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Abstract We show that the intersection dimension of graphs with respect
to several hereditary graph classes can be bounded as a function of the
maximum degree. As an interesting special case, we show that the circular
dimension of a graph with maximum degree ∆ is at most O(∆ log ∆

log log ∆). We
also obtain bounds in terms of treewidth.
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1 Introduction

We consider finite, simple undirected graphs. A graph property or a graph
class is a class of labeled graphs which are closed under isomorphism. A class
P is a hereditary class if it includes all induced subgraphs of any of its mem-
bers. In [4], Cozzens and Roberts termed a class P as dimensional if every
arbitrary graph G = (V,E) is the intersection of graphs from P , that is,
there are k graphs {Gi = (V,Ei) ∈ P : 1 ≤ i ≤ k} (for some k) such that
E = ∩iEi. Kratochvil and Tuza, in their paper [3], showed that a class P
is dimensional if and only if all complete graphs and all complete graphs
minus an edge are in P .

Given a dimensional property A, the minimum k such that a graph G can
be written as the intersection of k graphs fromA is defined as the intersection
dimension of G with respect to A and is denoted by dimA(G). Kratochvil
and Tuza also proved that for any dimensional hereditary property P , either
dimA(G) = 1 for every G or it can take arbitrarily large values. However, it
may still be possible to express dimA(G) in terms of other invariants of G.
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Some interesting specializations of intersection dimension include the box-
icity of a graph (the intersection dimension with respect to the class of inter-
val graphs), cubicity (w.r.t. unit interval graphs), circular dimension (w.r.t.
circular arc graphs), overlap dimension (w.r.t interval overlap graphs) and
permutation dimension (w.r.t. permutation graphs). Of these, boxicity is
the most well-known and various results on boxicity for special classes (like
planar graphs, graphs of bounded treewidth) are known.

In this paper, we obtain bounds on the intersection dimension of a graph
with respect to certain dimensional hereditary properties in terms of max-
imum degree. We also show that for such properties, the intersection di-
mension is bounded for graphs in any proper minor closed family and in
particular, for planar graphs and for graphs of bounded treewidth. We also
obtain significantly improved upper bounds for some special cases, notably
the circular dimension (intersection dimension with respect to circular arc
graphs) and permutation dimension. The proofs of these bounds are based
on relating intersection dimension and forbidden subgraph colorings, in par-
ticular, frugal colorings.

The paper is organized as follows: Section 2 introduces some preliminaries
we will require later. Section 3 presents some general results with respect
to certain dimensional, hereditary classes which satisfy the the Zykov sum
or FDC requirement (both defined in Section 2). In Section 4, we obtain an
improved bound for the circular dimension. First, we need a few definitions
and lemmas from [3].

2 Some Definitions and Lemmas

Definition 2.1 Following [3], we say that a class A of graphs satisfies the
Full Degree Completion (FDC) requirement if for any graph G = (V,E)
in A, the graph obtained by adding a new universal vertex (i.e. a vertex
adjacent to all of V ) is also in A.

Definition 2.2 The Zykov sum of two graphs with disjoint vertex sets is
formed by taking the union of the two graphs and adding all edges between
the graphs. We say that a class A of graphs satisfies the Zykov Sum re-
quirement if the Zykov sum of any two graphs in A is also in A. It can
be verified that if a hereditary class A satisfies the Zykov sum requirement,
then A also satisfies the FDC requirement.
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Lemma 2.2 ([3]) Let A be a class of graphs satisfying the Zykov sum
requirement. If G = (V,E) is a graph and Gij = (Vij , Eij), i = 1, 2, ...k,
j = 1, . . . , ki are induced subgraphs of G such that (i) any each nonedge of
G is present as a nonedge in some Gij and (ii) for every i, the vertex sets
{Vij}j form a partition of V . Then, dimA(G) ≤

∑k
i=1 max{dimAGij}j .

Definition 2.3 For a family F , we mean by Forb(F) the set of all graphs
which do not contain an isomorphic copy of any graph in F as a subgraph
and by G(F) the set of all graphs which do not contain an isomorphic copy
of any graph in F as an induced subgraph.

Following [2], we define a (2,F)-subgraph coloring of a graph G as a
proper coloring of V (G) such that the union of any 2 color classes is in
Forb(F). The minimum number of colors sufficient to obtain such a color-
ing is denoted by χ2,F (G). Well-known examples of such colorings include
acyclic coloring (F is the set of even cycles), star coloring (F consists of P4,
the path on 4 vertices), β-frugal coloring (F is the star K1,β+1).

Using Lemma 2.3 of [3] and Lemma 2.2 above, we obtain the following
result which connects intersection dimension and (2,F)-subgraph colorings.

Theorem 2.4 Let A be a hereditary class of graphs which is closed un-
der disjoint union and satisfying the FDC requirement. Let F be a fam-
ily of connected bipartite graphs and suppose there exists a constant t =
t(F) such that for all graphs H ∈ Forb(F), the intersection dimension
of H with respect to the class A is at most t. Then, for any graph G,
dimA(G) ≤ t

(χ2,F (G)
2

)
. Further, if A satisfies the Zykov sum requirement,

then dimA(G) ≤ tχ2,F (G) + t.

A non-trivial hereditary class of graphs which is closed under disjoint
union and which satisfies the FDC requirement, must contain all stars.
Therefore, by using the results of Albertson et al. on star coloring in the
paper [1], we have the following corollary.

Corollary 2.5 Let A be a hereditary class of graphs which is closed under
union and satisfying the Zykov sum requirement. Then for any graph G, we
have dimA ≤ χs(G) where χs(G) is the star chromatic number. Hence,

(i) dimA(G) = O
(
∆3/2

)
where ∆ = ∆(G);

(ii) if G has treewidth t, dimA(G) ≤ t(t− 1)/2.
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If we only know that the A satisfies FDC, then
(iii) dimA(G) = O

(
∆3

)
where ∆ = ∆(G);

(iv) if G has treewidth t, dimA(G) = O(t4).

Finally for graphs of genus g, the star chromatic number is known to be
atmost O(g) so that the intersection dimension w.r.t FDC (resp. Zykov sum)
satisfying classes, for such graphs is atmost O(g2) (resp. O(g)). More gener-
ally, it is known from the results of [1] that for any proper minor closed family
C, maxG∈C χs(G) is bounded by a constant and hence maxG∈C dimA(G) is
also bounded by a constant, whenever A is closed under union and satisfies
the FDC requirement.

3 Improved bounds

In Theorem 3.2 (stated below), we considerably improve the bounds in
Corollary 2.5 by combining Theorem 2.4 with the following result (Theo-
rem 3.1) of Molloy and Reed [5] on frugal coloring.

Theorem 3.1 ([5]) Let G be any graph of maximum degree ∆. Then G
can be properly colored using ∆ + 1 colors so that any vertex has at most
β neighbors in any color class, where β = O((log ∆)/(log log ∆)).

Theorem 3.2 Suppose that for a hereditary class A which is closed under
union and also satisfies the Zykov sum requirement, the following can be
shown : For any graph G of maximum degree ∆, dimA(G) ≤ c∆t where c
and t are positive constants. Then in fact, the following holds:

(i) For any graph G, dimA(G) ≤ ∆(log ∆)B(log∗ ∆) for some constant B.
(ii) If A satisfies the FDC requirement but not necessarily the Zykov sum
requirement, then dimA(G) ≤ ∆2(log ∆)B(log∗ ∆) for some constant B.
(iii) In particular, if A is the class of all permutation graphs, then for any
G, dimA(G) ≤ ∆(log ∆)B(log∗ ∆).

The assumption of closure under union used in Theorem 3.2 is essen-
tial, as otherwise the dimension number need not always be expressed as a
function of the maximum degree as the following examples illustrate.

Unbounded dimension number with only FDC assumption: Con-
sider the hereditary class of graphs consisting of cliques and cliques minus
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edges. This is the intersection of all dimensional classes satisfying FDC. The
intersection dimension of a graph G w.r.t. this class is |E(Gc)| which is not
bounded by any function of the maximum degree of G.

Unbounded dimension with Zykov Sum assumption: The Zykov
sum assumption carries over intersection and thus we can consider the small-
est hereditary and dimensional class of graphs satisfying the ZS assumption.
This smallest class is in fact the set of all cliques plus cliques minus a match-
ing (of any size). It is easy to see that the intersection dimension of a graph
G w.r.t this class is in fact χ′(Gc). This shows that for classes obeying the
ZS assumption too, the intersection dimension need not always be bounded
by a function of the maximum degree.

4 Circular dimension - A Special Case

Circular arc (CA) graphs are defined as the intersection graphs of arcs of
a circle. Despite their similarity to interval graphs (which are a subclass of
CA graphs), these need not be perfect graphs while interval graphs are also
perfect graphs. Also, no complete forbidden induced subgraph characteri-
zation is known for the class CA. The corresponding intersection dimension
is known as the CA-dimension and is denoted by dimCA(G).

Since CA is a super class of interval graphs, it follows that for any G,
dimCA(G) ≤ boxicity(G). However, while a tight upper bound on the box-
icity of an arbitrary graph is still unknown (conjectured to be O(∆)), we
shall show that dimCA(G) is close to a linear function of ∆.

Lemma 4.1 Let G be a split graph such that every clique vertex has at
most t neighbors in the independent set. Then dimCA(G) ≤ t + 1.

Proof of Lemma 4.1 Form t + 1 CA graphs G0, G1, ..., Gt with G = G0 ∩
G1 ∩ ... ∩ Gt as follows. Assume, w.l.o.g., that I = {1, . . . , n} constitute
the independent set in G. Consider n + 1 equally distanced and distinct
points on the unit circle and label them consecutively with 0, 1, . . . , n as you
traverse in the clockwise direction. In each Gr, each i ∈ I is identified with
the circular arc consisting just i. For any clique vertex u with r neighbors
i1 < i2 < . . . < ir and for any s, 0 ≤ s ≤ r, we identify u with the circular arc
(in the clockwise direction) joining s + 1 with s (the addition being modulo
r+1) in the graph Gs. For s > r, we identify u (in Gs) with the circular arc
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used in Gr. It can be verified that E(G) = E(G0) ∩ . . . ∩ E(Gt) and each
Gi is in CA. This proves the lemma.

Theorem 4.2 The circular dimension of any graph G of maximum degree
∆ satisfies: dimCA(G) = O(∆ log ∆

log log ∆).

Proof of Theorem 4.2 Using Theorem 3.1, we obtain a β = O
(

log ∆
log log ∆

)
-

frugal coloring (V1, . . . , Vk) of V (G) using k = ∆ + 1 colors. We now form
k split supergraphs G1, . . . , Gk where Gi is obtained from G by making
G[V −Vi] a complete graph. It can be seen that E(G) = E(G1)∩. . .∩E(Gk).
Now we apply Lemma 4.1 to each Gi and deduce that dimCA(Gi) ≤ β + 1
and hence dimCA(G) ≤ k(β + 1) = O(∆ log ∆

log log ∆). This proves the theorem.

In this context, we recall that Shearer [6] has shown that there exist
graphs on n vertices for which the circular dimension is at least Ω( n

log2 n).

Conclusions : For some hereditary classes with a single forbidden in-
duced subgraph H, we have obtained bounds on the intersection dimension
the details of which are skipped due to lack of space. An open problem is to
narrow the gap between the upper and lower bounds for circular dimension.
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