
 

 

 

  

Abstract—In the continuous casting of steel, mold level 

control is fundamental for obtaining high productivity and high 

quality. Using conventional methods, it is difficult to achieve 

both stability and performance robustness because of different 

classes of disturbances and parameters uncertainties in the 

process. This paper presents a multi-model adaptive control 

architecture based on the so-called RMMAC methodology. 

With the help of precise definition of robust performance 

requirements, the number of models, estimators and controllers 

are merely derived. More importantly, the combination of 

robust non-adaptive mixed-µ synthesis and stochastic 

hypothesis testing concepts enables controller performances 

prediction as well as online monitoring process parameters 

which could be used by operators to take corrective actions. The 

generated signals are likewise useful for understanding the 

physical phenomena in the process. 

I. INTRODUCTION 

ODAY, most of the 750 million tons of steel produced in 

the world every year have been solidified using the 

continuous casting process. Because of its higher 

productivity and lower costs, it has become a worldwide 

technology in the steel industry. Fig. 1 shows an example of 

the caster configuration. Referring to this figure, molten steel 

flows out of the ladle into the mold through a refractory 

called the tundish. The solidification begins in the mold and 

continues in the secondary cooling zone producing thereby a 

strand with a solid outer shell and a liquid core. This strand 

passes then through the withdrawal rolls and becomes fully 

solidified  at  the  caster  exit  where it  is  cut into  pieces  of  
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Fig. 1.  Continuous casting machine side view 
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predetermined lengths, called the slabs. 

Several studies have revealed that the quality of the slabs is 

greatly affected by fluid flow phenomena in the mold region 

of the process. Since the level fluctuations over the meniscus 

surface are one of them, the flow into the mold is always 

controlled by means of a stopper rod or a sliding gate. 

Except the transients in the process such as ladle changes, 

the casting speed is usually kept constant. The objective of 

the control system is to maintain a stable level in the mold 

using local measurements corrupted by noise. 

This control problem becomes much harder when the process 

characteristics change suddenly or when unpredicted 

disturbances take place during the casting operations. The 

main one considered here is the bulging caused by increasing 

pressure inside the strand which deforms the solidified shell 

profile. The outcome of this phenomenon is huge mold level 

fluctuations whose spectrum is between 0.03 and 0.1Hz but 

depends on the casting speed and the roll pitch. Other 

sinusoidal disturbances act on the mold such as the standing 

waves. Their frequencies which are correlated with the mold 

geometry, appear to be in the range of 0.65 - 0.85Hz. 

Numerous non-adaptive control strategies have been 

proposed. Some of them have been implemented in a few 

plants. Representative references cited in the literature are 

[1]-[5]. In this paper, we shall adopt a different approach 

based on multi-model architecture. We use the Robust 

Multiple Model Adaptive Control (RMMAC) method 

published recently [7]. In such control problem, it is highly 

desirable that the controller remains stable and also meets the 

posed performance specifications whatever the parameters 

variations. Several identification trials point out indeed that 

the casting parameters change slowly in time. RMMAC gives 

a solution to this concern. It significantly improves the 

bulging rejection compared with the best non-adaptive 

controller designed using the mixed-µ synthesis. 

The paper is structured as follows. The next section 

describes the plant model classically used for mold level 

controller design. Section 3 defines the performance 

requirements for robust disturbance rejection and analyses 

the potential benefits of using adaptive control. In section 4, 

we present first the RMMAC concepts. Then, we describe 

how we divided the initial parameter uncertainty into smaller 

parameter subsets and designed the local robust controller 

and the Kalman filter for each model. Finally, section 5 

presents various simulations confirming thus the positive 

aspects of the RMMAC method. 
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II. MOLD LEVEL DYNAMICS 

The plant model is a single input single output system as 

depicted in Fig. 2. The control input 
*

P  is the stopper 

position setpoint delivered by the main controller. An inner 

loop modeled here by a first order function with the time 

constant 
aτ , controls the stopper position P  which 

determines the flow into the mold inQ . The flow out of the 

mold outQ  is imposed by the casting speed and the mold 

section S . The level N  is then calculated from the 

integration of the difference between 
inQ  and 

outQ  divided 

by the mold section. The key parameters of the plant model 

are the stopper gain nG  and the nozzle delay nτ  because 

their values are not known precisely and may vary with the 

caster configuration. 

Therefore, the process transfer function is given by the 

following equation where s  is the Laplace variable: 
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Fig. 2.  Plant model 

 

The time delay effect may be approximated by a first order 

Pade function leading to the following state-space formalism: 
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nv  is an additive white sensor noise whose intensity is 

defined as: 

)())()((E τδτ Vtvtv nn =−  

In this work, this plant model is discretized at s01.0=sT . 

The following parameters are fixed and known: 

2
m3648.0=S , l/s/mm1=nG , 22 mm10−=V      (4) 

For the unknown parameters nτ  and aτ , only the ranges can 

be identified: 
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III. PERFORMANCE SPECIFICATION AND ANALYSIS 

This section analyses the control loop performances. This 

step is vital since it provides the designer with the 

information to decide whether to implement an adaptive 

control architecture [8]. 

A. GNARC design 

From now on, we focus our attention to the problem of 

bulging rejection. As explained in the introduction, the 

bulging disturbance has a frequency band between 0.03 and 

0.1Hz. The bulging effect on the level may be quantified 

using the average magnitude of the transfer function between 

the flow out the mold outQ  and the level N  ( bulgeTF ) over 

the bulging frequency range. From a performance point of 

view, this average magnitude should be as small as possible. 

It is determined via mixed-µ synthesis [9] (known also as 

DG-K algorithm) leading to the best ‘Global Non-adaptive 

Robust Compensator’ GNARC. The mixed-µ synthesis 

theory is too abundant for a review in the framework of this 

paper. Further developments can be found in [10] and [11]. 

Since the plant model uncertainties are real, it is 

recommended to use the mixed-µ synthesis rather than the 

complex-µ synthesis (known also as D-K algorithm) which 

deals only with the complex uncertainties and may provide a 

conservative controller in our case. GNARC takes into 

account all the parameters uncertainties ( nτ  and aτ ), the 

frequency weight which shapes the bulging rejection and the 

sensor noise. To compute GNARC, the basic idea is to find 

an initial weighting function so that the mixed-µ synthesis 

generates a controller with an upper bound )(ωµ  such as: 

ωωµ ∀< 1)(                  (6) 

Therefore, the control loop is guaranteed stable for all the 

parameters uncertainties. At the same time, the posed 

performance requirements are met. GNARC is then 

determined by maximizing the performance parameter until 

the µ  upper bound is just below the unity: 

ωωµ ∀<−< −2
10)(10               (7) 

GNARC is thereby the best possible robust performance we 

can expect in the absence of adaptation. 

To carry out the mixed-µ synthesis, two weighting functions 

have been introduced: 

Bulging rejection weight: 
)314)(0209.0(

)14.3)(314.0(4.10

++

++⋅
=

ss

ss
Wb  

Measurement noise weight: 01.0=nW  

bW  is thus chosen to quantify the potential performance 

benefit over the bulging frequency band. Fig. 3 depicts the 

required diagram for the mixed-µ synthesis. The generalized 

plant includes the nominal plant dynamics and the frequency 

weights. The block ∆  incorporates the normalized real 

parameters uncertainties. K  is the stabilizing controller 

which guarantees the posed performance specifications for 

the entire unknown parameters intervals. 
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Fig. 3.  Control scheme for µ design 
 

The disturbance rejection criterion, used here to evaluate the 

quality of bulging rejection, is defined as follows: 

2

)(min)(max lge
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This gain is minimized (so that the bulging rejection 

performance is maximized) until the µ  upper bound is equal 

to 0.993 (which is the best possible value we can obtain in 

our application). The largest performance was determined to 

be: 

dB5.13=GNARC                 (9) 

Results are illustrated in Fig. 4. 

B. FNARC design 

Prior to making any decision on using adaptive control, 

one needs to compute the other performance bound called 

the ‘Fixed Non-Adaptive Robust Compensator’ FNARC [7]. 

It is calculated assuming that the unknown parameter, here 

the delay nτ , takes a known value of the range uncertainty. 

Using the same scheme as for GNARC design (Fig. 3), we 

define first a grid for the delay )(inτ . For each fixed value 

)(inτ , we minimize the performance parameter (8) until the 

inequality (7) is satisfied in order to determine the best 

robust controller.  

In summary, the FNARC is the best possible performance 

that we may expect if the unknown parameter is identified 

exactly. Results are shown in Fig. 4 for comparison 

purposes. 

C. Performances analysis 

Following the procedures described previously, the 

performance bounds as functions of the delay nτ  are plotted 

in Fig. 4. 

Clearly, if we know the delay exactly, we can improve 

significantly the bulging rejection performance from 13.5dB 

to a range between -1.55 and 12.1dB. This agrees with the 

engineering intuition.  

Furthermore, the performance seems to be higher if the delay 

is  near its  lower  bound  0.1s. The benefit  of using adaptive  
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Fig. 4.  Best GNARC and FNARC performance in dB for delay uncertainty 

 

control is obvious in this region. However, it decreases in the 

other side of the delay interval where the best expected 

performance is 12.1dB which is closer to the GNARC value 

(13.5dB). 

In order to agree with the notations already introduced in [7], 

the performance parameter is formulated as follows: 

20
10

1
dBPerfpA =                   (10) 

Based on this definition, pA  should be as large as possible 

for superior bulging rejection. GNARC provides thereby the 

performance lower bound while the FNARC provides its 

upper bound (Fig. 5). This figure shows that the performance 

may be improved about 7.521.02.1 =  times by using 

adaptive control for lower values of the delay. 
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Fig. 5.  Best GNARC and FNARC performance for delay uncertainty 

To summarize the underlying results, the analysis above 

reveals that there is a meaningful benefit in using adaptive 

control, in particular the multiple model architecture. In the 

sequel, the RMMAC method is investigated and 

implemented. It is noteworthy to mention that the GNARC 

and FNARC curves are to be used as the performance 

comparison basis as well as a useful tool to obtain the 

RMMAC models which cover the whole initial uncertainty 

set. 
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IV. RMMAC METHODOLOGY 

The previous section indicates that our case study will 

benefit from adaptive control strategy. By decreasing the 

delay uncertainty interval, it is indeed possible to improve 

the bulging rejection. There are several approaches for 

adaptive control. The vast majority of them deal with the 

case of constant uncertain real parameters. In the case of 

mold level control, the delay is uncertain and may vary 

depending on caster configuration. Such control problem has 

been addressed in [12] which developed a robust adaptive 

control method so-called Robust Multiple Model Adaptive 

Control (RMMAC). In this section, we evaluate the bulging 

rejection performance of the RMMAC architecture 

compared to the best non-adaptive controller designed using 

the mixed-µ synthesis (GNARC). 

A. RMMAC architecture 

The RMMAC architecture is shown in Fig. 6 where the 

PLANT block is the transfer between the stopper position 

setpoint and the level (Fig. 2). This architecture uses a set of 

controllers and Kalman filters. Each local controller 

generates a local control input )(tu j . Kalman filters are only 

used to generate residuals )(trj  (in the Kalman filter theory, 

the residual or the innovation is the discrepancy between the 

actual and the predicted values of the measurement) contrary 

to other multiple model structures where the Kalman filters 

state estimates are used to generate the control signals. These 

residuals are then utilized by the Posterior Probability 

Evaluator block (PPE) which calculates online the posterior 

conditional probability )(tPj  that each model generates the 

plant output. The global control input )(tu  is finally 

computed by weighting each local control signal with its 

associated posterior probability, as follows: 

∑
=
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n

j

jj tutPtu
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Fig. 6.  RMMAC architecture 

There are two key elements of RMMAC: 

i. The choice of the number of models m . It is 

determined using the GNARC and FNARC designs and 

the mixed-µ synthesis. The associated software 

generates the set of ‘Local Non-Adaptive Robust 

Compensators’ LNARCs as well (IV.B). 

ii. The design of Kalman filters. A nominal value of the 

delay should be determined for each model to construct 

the associated Kalman filter. It is computed using the 

Baram Proximity Measure (BPM) to ensure the 

convergence of the posterior probabilities (IV.C). 

B. Designing multiple models and local controllers 

Like any adaptive multiple model architecture, the number 

of models required by RMMAC depends on performance 

specifications. It is derived by decreasing only the delay 

uncertainty set. As explained in [12], this number is obtained 

so that the achieved performance should be equal or exceed 

an imposed limit. Since the FNARC represents the 

performance upper bound, we may specify this limit to be 

X% of FNARC. In this work, we used the value X=60 (Fig. 

7). Following the algorithm described in [12], we start at the 

lower bound of the delay 0.1s where the FNARC is 

maximum. We increase then the uncertainty set and we 

calculate the associated maximum performance parameter 

pA  using the mixed-µ synthesis. This leads to the dashed 

curve. We iterate this calculation as long as the performance 

parameter is greater than the maximum of 60% FNARC. As 

a result, the upper bound of the first subset lies at the 

intersection of the dashed curve and the maximum of the 

60% FNARC curve. This algorithm yields both first subset 

and first controller (LNARC1). The results are summarized 

in TABLE I. 

This process is then repeated starting from the upper bound 

of the first subset until the delay upper bound is reached. At 

the end of this process, five subsets have been identified in 

order to achieve a performance greater than 60% FNARC 

over the whole initial uncertainty set (Fig. 7). Higher 

performance requires naturally more models. 
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Fig. 7.  Definition of models bounds and LNARCs 
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TABLE I 

COMPARISON BETWEEN LNARC AND GNARC PERFORMANCES 

Controller pA  ubµ  Subset 

1 0.718 0.994 [0.1, 0.24] 

2 0.577 0.995 [0.24, 0.45] 

3 0.444 0.991 [0.45, 0.76] 

4 0.333 0.988 [0.76, 1.23] 

5 0.215 0.988 [1.23, 2] 

GNARC 0.212 0.993 [0.1, 2] 
 

TABLE I compares the expected performance in each subset 

with the GNARC one. Clearly, one should expect better 

bulging rejection especially for lower values of the delay. 

C. Designing the set of Kalman filters 

Now that the number of models and the associated 

controllers have been derived, we turn our attention to the 

identification part of the RMMAC architecture which 

requires the design of m  Kalman filters ( 5=m  in our case) 

and the Posterior Probability Evaluator (PPE). The 

uncertainties of the actuator time constant aτ  are ignored in 

the Kalman filters design. Therefore, the only remaining 

parameter required to design a Kalman filter is the delay. A 

numerical value should be identified in each subset using the 

Baram Proximity Measure [13] or the Kullback information 

metric [14]. This process determines thereby m  values 

leading to the following m  discrete time state-space 

dynamics: 
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where mk ,,1 K=  and K,1,0=n  refer to the model and the 

time index respectively. { })(nw  and { })(nv  represent the 

process and the measurement noise respectively. They are 

assumed to be white gaussian sequences, uncorrelated with 

)0(kx  and independent of each other with: 
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The notation used in the sequel is fairly standard: 
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As it is frequently the case, the steady state Kalman filter is 

computed using the two following cycles: 

Predict cycle: 
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Update cycle: 
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)1()/1(ˆ)1/1(ˆ +++=++ nrKnnxnnx kkkk
      (19) 

 

The fact that one of the m  models is the true one, i.e. the one 

which is generating the plant output, is modeled by a 

hypothesis random variable kH . At initial time, the 

hypothesis kH  are assumed equiprobable, i.e.: 

m
HHP kk

1
)(Prob)0( ===             (20) 

The posterior probabilities )(nPk  are defined as follows: 

))()1(),1()0(/(Prob)( nyynuuHHnP kk LL −==    (21) 

They must satisfy: 1)(,0)(
1

=≥ ∑
=

m

k

kk nPnP         (22) 

Using Bayes rule and assuming that the model set includes 

the true plant, we obtain [15]: 

)(
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with: ))()1(),1()0(()( nyynuunY LL −=  

Furthermore, ))(,),(/)1(( nYHtunyp k+  is gaussian whose 

mean is: 

)/1(ˆ))(,),(/)1((E nnxCnYHnuny kkk +=+       (24) 

and steady state covariance is: 
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We deduce that: 
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Moreover, using the marginal density and the Bayes rule 

once more, we obtain: 
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In closing, we deduce from equations (23), (26) and (27) the 

general recursive formula of the posterior probabilities, 

which is computed on line by the Posterior Probability 

Evaluator (PPE) (Fig. 6): 
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We stress that the above results are valid only if the true 

plant is assumed to belong to the model set. If it is not the 

case, the identification subsystem of the RMMAC 

architecture should converge to the closest model of the set 

in an information metric sense. The proper way of 

determining the nominal values of the delay k

nτ  in each 

subset is based on a probabilistic distance between different 

stochastic systems. It is noteworthy to mention that the 

strategy consisting to choose k

nτ  at the centers of subsets 

leads to unpredictable behaviors of the posterior 

probabilities. In this work, k

nτ  are selected using the Baram 

Proximity Measure (BPM) denoted by ),(
k

nnL ττ  which 

measures the stochastic distance between the residuals )(nr  

and )(nrk . Convergence of posterior probabilities is 

guaranteed by the following theorem [13]. 

Let *
M  denotes the whole model set which includes the 

nominal values k

nτ  and the true plant, denoted by ∗ . 

Theorem [13]: Under the following assumptions: 

i. [ ])(nx  is stationary i.e., for every F  belonging to the 

algebra-σ  of Borel sets of L×× 33
RR , we have: 
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ii. [ ])(nx  is ergodic, i.e. 
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iii. For each *
Mi ∈ , the residual covariance 

iS  exists and 

has a finite positive definite value. 

iv. For each *
Mi ∈ , the residual sequence [ ])(ˆ)( nyny i−  

is ergodic. 

If the BPMs satisfy the inequality 

ikLL
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Then, the posterior probabilities converge almost surely to 

the correct model, i.e. 1)(lim →
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nPi
n

          (32) 

Therefore, k

nτ  should be obtained so that the BPMs agree at 

the boundary of adjacent models. In this manner, the 

posterior probability of the closest model to the true plant 

(the one with the smallest BPM) will converge almost surely 

to unity. 

All the stationarity and ergodicity conditions are important 

and must be satisfied [16], [17]. If it is not the case, one 

might use a fake white noise to robustify the Kalman filters 

[18], [19]. 

We now focus on the BPM. In the sequel of this section, we 

shall briefly present all needed equations to compute this 

distance. 

Let us first establish some notation. For *, Mji ∈ , define: 
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It can be shown that )(ni

jΨ  is generated by: 
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Its steady state i

jΨ  is finite if i

jA  has all its eigenvalues 

inside the unit cycle. It may be determined by solving the 

Lyapunov equation: 
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i

jΨ  is useful to calculate i

jΓ . It can be proven indeed that: 
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For *
, Mjk ∈ , let ),( jkI n  denotes the mean information in 

)(ny  favoring model k  against model j . It is defined by: 
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where {}⋅E  is the mean function.  

From (26), we have: 
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For every *Mi ∈ , the Baram Proximity Measure of the jth 

subset is defined by: 
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and )(
2

1
),(

**

kjn LLjkI −=               (40) 

Also, 0),( ≥jkIn  if and only if **

kj LL ≥         (41) 

If such parameter k  exists, this means that the true plant is 

closer to the k
th 

model ( 0),( ≥jkIn ). Hence, the 

corresponding posterior probability will converge to 1, since 

(31) holds. 

V. SIMULATION RESULTS AND PERFORMANCE 

EVALUATION 

In this section, we present some representative simulation 

results which evaluate the benefits of using RMMAC when 

the delay is uncertain. Because of its advanced structure, 

many aspects should be investigated. Hence, several 

significant scenarios have been tested. They are not all 

explicitly shown in this paper due to space limitations. 

In the mold level control simulator developed with 

parameters issued from a real plant, the bulging is modeled 

by a sine wave whose frequency is 0.03Hz or 0.05Hz. 

Following the procedure described in the previous section, 

the numerical values of the delay are determined so that the 

BPMs agree at the boundary of adjacent models. They are: 

{ }5.1,1,65.0,3.0,15.0∈nτ               (42) 

Among   the  numerous  simulations  done, three  cases  have 

been   considered  (TABLE II).  In  each  case,  the  dynamic 
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Fig. 8.  Posterior probabilities (case 1) 
 

 
Fig. 9.  Performance comparison between RMMAC and GNARC (case 1) 

TABLE II 

DELAY VALUES OF THE TRUE PLANT  

Case nτ  Comment 

1 0.15 
Constant value among 
the nominal values 

2 0.8 Random constant value 

3 {0.6, 1.5, 1, 0.2} Random sequence stair 

 

behaviors of the five posterior probabilities are plotted as 

well as the level when the bulging occurs. Fig. 9, 11 and 13 

compare the performance of the non-adaptive controller 

(GNARC) to that of the RMMAC. The other controllers 

currently used in plants are not stable over the whole delay 

uncertainty and cannot thereby be compared to RMMAC. 

Obviously, the adequate model is identified in a few seconds 

and the improvement in bulging rejection by the RMMAC is 

clear. In case 2, we have convergence to model 4 even 

though the euclidean distances indicate the opposite 

( 4*3*

nnnn ττττ −<− ). This is because calculations show that 

),(),(
3*4*

nnnn LL ττττ <  ( 8.0
* =nτ  belongs to subset 4). 

On the other hand, the performances improvement is much 

better for lower values of the delay as expected (TABLE I). 
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Fig. 11.  Performance comparison between RMMAC and GNARC (case 2) 
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Fig. 13.  Performance comparison between RMMAC and GNARC (case 3) 

 

In real plant, delay changes slowly in time. The case 3 

evaluates the RMMAC performance when the delay is 

assumed to vary according to a sequence stair chosen 

arbitrary in the whole uncertainty set. Once more, RMMAC 

yields superior bulging rejection. 

VI. CONCLUSION 

This paper presented a robust solution to the mold level 

control problem, which hinges upon the most recent progress 

on adaptive control. Contrary to other multiple models 

strategies, this methodology so-called RMMAC takes 

advantage of the mixed-µ synthesis to design multiple 

controllers for smaller parameter uncertainties so that an 

imposed performance is achieved. Furthermore, it enables 

the prediction of the expected performance benefit in the 

specified frequency region by using RMMAC instead of a 

robust controller. To get better performance, more models 

are undoubtedly required.  

Since the RMMAC architecture is well documented only 

for a single scalar parameter, we have considered a unique 

uncertain real parameter which is the delay in the plant  

state-space description. The integration of the gain 

uncertainties in the RMMAC design is currently our topic of 

research. In such multiple uncertain parameter cases, the 

GNARC, FNARC and BPM become surfaces. Although the 

calculations are somewhat burdensome, the same philosophy 

still applies to determine the minimum number of models as 

well as in the definition of the nominal values for designing 

the Kalman filters. 

Finally, from an operating point of view, this structure 

may provide valuable insights about the flow phenomena in 

the mold region by means of posterior probabilities which 

pinpoint the locations of process parameters. 

ACKNOWLEDGMENT 

Karim Jabri hereby expresses his deep gratitude to Prof. 

Gary Balas, the Aerospace Engineering and Mechanics Head 

Department of University of Minnesota, who provided him 

with the latest version of the mixed-µ software [9] which is at 

the heart of RMMAC design. 

REFERENCES 

[1] Y. Matoba, T. Yamamoto, M. Tozuda, T. Watanabe, H. Tomono, 

“Instrumentation and control technology for supporting high-speed 

casting”, 9th Process Technol. Conf. Proc., pp. 101-109, 1990. 

[2] H. Kitada, O. Kondo, H. Kusachi, K. Sasame, “H∞ control of molten 

steel level in continuous caster”, IEEE Trans. on Control Systems 

Technology, 6(2), pp. 200-207, 1998. 

[3] K. Jabri, A. Mouchette, B. Bèle, D. Dumur, E. Godoy, “Suppression 

of periodic disturbances in the continuous casting process”, in Proc. 

of Multi-conference on Systems and Control MSC-CCA, San Antonio, 

2008. 

[4] K. Jabri, D. Dumur, E. Godoy, A. Mouchette, B. Bèle, “Modified 

Smith predictor scheme for periodic disturbances reduction in the 

continuous casting process”, in Proc. of Asian Control Conference 

ASCC, Hong Kong, 2009. 

[5] C. Furtmueller, E. Gruenbacher, “Suppression of periodic 

disturbances in continuous casting using an internal model predictor”, 

in Proc. of International Conference on Control Applications, 

Munich, Germany, 2006. 

[6] D. Suzuki, “Formulation of mold level control model by molten steel 

flow analysis method”, Nippon steel technical report n° 89, 2004. 

[7] M. Athans, S. Fekri, A. Pascoal, “Issues on robust adaptive feedback 

control”, Invited plenary paper, in Preprints 16th IFAC World 

Congress, pp. 9-39, July 2005. 

[8] S. Fekri, M. Athans, A. Pascoal, “RMMAC: a novel robust adaptive 

control scheme – Part 1: Architecture”, in Proc. of the IEEE Conf. on 

Decision and Control, pp. 1134-1139, Bahamas, 2004. 

[9] G.J. Balas, Private communication re mixed-µ software, 2009. 

[10] P.M. Young, “Controller design with mixed uncertainties”, in Proc. of 

the American Control Conf., pp. 2333-2337, Baltimore, June 1994. 

[11] P.M. Young, M.P. Newlin, J.C. Doyle, “µ analysis with real 

parametric uncertainty”, in Proc. of the IEEE Conf. on Decision and 

Control, pp. 1251-1256, 1991. 

[12] S. Fekri, “Robust adaptive MIMO control using multiple-model 

hypothesis testing and mixed-µ synthesis”, Ph.D. thesis, Instituto 

Superior Técnico, Lisbon, Portugal, 2005. 

[13] Y. Baram, “Information, consistent estimation and dynamic system 

identification”, Ph.D. dissertation, MIT, Cambridge, MA, USA, 1976. 

[14] B. Anderson and J. Moore, Optimal filtering. NJ, USA: Englewood 

Cliffs, Prentice-Hall, 1979. 

[15] M. Athans and C. Chang, “Adaptive estimation and parameter 

identification using multiple model estimation algorithms”, MIT 

Lincoln Lab., Lexington, MA, USA, 1976. 

[16] J. Doob, Stochastic Processes. John Wiley & Sons, Inc., 1953. 

[17] P. Halmos, Lectures on Ergodic Theory. Chelsea Publ. Co., 1956. 

[18] M. Grewal and A. Andrews, Kalman filtering. Prentice-Hall, 1993. 

[19] M. Grewal et al., Global Positioning Systems, Inertial Navigation, 

and Integration. John Wiley & Sons, Inc., 2001. 

0 100 200 300 400 500 600 700 800 900 1000
-40 

-30 

-10

0
 

GNARC

RMMAC

0 

0.5

1

1.5

2 

Time 
(s) 

Level 

Delay (s)

-20 

6108


