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Abstract—Testing is undisputedly a fundamental verification
principle in the software landscape. Today’s products require us
to effectively handle and test huge, complex systems and in this
context to tackle challenging traits like heterogeneity, distribution
and controllability to name just a few. The advent of Service-
Oriented Architectures with their inherent technological features
like dynamics and heterogeneity exacerbated faced challenges,
requiring us to evolve our technology. The traditional view of
white or black box testing, for example, does not accommodate
the multitude of shades of grey one should be able to exploit
effectively for system-wide tests. Today, while there are a mul-
titude of approaches for testing single services, there is still few
work on methodological system tests for SOAs. In this paper we
propose a corresponding workflow for tackling SOA testing and
diagnosis, discuss SOA test case generation in more detail, and
report preliminary research in that direction.

I. INTRODUCTION

Nowadays software is an omni-present concept. Even for
simplest appliances like a coffee machine, software-enabled
versions promise an enhanced and possibly customizable user
experience as well as cheap product/software updates for the
vendor. The steady increase of available computation resources
enabled complex systems, for example, simulating entire
worlds for multi-player online-games, and today’s online-
shopping, -banking and -stock trading platforms deliver new
business opportunities besides enhancing convenience in our
everyday’s lives. Such a demanding landscape made concepts
like modularization and the corresponding reuse of modules
and (possibly 3rd party) Intellectual Property cores mandatory
in order to be able to compete on the market.

The principles of Service-Oriented Architectures (SOAs)
have been gaining attention in this context and are nowadays
widely accepted in industry [1]. The inherent advantages in
respect of interoperability, reusability and compatibility, as
well as the loose (i.e. dynamic) couplings between clients
and servers leveraged new R&D in challenging fields such as
autonomic computing [2], adaptive systems [3], self-healing
distributed systems [4] and cloud computing [5].

Besides formal techniques like model-checking, testing is
undisputedly a fundamental verification principle for software
development. In the context of SOAs, testing is a complex
and demanding task [6] due to inherent traits like hetero-
geneity, distribution and dynamics that, for example, make
controllability and observability severe challenges [7], [8],
[9]. Thus, while there are numerous approaches for testing
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single services [10], [11], [12], [13], [14], [15], there is little
work on system-wide tests assessing essential system traits
such as performance, stability, robustness, scalability and other
functional and non-functional properties.

We argue that the technology for corresponding SOA test
workflows is mandatory for being able to provide established
software quality levels also for SOAs. Thus our mission is
to take up that challenge, where we depict in Figure 1 an
overview of our example test and diagnosis [16] workflow. In
this paper our focus is on the testing purpose.

The traditional view of white or black box testing is incom-
patible with the many shades of grey experienced when consid-
ering SOAs, as resulting from the accessible information levels
for the various services. With model-based testing (MBT) [17],
[18] there is yet an attractive approach for our setting: De-
riving test cases from models rather than implementations
accommodates SOA scenarios where for some service from
a 3rd party the implementation is not accessible, while the
provider still has to disclose some abstract model offering the
necessary details for system integration. Our general approach
to deal with these shades of grey in SOA testing is thus as
follows: Considering service compositions defined as BPEL
processes [19], we can perform white box testing at the top
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level when considering each service as a black box (atomic
component). This leaves the dynamics of service compositions
to be taken into account, where also further details (gray
shades) gained from available data for individual services can
augment abstract BPEL data.

In this paper we show our initial research and discuss
the resulting perspectives, while arguing that our contribution
is an important step for system-wide SOA testing. In the
following we discuss two instantiations of SOA testing. These
variants demonstrate well the many perspectives of SOA
testing that occur in practice. In Section II we show how to
derive test cases from BPEL specifications to be leveraged
by frameworks like Genesis2 [20]. This control-flow focused
approach is complemented by a data-flow based one (see
also [21], [22]) discussed in Section III, that takes, for instance,
SOA dynamics into account. We conclude the paper discussing
perspectives and future work in Section IV.

II. GENERATING TEST DATA FROM BPEL

Academic literature offers various approaches for generating
test cases from BPEL specifications, i.e., relying on symbolic
execution [23], petri nets [24], [25], model checking [26], [27],
and contract based approaches [28], [29], [30]. See Bozkurt
and Hassoun [31] for a survey. Those approaches most closely
to our variant are Yuan et al. [32] and Yan et al. [33], both
exploiting the control flow graph of a BPEL process.

Our contribution is based on model-based testing using
symbolic execution of BPEL processes. We adopt a graph
based search method for the test generation that relies on
a combination of path extraction from control flow graphs
(CFGs) and constraint solving. Both, control flow graph and
constraints, can be automatically extracted from BPEL source
code. The test case generation algorithm (see Figure 2) is
search based and requires two inputs: a directed CFG and the
maximum path length. The result is a suite of feasible test
cases derived via constraint solving. Our basic concept is to
first extract all possible paths from the start vertex to the end
vertices in the CFG up to the pre-defined length, and then
represent each path via constraints (converting each vertex
separately considering pre- and postconditions). It is worth
noting that our constraint representation makes use of a static
single assignment form similar to the one discussed in [34].
Then, we solve the constraint satisfaction problems assessing
whether the paths are feasible. For a feasible path, the derived
input and output values constitute a test case.

To illustrate our approach we use the Bank Loan example
depicted in Figure 3, taken from [35]. The corresponding
process starts upon receiving a loan request from a client and
is defined as follows: Loan requests below 10.000 credits from
low risk clients are approved immediately. Those from high
risk clients or with amounts starting at 10.000 credits need
thorough assessment before a decision is made.

For this example there are three possible paths: (1)
loanRequest, amount >= 10000, thoroughAssessment,
loan[decision], (2)loanRequest, amount < 10000,
calculateRisk, risk == low, loan[approve], and (3)

1: procedure TEST CASE GENERATION(DCFG, L)
2: Compute all paths π up to length L from start to end

vertices.
3: for each π do
4: Convert π to a set of constraints
5: Solve the constraint satisfaction problem
6: if satisfiable then
7: Save π’s in-/output values as test case
8: end if
9: end for

10: Return all derived test cases as test suite
11: end procedure

Fig. 2. Bpel Test Case Generation algorithm

Fig. 3. The Bank Loan BPEL Process [35]

loanRequest, amount < 10000, calculateRisk, risk

!= low, thoroughAssessment, loan[decision]. Let
us consider path (2), making the following assumptions
regarding the BPEL components’ behavior: Component
loanRequest has an empty pre-condition and amount > 0
as post-condition. Component calculateRisk’s behavior
is given only partially: up to 1000 credits, the risk is assumed
to be low. This partial specification can be formalized using
the post-condition amount < 1000 → risk == low. For
calculateRisk the pre-condition is assumed to be empty.
Taking into consideration the pre- and post-condition as well
as the conditions related to other BPEL components, we
obtain the following conditions for path (2):

1: amount_0 > 0
2: amount_1 = amount_0
3: amount_1 < 10000
4: amount_1 < 1000 → risk_0 == low
5: risk_0 == low
6: loan_0 == approved

Note that these conditions can be easily translated for access
by any constraint solver, in our case MINION [36]. We use
MINION to check for a variable evaluation that satisfies
all constraints. For path (2), the assignment amount_0=1,
amount_1=1, risk_0=low, loan_0=approved is such
an evaluation. Obviously, amount 0 = 1 with the expected
output loan 0 = approved is a valid test case and exactly
ensures executing its corresponding path.

Our implementation currently focuses on synchronous ex-
ecutable BPEL processes, handling most of the basic activ-
ities including receive, reply, assign, invoke, if, while, and
sequence. While we currently do not handle flow activities



(which provide means for concurrent execution), an extension
is under development where we assume that concurrent paths
must not interfere. In order to evaluate our implementation we
performed some experiments using the Bank Loan example,
an ATM example1, and a simple program using a while loop
(While). For all examples constraint solving never took more
than 11 milliseconds, where the path length varied from 8 to
50. It is worth noting that the number of paths, especially
for larger examples, can grow drastically (from 3 to 16,300).
Hence, there is a strong urge for reducing the number of paths
in order to keep test case generation time low. Apparently, our
constraint solving step seems not to be a limiting factor.

III. DATA-FLOW BASED TESTING USING THE K-NODE
DATA FLOW CRITERION

While the testing approach discussed in Section II helps
verifying the control flow of the BPEL process under test, it
does not explicitly deal with the problem of dynamics in BPEL
processes. More concretely, when instantiating an abstract
BPEL process, it is unclear which service implementations can
be chosen simultaneously, without breaking the functionality
of the composition because of service incompatibilities. In the
following, we discuss the TeCoS (Test Coverage for Service-
based systems) approach for dealing with these issues. TeCoS
has initially been introduced in [21], [22], and complements
the approach sketched in Section II.
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Fig. 4. Simplified TeCoS Approach

Figure 4 depicts the overal TeCoS approach. Essentially,
TeCoS can be split into three phases. Firstly, the abstract
service composition (e.g., the BPEL code) is enriched with
existing execution traces (if available), and information about
potential implementation services for each abstract activity
in the process. These service candidate information can be
retrieved, for instance, from a service registry [37]. From
this information, a list of all potential service combinations
that require testing is generated. However, taking into account
the generally very large size of service compositions, and
assuming that there may be many alternatives for each abstract
activity in the composition, it is usually infeasible to test all
potential combinations. Hence, in the second phase, the list of
test cases is filtered (using some coverage criterion discussed
later on) in order to find those cases most relevant to test.

1http://docs.jboss.com/jbpm/bpel/v1.1/userguide/tutorial.atm.html

Finally, in the third phase, the selected most important test
cases are executed, similar to what we described in Section II.
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From this description, it is evident that the coverage cri-
terion used to select the most important test cases is key in
TeCoS. Regarding potential candidates, we propose the use
of a metric we call k-node data flow criterion. The k-node
data flow criterion is grounded in the assumption that services
that have direct data dependencies (i.e., the output of one
service is used as input to another) have a high probability
of leading to incompatibilities, and that the probability of
incompatibility decreases when the distance of the services in
the data flow graph increases. Hence, it seems reasonable to
only test combinations which are relatively “close” in the data
flow graph. We refer to this as k-node data flows: two services
which have a direct data dependency are defined to produce
a 2-node data flow (the minimum), services with an indirect
dependency with one intermediary service produce a 3-node
data flow, and so on. This is illustrated in Figure 5. a→ b→ d
is a 3-node data flow, while a → c is a direct dependencies
(a.k.a. a 2-node data flow). Our goal when filtering test cases
in Phase 2 (as per Figure 4) is to find a minimal set of test
cases that still covers all k-node data flows for a selected k.

Small Medium Large
k = 2 25 100 400
k = 3 125 1000 8000
k = 4 125 10000 160000

TABLE I
# OF TEST CASES FOR DIFFERENT VALUES OF k

Table I summarizes the minimal number of test cases that
are sufficient to reach a 2-node, 3-node or 4-node data flow
coverage in three different exemplary service compositions.
In this example, the small composition consisted of only
6 abstract services and 5 alternatives for each service. The
medium composition consisted of 10 abstract services and 10
alternatives. Finally, the large composition sported 20 services,
with 20 alternatives each.

IV. CONCLUSIONS

SOA testing is a very hard challenge due to limited observ-
ability and controllability, and the dynamic nature of SOAs
where a service’s actual implementation used at runtime might
not be known in advance. As a consequence, SOA testing
requires us to adopt a Grey Box testing strategy. Moreover,
the adaptiveness of SOAs has to be tested separately. Our
contribution in this paper is twofold: Besides discussing the



challenges of SOA testing, we also give two variants of testing
SOAs, i.e., one that relies on more or less classical model-
based testing, and one that deals with testing dynamic changes
in the service implementation at runtime. In future work,
we will improve the empirical evaluation of our approaches,
and furthermore aim at extending them, i.e., combining the
BPEL testing approach with mutation testing and enhancing
the approaches via introducing fault localization and diagnosis
capabilities.
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