predose free MetAP2 

level, this corresponded to <1.5% and <6.0% for patients 01 and 02, respectively, due to the 

four-fold difference in predose free MetAP2 (Table 6).  For both subjects, inhibition remained 

high (1.6% and <6.0 % free MetAP2, respectively) for 24h, and showed partial recovery after 48 

h (6.6% and 17.1% free MetAP2, respectively). 

 Levels of PPI-2458 and M1 – M6 were measured to determine pharmacokinetic 

parameters (Table 7).  The exposure profiles for both patients are shown in Figure 5.  PPI-2458 

accounted for approximately 10% of the total measured exposure, with maximum plasma 

concentrations of 77.7 and 32.3 ng / mL attained within an hour of initial administration for 

both subjects.  Elimination of PPI-2458 was monophasic, with t1/2 = 2.1 and 1.1 h.  Of the 

species monitored in the study, the metabolites accounted collectively for nearly 90% of the 

exposure, with the greatest contribution by M2 (~30%), followed by M3 (~20%).  On the other 
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hand, the exposure due to M1 is almost negligible.  Average Tmax values within an hour were 

also observed for M1 – M4, suggesting rapid formation of these species, whereas those for M5 

and M6 were slightly longer.  An apparent elimination phase followed from the time of the peak 

metabolite concentrations.  Metabolites M2, M3, and M4 had apparent elimination half-lives of 

approximately 1 hour, whereas M5 and M6 tended to have longer half-lives (closer to 2 hours) 

during this phase. 

 For most of the metabolites, a second elimination phase, where metabolite concentrations 

initially increased and then either stabilized or diminished at a slower apparent elimination rate, 

was seen after 4 hours post-dose.  The slight increases or maintenance of metabolite 

concentrations occurred from 6 hours to 24 hours post-dose for subject 01 and from 4 hours to 8 

hours post dose for subject 02.  During this second phase, concentrations of M5 and M6 rose to 

levels similar in magnitude to those of M2 and M3.  M4 showed a trend similar to that of M5 

and M6 with lower nominal concentration levels.   
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Discussion 

This study of the metabolism of PPI-2458 was driven by observations of efficacy in 

animal models for cancer (Cooper et al, 2006; Hannig et al, 2006) and rheumatoid arthritis 

(Hannig et al, 2007; Lazarus et al, 2008) following oral dosing, despite apparent low oral 

bioavailability of the parent compound.  As a first step towards characterization of PPI-2458 

metabolism in vivo, we studied the effects of treatment with liver microsomal preparations.  Six 

major species were identified, corresponding to four single and two double oxidation products, 

as well additional minor species and a glutathione adduct formed in rat S9 preparations.  

Identification of CYP3A4/5 as playing a key role in the formation of M1 – M6 was suggested by 

the effectiveness of KTZ in suppressing metabolism, and demonstrated explicitly by 

phenotyping experiments that showed a clear correlation between the activity of these CYP 

isoforms and metabolite formation.  In addition, measurement of kinetic parameters using 

recombinant CYP3A4 and CYP3A5 indicated similar intrinsic clearance rates (Vmax / Km) for 

both enzymes.   The proportions of the metabolites formed in microsomes generally parallel the 

kinetics observed from recombinant CYP3A4/5, where the intrinsic clearance of M1 lags that of 

M2 – M4.  Relative to KTZ, PPI-2458 was found to minimally block CYP metabolism of three 

representative drugs, with Ki’s in the high micromolar range. 

Through a large scale preparation, sufficient quantities of M1 – M6 were isolated and 

purified to enable 2D NMR studies.  As a result, detailed structures for each metabolite could be 

proposed, which were confirmed by independent chemical synthesis.  The structures for M1 – 

M6 are consistent with CYP mediated oxidation reactions involving attack at specific sites on 

hydrophobic groups at the periphery of the molecule.  Of the few examples of published 

fumagillin metabolites, it is noteworthy that oxidation of fumagillin with m-chloroperbenzoic 

acid yields a mixture of diastereomeric triepoxides corresponding to M2 and M3 in PPI-2458 
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(Halász et al, 2000).  The same study reported these species as minor impurities in commercial 

fumagillin resulting from degradation over time.  Metabolism of fumagillin derivatives has been 

studied in the case of TNP-470 (Placidi et al, 1995) and CKD-732 (Myung et al, 2002).  In vivo, 

TNP-470 is rapidly degraded to an unsubstituted carbamate by esterases, which in turn is 

processed by microsomal epoxide hydrolase into an inactive bicyclic structure.  For CKD-732, 

the polyolefinic side chain of this molecule is replaced a cinnamyl ester functionalized with a 4-

dimethylaminoethoxy group, whereas the core and the isobutenyl containing C4 substituent are 

preserved.  Microsomal metabolism of CKD-732 yielded a single predominant species, 

identified as the N-oxide of the dimethylamino moiety, and 13 other species of much lesser 

abundance that were characterized by LC-MS.  Several of these were assigned to oxidations of 

one of the C4 terminal methyl groups.  However, double bond epoxidation as was observed with 

M2 and M3 in the case of PPI-2458 would also be consistent with the limited MS fragmentation 

data.  An additional modification proposed in several of the metabolites involved opening of the 

parent epoxide groups by addition of water to form a fused bicyclic structure as in the case of 

TNP-470.  Although we did not observe significant formation of such water adducts in this 

study, we did find them as significant products of PPI-2458 degradation in acidic conditions 

(Arico-Muendel et al, unpublished). 

 Testing the isolated compounds M1 – M6 in hMetAP2 and HUVEC assays demonstrated 

that the inhibitory activity of PPI-2458 was preserved in all the major metabolites.  The good 

correlation of the biochemical and cellular assays establishes a link between compound-

mediated enzyme inhibition and antiproliferative activity in a cell type relevant to angiogenesis.   

The resulting structure – activity relationships may be considered in light of the published X-ray 

structure of MetAP2 with fumagillin (Liu et al, 1998).  The C4 side chain was found to be 

deeply buried, mimicking the position of the methionyl substrate side chain, whereas the C6 
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chain extended towards solvent with relatively little constraint.  Accordingly, we and others 

found that the C6 substituent could be replaced with a variety of groups, with the primary 

limitation being avoidance of steric clash with two leucine “gatekeeper” residues in the active 

site (Arico-Muendel et al, 2009; Marui et al, 1992; Lee et al, 2007).  Thus, the nearly unaltered 

activity of M1, whose modification occurs on the C6 group, is not surprising.  Alterations to the 

C4 chain, as occur in M2 – M6, are expected to have more drastic effects; the slightly more 

constricted pocket in MetAP1, for example, has been cited as a grounds for the selectivity of 

fumagillin for MetAP2 over MetAP1 (Liu et al, 1998, Addlagatta and Matthews, 2006).  

Nonetheless, despite clearly diminished activity, all of these retain significant capacity to inhibit 

MetAP2 (Table 5).  M2 and M3, formed by CYP in roughly equal proportions, differ somewhat 

in their activity as a result of disrupting the planarity of the side chain, with the R-configuration 

apparently better tolerated than the S.  In M4, hydroxylation to form a trans allylic alcohol 

appears to be accommodated well in the active site.  M4 shows reduced HUVEC activity, 

however, possibly due to reduced cellular permeability.  Comparison with the designed 

compound PPI-4338 also highlights the subtlety of interactions in this pocket.  Despite close 

homology to M2, M3, and M4, PPI-4338 exhibits only minimal inhibition of MetAP2.   

The covalent nature of MetAP2 binding by PPI-2458 means that target – inhibitor 

complexes should be exceptionally stable, facilitating studies of MetAP2 inhibition in vivo.  

Following the guidance of work identifying MetAP2 as the target of fumagillin (Sin et al, 1997; 

Griffith et al, 1997), we designed a biotinylated derivative of PPI-2458 as a pull-down reagent 

(Bernier et al, 2004).  This conjugate enabled accurate quantitation of free MetAP2 levels from 

blood or tissue lysates following in vivo dosing.  Here, we presented results showing high levels 

of MetAP2 inhibition by both PPI-2458 and its primary metabolites.  Oral administration 

showed a dose dependant response, with the highest level of inactivation observed in whole 
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blood, liver, and lung for PPI-2458 and M1 at 3.0 mg/kg.  Interestingly, under these conditions 

the compounds roughly segregate according to their enzymatic and antiproliferative activity, 

with the C4 hydroxylated metabolites significantly attenuated relative to M1 and parent 

compound.  On the other hand, whereas some structural differentiation is still apparent at 0.3 mg 

/ kg PO, the compounds are roughly equivalent, and significantly less effective, at the same dose 

administered IV.  These results may be interpreted in light of the exposure data, which shows 

clearance of all species within 4 h following IV dosing, but significant levels of PPI-2458 and 

metabolites at 4 h in the PO arm.  Consistent with the notion of PPI-2458 as a slow binding 

inhibitor, the similar levels of inhibition in the IV experiment may reflect brief exposure to high 

levels of compound that mask structure-based discriminating effects, which only become 

apparent under extended exposure to low concentrations. 

 As part of a proof-of-concept experiment in man, two patients with NHL received PPI-

2458 orally at 15 mg QOD.  At this dose, PPI-2458 was highly effective at inhibiting MetAP2 in 

blood, with <20% free enzyme measured at 48h after dosing.  Analysis of plasma samples 

indicated that most of the exposure was due to metabolites, predominantly M2 and M3.  The 

exposure profiles indicate that PPI-2458 is rapidly metabolized favoring M2 and M3 initially.  

That M1 levels are nearly negligible, whereas the secondary metabolites M5 and M6 appear 

rapidly, suggests that D-Val hydroxylation is inefficient relative to epoxidation, and that M5 and 

M6 form primarily via M2 and M3.  Since M2 and M3 are somewhat less effective inhibitors of 

MetAP2, development of second-generation compounds could focus on suppressing this 

metabolic pathway.  Overall, the results accord with the trend observed in primate studies (not 

shown) that indicate an increasing level of exposure due to metabolites in higher species.   

 In conclusion, this work has identified the CYP-generated metabolites of PPI-2458 and 

determined their activity in vitro.  The metabolites are shown to contribute significantly to 
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pharmacologically active compound exposure in vivo.  In man, initial results of a Phase 1 study 

in patients demonstrate effective inhibition of MetAP2 administered orally.   
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Figure Legends 

Fig. 1.  (A) Structures of fumagillin and PPI-2458, (B) mechanism of covalent MetAP2 

inhibition by fumagillin derivatives. 

 

Fig. 2.  Structures of the six major CYP metabolites derived from PPI-2458.   

 

Fig. 3.  Inhibition of HUVEC proliferation for M1 – M4. 

 

Fig. 4.  Free MetAP2 levels (as percent of vehicle control) in whole blood, liver, lung, thymus, 

and lymph nodes of male SD rats 24 hours after a single dose of PPI-2458, M1, M2, M3, or M4 

administered IV, 0.3 mg/kg (top); PO, 0.3 mg/kg (middle); PO, 3.0 mg/kg (bottom). 

 

Fig. 5.  Day 1 pharmacokinetic profile of PPI-2458 and its metabolites following 15 mg PO dose 

of PPI-2458 in patient 01-01 (top) and patient 01-02 (bottom).  Points below the limit of 

quantitation (BLQ) are arbitrarily set to a concentration of 0.05 ng / mL. 
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Tables 

Table 1.  Correlation R-values for metabolite production relative to CYP enzyme activity levels: 

1 μg / mL PPI-2458, 0.4 mg / mL human liver microsomes from 16 individuals + 1 pooled 

microsomal mixture, 4 min triplicate incubations at 37°C.  LC-MS/MS reconstructed ion 

chromatogram peak areas are normalized to PPI-2458-d8 used as internal standard.  Enzyme 

activities were provided by manufacturer. 

 

            

 CYB5     CYP450      

Metabolite OR 1A2 2A6 3A4/5 4A11 2B6 2C8 2C9 2C19 2D6 2E1 

M1 0.1367 0.0719 0.2427 0.808 0.2513 0.2782 0.2092 0.0157 0.4685 0.1193 0.1132 

M2 0.1285 0.0412 0.2868 0.8232 0.1628 0.3102 0.1733 0.0116 0.5409 0.1159 0.1037 

M3 0.1284 0.0375 0.2944 0.8224 0.139 0.3224 0.1632 0.0091 0.5525 0.1144 0.099 

M4 0.1092 0.0343 0.3222 0.7973 0.137 0.3135 0.1523 0.0088 0.5531 0.1114 0.0989 
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Table 2.  Kinetic parameters for PPI-2458 single oxidation metabolite formation by rCYP3A4 

and rCYP3A5.  Results are expressed as estimate (±standard error). 

     

Metabolite P450 Km (μM) Vmax  

(pmol min-1 pmolP450
-1) 

Vmax / Km  

(μL min-1 pmolP450
-1) 

M1 3A4 27 (2) 0.51 (0.02) 0.019 (0.002) 

 3A5 17 (3) 1.58 (0.08) 0.09 (0.02) 

M2 3A4 17 (2) 2.70 (0.07) 0.16 (0.02) 

 3A5 17 (4) 2.86 (0.20) 0.17 (0.04) 

M3 3A4 15 (2) 2.97 (0.10) 0.19 (0.02) 

 3A5 17 (4) 1.42 (0.11) 0.09 (0.02) 

M4 3A4 15 (3) 1.41 (0.08) 0.09 (0.02) 

 3A5 26 (7) 0.80 (0.08) 0.031 (0.009) 
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Table 3.  Kinetics of inhibition of microsomal metabolism of representative drugs.  Results are 

expressed as estimate (±standard error) 

     

CYP3A Substrate Modifier Ki (μM) Km (μM) Vmax (nmol min-1 mgHLM
-1) 

Midazolam KTZ 0.007 (0.002) 1.7 (0.6) 2.6 (0.3) 

 PPI-2458 58 (7) 1.9 (0.3) 2.6 (0.1) 

Nifedipine KTZ 0.011 (0.001) 74 (11) 2.1 (0.2) 

 PPI-2458 403 (101) 87 (20) 2.2 (0.3) 

Testosterone KTZ 0.049 (0.007) 145 (48) 5.8 (1.4) 

 PPI-2458 287 (48) 131 (25) 5.4 (0.8) 
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Table 4.  Inhibition of hMetAP2 and HUVEC proliferation by metabolites and PPI-4338.   

 

aQuantitated as % activity remaining after 8 h exposure to compound. 
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Table 5.   

A:  Plasma levels of PPI-2458 and metabolites after 3 mg / kg oral dose of PPI-2458.  Data given 
for individual animalsa 

 

PPI-2458 ng/mL M1 ng/mL M2 ng/mL M3 ng/mL M4 ng/mL 

 4 h  24 h   4 h  24 h 4 h    24 h 4 h   24 h   4 h 24 h 

0.25 BLQ BLQ BLQ 1.7 BLQ 0.6 BLQ   1.1 0.28 

0.59 BLQ BLQ BLQ 3.8 BLQ 1.4 BLQ   1.0 BLQ 

0.82 BLQ BLQ BLQ 2.5 BLQ 0.94 BLQ   1.3 0.13 

 

B:  Plasma levels after 3 mg / kg oral dose of respective metabolite.  Data given for individual 
animalsa 

 

M1 ng/mL M2 ng/mL M3 ng/mL M4 ng/mL 

  4 h  24 h 4 h    24 h 4 h   24 h   4 h 24 h 

1.6 0.26 0.33 BLQ 0.62 BLQ 0.82 BLQ 

1.6 0.44 2.94 BLQ 0.90 BLQ 0.80 BLQ 

2.3 0.10 0.54 BLQ 0.52 BLQ 0.92 BLQ 

 

aLimits of quantitation: PPI-2458, 0.1 ng/ml; M1, 0.1 ng/ml; M2, 0.5 ng/mL; M3, 0.1 ng/mL; M4, 0.1 ng/mL 
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Table 6.  Free MetAP2 levels in patients treated with 15 mg doses of PPI-2458 

Patient 

Number 
Day 

WBC 

Counta 

(x103/μL) 

PD Time Point 

Total 

Protein 

(mg/mL) 

Free MetAP2 

(ng/mL) 

Percentage 

of Predose 

Free 

MetAP2 

01-01 

1 6.8 
Predose 1.82 61.8 100% 

4 h 1.60 BQLb <1.5% 

2 7.6 24 h 1.48 0.985 1.6% 

3 ND 48 h (prior to 2nd dose) 1.37 4.06 6.6% 

15 7.3 
Prior to Day 15 dose 1.20 6.48 10.5% 

4 h after Day 15 dose 2.47 BQLb <1.5% 

01-02 

1 3.9 
Predose 0.861 15.6 100% 

4 h 1.03 BQLb <6.0% 

2 3.1 24 h 0.481 BQLb <6.0% 

3 ND 48 h (prior to 2nd dose) 0.786 2.66 17.1% 

 

aClinical hematology panel results from samples independent of those drawn for PD analysis 

bBQL determined to be <0.940 ng/mL from LLOQ multiplied by the lowest sample dilution factor used in 
the assay (0.188 ng/mL x 5) 
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Table 7.  Pharmacokinetic parameters for PPI-2458 and its metabolites (individual and 

aggregated) in two NHL patients 

Parameter Subject PPI-2458 M1 M2 M3 M4 M5 M6
Summed 
Analytes

01-01 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
01-02 0.7 0.7 0.7 0.7 0.7 1.1 1.1 0.7

Average 0.6 0.6 0.6 0.6 0.6 0.8 0.8 0.6
01-01 77.7 1.7 60.1 41.5 14.2 3.2 1.7 200
01-02 32.3 1.6 26.6 26.1 7.2 4.9 5.0 100

Average 55.0 1.7 43.4 33.8 10.7 4.1 3.4 150
01-01 52.3 14.2 170.0 91.5 59.6 54.3 43.7 486
01-02 35.5 3.3 69.4 68.8 18.9 22.7 23.9 242

Average 43.9 8.8 119.7 80.2 39.3 38.5 33.8 364
01-01 52.6 NA 171.1 92.3 60.6 56.3 45.1 496
01-02 35.6 NA 75.2 74.2 23.4 32.4 32.9 307

Average 44.1 123.2 83.3 42.0 44.4 39.0 402
01-01 2.1 NA 1.2 0.7 1.0 2.1 1.3 1.7
01-02 1.1 NA 1.3 1.2 1.2 2.2 2.2 2.9

Average 1.6 1.3 1.0 1.1 2.2 1.8 2.3
01-01 285 NA NA NA NA NA NA 30.2
01-02 421 NA NA NA NA NA NA 48.9

Average 353 39.6
01-01 242 NA NA NA NA NA NA 428
01-02 588 NA NA NA NA NA NA 381

Average 415 405

Vss/Fb

(L)

CL/Fb

(L/hr)

t_{1/2}
(hr)a

AUC{0-inf}
(ng*hr/mL)

Tmax
(hr)

Cmax
(ng/mL)

AUC{0-t}
(ng*hr/mL)

 

aFor metabolites, an apparent half-life reflecting the rate of elimination during the first phase, where plasma 
concentrations go from peak levels to levels near the lower limit of quantitation, is displayed. 
 
bCL/F (initial dose bioavailability adjusted clearance) and Vss/F (steady-state volume of distribution) are based on 
the dose amount administered and are therefore computed only for PPI-2458 and the summed analytes. 
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