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Abstract -- Unbalance response is a common vibration problem associated with rotating
machinery. For several years, researchers have demonstrated that this vibration could be greatly
alleviated for machines using active magnetic bearings through active control. Many of the
control strategies employed fall into a class which the authors have termed adaptive open loop
control. In this paper, three algorithms in this class are presented and their performances are
examined experimentally. These algorithms are (1) a non-recursive control law with
simultaneous estimation, (2) a recursive control law with simultaneous estimation, and (3) a
recursive control law with gain scheduling according to operating speed.  Each algorithms was
coded in C and executed on a high-speed, multi-tasking digital controller. The advantages and
disadvantages of each algorithm are illustrated by examining experimental results from a
laboratory magnetic bearing rotor rig. These results clearly demonstrate the high degree of
synchronous vibration attenuation (over 30 dB) which can be achieved with adaptive open loop
methods.  The response of these algorithms to a sudden change in 'simulated imbalance' is used
to evaluate their relative transient performances. These results indicate the benefits of recursive
control laws in adapting the synchronous open loop control currents to cancel the vibration. The
ability of each of the algorithms to adapt the open loop control during changes in rotor speed is
also examined. On this test, the recursive gain scheduled algorithm shows superior performance:
rotor midspan vibration is almost completely eliminated over the operating speed range.
However, surprisingly, the non-recursive control law shows better performance than the recursive
law with simultaneous estimation. This result is explained in terms of the stability of the
adaptation process.

1.  INTRODUCTION

Active magnetic bearings provide a number of advantages over conventional bearings for
a variety of practical industrial applications. These include elimination of the lubrication
system, friction free operation, decreased power consumption, operation at temperature
extremes, and vibration control.

Recently there has been a great deal of interest in digital control of magnetic bearing
systems. Digital control offers several major benefits over analog control systems for
magnetic bearing supported rotors:

• quick tuning of a magnetic bearing system during installation
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• implementation of some simple but powerful control strategies, such as gain
scheduling

• application of fault tolerant controller architectures
• built-in monitoring and diagnostic capabilities

As the results presented here indicate, digital control provides capabilities for adaptive
control which can be used to greatly alleviate the unbalance vibration of rotating
machinery. This is often the worst vibration problem encountered during operation.  The
source of this vibration is the discrepancy between the geometric axis of the rotor and its
inertial axis. When the rotor is spinning, this imbalance results in a centrifugal force
which causes synchronous vibration throughout the machine. This problem is managed on
conventional machinery through mechanical balancing -the addition or removal of a small
amount of mass from the shaft to reduce the residual imbalance. Rotor balancing in the
field, unfortunately, is usually time consuming and costly. The down-time incurred can
also be very expensive in terms of lost production. Also for some machines where the
imbalance changes often during operation, such as centrifuges, mechanical balancing will
have a limited benefit.

Magnetic bearings, being active devices, offer the capability to establish new and
beneficial relationships between rotor and casing vibration and applied bearing force.
This capability has been employed by a number of researchers [1-10] investigating the
control of unbalance response. One method to achieve unbalance response attenuation is
through design of the feedback compensation. This has been achieved via the addition of
filters to stabilizing controllers [1,8] or through the addition of pseudo-states in observer-
based controllers [2,3]. Other researchers [4-10] have employed methods which the authors
refer to as adaptive open loop control. These methods, as pointed out by Larsonneur [7,8]

and Shafai et. al. [9], have the advantage that they may be added to feedback controllers
that have been designed for optimum transient response without altering system stability
or performance. These methods were first employed on a magnetic bearing supported
rotor by Burrows and Sahinkaya [4] who solved a least-squares-balancing problem for the
proper forces to apply using an off-line theoretical model. They later extended this work
to obtain an estimate of an influence coefficient matrix through trial forces and the use of
a recursive control law [5]. Higuchi et. al. [6] applied an adaptive open loop method
(periodic learning control) that employed an estimate of the inverse transfer function in a
recursive update equation. This method as presented can only be employed on systems
with square influence coefficient matrices (number of actuators equals number of
vibration sensors). Both References 5 and 6 are very similar to the convergent control
algorithm presented by Knospe et. al [10] which uses a look-up table of influence
coefficients obtained through off-line testing. Shafai et. al. [9] employ a very different
method of adapting the open loop forces to cancel a synchronous signal. Here, only one
Fourier coefficient of the open loop signal is changed per adaptation cycle in such a
fashion as to decrease the residual error. This method, originally developed for SISO
systems, was extended to square MIMO systems. Stability and performance robustness of
this method (convergence to optimal open loop control) is guaranteed.  This is in contrast



to most of the model-based methods [4-7] where stability and performance robustness has
generally not been examined. Also, the transient performance of the proposed adaptive
open loop algorithms [4-9] to changes in imbalance or rotor speed has not been
considered.

In this paper, three adaptive vibration control algorithms are evaluated experimentally.
These algorithms were coded in C and executed on digital controller designed and built at
the University of Virginia [11]. Feedback and adaptive unbalance control algorithms are
coded and executed as separate tasks under a  multi-tasking, real-time operating system
written at the University [12].

2.  ADAPTIVE OPEN LOOP CONTROL

The paradigm used for design of the control algorithms presented is that of adaptive open
loop control. Ideally, an open loop controller pre-schedules the bearing forces to be
applied to minimize the vibration. An advantage of this method is that if the scheduled
forces are correct, nearly perfect performance can be realized since stability
considerations impose no constraint upon achievable performance for an open loop
controller. However, this control strategy relies on the accuracy of the pre-computed
schedule; any error in calculating the scheduled forces cannot be corrected. Also, to
calculate the proper schedule of forces, future disturbances to the rotor system must be
known in advance. This imposes serious limitations on the type of rotor vibration
problems which can be tackled with open loop control.

The first problem of open loop control methods, the inability to fix an incorrect
schedule, can be overcome by re-computing the schedule periodically.  If the length of
the schedule is much longer than the largest time constant of the system, this adaptation
of the open loop control does not appreciably affect the rotor's transient response and the
system's dynamics may be considered to be unaltered. The adaptive open loop controller
may also be viewed as a very slow, nonlinear feedback controller. However, this
paradigm is not very useful in designing such controllers or in analyzing their behavior.

The second problem of open loop control methods, the requirement of knowing future
disturbances so as to compute a schedule, restricts the successful application of adaptive
open loop control to only a few disturbance sources, such as rotor imbalance, where
future disturbances are known to be synchronous sinusoids.

3.  ADAPTIVE OPEN LOOP CONTROL ALGORITHMS

The forced response of a rotor supported in magnetic bearings at any particular operating
speed ω can be described by the following equation



                                                        X TU Q= +ω 2        (1)

where X is a 2n x 1 real vector of the synchronous Fourier coefficients of vibration (or
signals to be attenuated) at n points of interest (perhaps, along the rotor and in the
housing), U is a 2m x 1 real vector of the synchronous Fourier coefficients of the open
loop control currents applied to the m magnetic actuators, T is a 2n x 2m real matrix of
influence coefficients relating the open loop control forces to the synchronous vibrations,
and  Q is a 2n x 1 real vector of the synchronous Fourier coefficients of uncontrolled
vibration at the n points of interest normalized by the square of the operating speed ω.
Here, each point of interest consists of only one direction of vibration (e.g., vertical).
Also, two magnetic actuators (e.g., horizontal and vertical) constitute one magnetic
bearing. Note that the vector of synchronous Fourier coefficients U determines the
amplitude and phase for each of the synchronous open loop control currents and thus
determines a schedule of applied open loop control forces. The vector X is determined
during operation through a discrete time convolution of the vibration signals with 1x sine
and cosine waves. The influence coefficient matrix T is a function of the operating speed
and is determined by the dynamics of the rotor, bearings, and housing. All the algorithms
explored in this paper are designed to minimize a weighted quadratic performance
function:

J X WXT≡                                                      (2)

where W is a diagonal weighting matrix. This form of performance function was chosen
since it has an analytic solution for the optimal control and generally yields good
performance. The optimal control vector that minimizes this performance index is

                                                            ( ) WQTWTTU TT 12* −
−= ω (3)

The model given in Eqn. (1) is rewritten here with subscripts to reflect that a sequence of
open loop control schedules is applied to the rotor:

                                                                 X TU Qi i i= + ω 2 (4)

Here the subscript i has been added to indicate that the values of the quantities are those
during the i'th open loop schedule applied. This quasi-steady model of the machine's
synchronous response assumes that the rotor speed is changing slowly enough that (1) the
unbalance response can be considered to have reached its steady state value and (2) the
Fourier coefficients of the vibration can be properly calculated. This model also assumes
that any transients from the last update of the control vector (from schedule i-1 to
schedule i) have decayed before the Fourier coefficients of the next (schedule i) vibration
vector are calculated. This imposes a constraint on the update rate of the control force
schedule.



The three adaptive open loop control algorithms examined in this paper fall into two
categories based on whether continuous on-line estimation is used:

Simultaneous Estimation and Control Algorithms (SEC)
(1) a non-recursive control law that employs on-line estimation (NR-SEC)
(2) a recursive control law that employs on-line estimation (R-SEC)

Gain Scheduled Algorithm (GS or Convergent Control)
(3) a recursive control law that employs a gain schedule (R-GS).

The SEC algorithms repeatedly estimates the model's parameters (typically, T and Q)
while applying control based on these estimates. In contrast, the R-GS algorithm does not
update its estimate of the model's parameters but instead relies on the recursion of the
control law to adapt the open loop control schedule. These three algorithms are now
examined in detail.

3.1.  Non-Recursive Simultaneous Estimation and Control with Least-Square Estimation

The non-recursive optimal control law is derived by minimizing the 2-norm of the
vibration vector and substituting the estimates ( $Ti  and $Qi ) into the control law for actual
parameters (T and Q). It should be noted that this substitution, known as certainty-
equivalence, yields a different result than if the uncertainty about the parameter estimates
was used in deriving the control law.

Using the model given by Eqn. (4), the optimal control law that minimizes the
weighted quadratic norm of the vibration vector is

                                                        ( ) i
T
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T
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11

−
++ −= ω (5)

(see Appendix). Note that the next control schedule applied is only dependent on the
previous schedule in an indirect manner (through the estimation process). Therefore, this
control law is referred to as non-recursive. The estimates $Ti  and $Qi  are computed using a
moving batch least squares estimator:
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This identification algorithm may have numerical problems when the rotor is
operating at a constant speed. In this case, the control vector is nearly constant and the
columns of  U

i
 will be nearly identical. Therefore, this matrix will be rank deficient and

the inverse in Eqn. (6) will be poorly conditioned. To remedy this, the identification
algorithm has been slightly modified. If the difference between the most recently applied
control vector U i  and the most recent vector in the moving batch U k  as measured by

( ) ( )ki
T

ki UUUU −−≡ε

is greater than a predetermined constant ε  then the oldest vector in the batch is removed
and the vector U i  is added to the batch. If ε ε< , then the most recent vector in the batch
U k  is removed and the new vector U i  is added to the batch. The same operations are also
performed on the corresponding response vectors in the batch  X

i
. This modification

prevents the control batch U
i
 from having rank less than its column dimension 2m+1.

3.2.  Recursive Simultaneous Estimation and Control with Least-Squares Estimation

To minimize the performance index X WXi
T

i+ +1 1, the recursive algorithm employed
calculates the new control vector using
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(see Appendix). Note that since X i  is measured, only T needs to be estimated for this
control law. The least-squares estimate of T is given by
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and
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Note that substitution of Eqn. (4) into Eqn. (8) yields
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This clearly shows the direct recursive relationship between one control schedule and
the next. The stability of this algorithm, while difficult to analyze because of the updating
of the estimates, is obviously related the eigenvalues of the matrix:

( ) 
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T
ii

T
i WTTTWTI ˆˆˆ 1

For both the SEC controllers, a batch of p previously applied control vectors and
responses must be available to begin estimation. For the estimation of the NR-SEC
algorithm, the batch size p must be greater than or equal to 2m+1. For the estimation of
the R-SEC algorithm, the batch size must be at least 2m. Therefore, in both these cases,
the adaptive open loop control algorithm must be started with a series of at least 2m+1
test schedules.

3.3.  Recursive Gain Scheduled Algorithm (Convergent Control)

The recursive gain scheduled control algorithm is very similar to the R-SEC controller,
Eqn. (8), but with the R-GS control algorithm T is not estimated during adaptation of the
control vector.  The R-GS algorithm consists of iteratively applying the control law

                                                          U U A Xi i i+ = −1 ω      (13)
with

( ) TT TTTA ωωωω
ˆˆˆ 1−

≡

Here, $Tω  is the estimate of T for the rotor operating speed ω. The Aω matrix is determined
prior to the iterative application of Eqn. (13). If the influence coefficient matrix T is
square (i.e., the number of actuators is equal to the number of vibration sensors), the
control vector will converge to U *  if  $Tω  is sufficiently close to T:

3.4.  Performance Robustness for Square T

If the error in the estimate of a square T matrix is expressed as an additive error matrix
Ea

                                                                  $T T Eaω = + (14)

then the control law of Eqn. (13) will converge to U * and X will converge to zero
provided that

                                                                  ( ) ( )ωσσ TEa
ˆ< (15)



(a sufficient condition) where σ ( )•  and ( )•σ  indicate the maximum and minimum singular
values respectively (see Appendix B).

With an error in the estimate of a non-square T matrix , it is easy to demonstrate that
the control vector generally will not converge to the optimal vector U * . A bound on the
degradation in the performance due to a certain size error ( )aEσ  is difficult to obtain (a
bound will be presented by the authors in a future paper). However, it is easy to
determine the stability robustness properties of the adaptation:

3.5.  Stability Robustness of Adaptation for Non-Square T

If the error in the estimate of a non-square T matrix is expressed by an additive error
matrix as in Eqn. (14), the R-GS adaptation algorithm will be stable (i.e., U will converge
to some finite U ss) if

                                                             ( ) ( )A
Ea σ

σ
1

< (16)

(see Appendix B). Our experience indicates that the R-GS algorithm has good
performance robustness for non-square T matrices as well as the indicated stability
robustness.

For the results presented in this paper, the matrix $Tω  is estimated using the least
squares estimator of Eqns. (9)-(11) for a set of speeds { }qωωω ,,, 21 L≡Ω covering the

operating speed range. Gain matrices Ak  are then computed for each speed ω k  in the set
Ω  and these are stored in a look-up table for use during operation. The matrix Aω  to be

used at any particular speed ω during operation is determined by element-wise linear
interpolation between the matrices for the two nearest operating speeds in the table, ω k

and ω k +1:
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4.  EXPERIMENTAL RESULTS

A laboratory test rig with two radial magnetic bearings, shown in Figure 1, was used to
examine the efficacy of the adaptive balancing algorithms using a multi-tasking digital
controller. The rotor of this rig has a 12.7 mm (0.5 inch) diameter and a 508 mm (20
inches) bearing span. Eddy current position sensors are located vertically and horizontally
32 mm (1.25 inch) outboard from the center of each bearing and 51 mm (2 inches)
inboard from the center of the mid span disk. Bearing housing asymmetry resulted in
unequal horizontal and vertical support stiffness. The rotor is supported using
decentralized proportional-derivative control. The first critical speed of this rotor is at



approximately 2700 rpm. In the experiments, both bearings (m=4) were used to reduce
the vibration at the inboard, outboard, and midspan locations (n=6).

The control algorithms described in the previous section were implemented on a
digital controller designed and built at the University of Virginia's Center for Magnetic
Bearings. The digital controller is a 32 bit floating point machine using a Texas
Instruments TMS320C30 digital signal processor [11]. Both the feedback control and the
adaptive open loop control algorithms were coded in C and executed under a multi-
tasking real-time operating system written at the University of Virginia [12]. The feedback
algorithm executes as the highest priority task. The adaptive open loop algorithm
executes during spare time between feedback updates.

For all the results presented herein, unless otherwise noted the following test
conditions were used:

•   the midspan vibration was weighted a factor of 6.3 greater than the inboard
                and outboard vibration.

•   the batch size used in least square estimation, p, was 14.
•   the Fourier coefficients of the vibration were computed over 15 revolutions.

4.1.  Constant Speed Vibration Reduction-2700 RPM

The root-mean-square synchronous midspan, inboard, and outboard vibration amplitudes
without adaptive open loop control and with the NR-SEC, R-SEC, and R-GS algorithms
are shown in Figure 2. Note that all three algorithms achieve excellent attenuation of the
midspan vibration, over 36 dB. The inboard vibration has increased slightly with the use
of the adaptive controllers while the outboard vibration has decreased.  The authors do
not view the slight differences between the steady state performance of the three
algorithms as significant. These differences fall within the variation that is normally seen
on experiments with this test rig.

4.2.  Sudden Change in Imbalance

A sudden change in the imbalance condition of the rotor was experimentally simulated by
the addition of synchronous perturbation currents to the bearings. These currents act to
produce an unknown force which rotates with the shaft much like a physical imbalance.
For these tests, the rotor was operated at 2200 rpm. Figure 3 shows the midspan
synchronous response of the rotor when adaptive open loop control is not used. For the
first 10 updates, the rotor vibrates due to its physical imbalance. Then, the 'balance
condition' of the rotor changes suddenly due to the applied synchronous perturbation
currents. Figures 4, 5, and 6 show the transient response of the NR-SEC, R-SEC, and R-
GS algorithms respectively during this test.



The NR-SEC responds rather poorly to the sudden change in imbalance. It  updates its
values of T and Q from the input and output data that has been collected. But, much of
this information describes the system as it existed before the change. The estimator finds
the parameters with the "best fit" to the available data, but performs poorly until all the
old information (pre-dating the change) has moved out of the batch. Then, excellent
vibration attenuation is once again recovered.

The R-SEC algorithm recovers much more quickly after the sudden change in
imbalance than the NR-SEC algorithm. This quick recovery is due to:

(1) The data collected before the sudden change is still useful in determining the T
matrix since this has not changed. Only a single set of measurements (∆X and ∆U)
in the batch straddles the sudden change and is therefore misleading in estimation.

(2) The convergent nature of the recursive algorithm used. Since the R-SEC is
essentially a R-GS algorithm with the T matrix updated continuously, it has
essentially the convergence property indicated in Eqns. (15) and (16). Therefore,
the algorithm can produce good performance even when the estimate of T is in
error due to the misleading measurement set.

As shown in Figure 6, the R-GS algorithm has a very quick recovery to the sudden
change in imbalance. This high performance is due to:

(1) The algorithm does not estimate the T matrix. Since Aω  is calculated from a
look-up table, the algorithm assumes it changes only as a function of operating
speed. A misleading data set (∆X and ∆U) does not corrupt the estimate of T
and hence the gain matrix Aω .

(2) The convergent nature of the recursive algorithm.

Note that the convergence property of this algorithm permits good vibration attenuation
even if T changes although the R-GS algorithm does not track these changes through on-
line estimation as do the SEC algorithms.

In summary, the recursive algorithms respond best to a change in the vector Q. The
performance of the three algorithms during a change in the T matrix is examined next.

4.3.  Changing Rotor Speed

As the rotor speed changes, the influence coefficient matrix T changes. Here, the
performance of the three algorithms is examined during a 30 second run-up from 1200 to
3000 rpm. Figure 7 shows the amplitude of the synchronous midspan vibration without
adaptive open loop control. The first critical speed is clearly visible at 2700 rpm. The



performance of  the NR-SEC, R-SEC, and R-GS algorithms during the run-up is shown in
Figures 8, 9, and 10.

The NR-SEC is effective in reducing the midspan vibration from 1200 to 2500 rpm.
Over most of this speed range, the influence coefficient matrix is changing slowly and the
batch least-squares estimator can track these changes. Near the critical speed, the T
matrix changes quickly and the estimator has difficulty in following this variation. Note
that for the estimation performed at 2700 rpm in this test, the oldest data in the batch is
from 2050 rpm.

The R-SEC algorithm also performs well from 1200 to 2500 rpm. But as with the NR-
SEC, the estimates of the system parameters are increasingly in error near the critical
speed. For the R-SEC algorithm, however, this results in adaptation instability as the poor
estimate of T results in an eigenvalue of the matrix in Eqn. (12) being outside the unit
circle. This is the cause of the loss of rotor support just below 2600 rpm.

The R-GS algorithm performs very well during changes in rotor speed as Figure 10
illustrates. This algorithm quickly adapts to the changes in rotor speed using the look-up
table. Since the R-GS algorithm is computationally much simpler than either SEC
algorithm, it executes faster and more often. Thus, the R-GS algorithm updates its control
vector 50 times in 30 seconds while the NR-SEC updates only 36 times. Considering that
a significant proportion of the time between updates is spent performing a discrete time
convolution to obtain the Fourier coefficients (which is the same for all three algorithms),
this is a significant increase in update rate. An increased update rate yields better tracking
and vibration rejection.

5.  DISCUSSION

The best algorithm for an industrial application may be a hybrid of the R-GS and SEC
algorithms. This hybrid might use performance measures to determine when the estimates
need to be updated. Under most conditions, it would function as recursive gain scheduled
algorithm and would have a quick response during changes in unbalance response or rotor
operating speed. But when its performance differed significantly from that expected (e.g.,
divergence of control action), the controller would begin to update its estimates. When
the performance returned to acceptable, the estimation procedure would be halted.  It
would be important for this hybrid algorithm to distinguish between sudden changes in
the imbalance condition resulting in momentary poor performance and controller
divergence due to error in the estimate of T. In the first case, the proper action is to
continue to employ the R-GS algorithm. In the second case, a new estimate of T needs to
be obtained from recent on-line measurements. Thus, the criterion used to determine
which mode of operation to adopt cannot be based solely on vibration level. A measure of
the accuracy of the T matrix employed should also be used. This measure could be a
norm of a propagated covariance matrix as used in discrete-time Kalman filters [13].



6.  CONCLUSIONS

All three adaptive open loop control algorithms presented in this paper have been shown
to provide excellent synchronous vibration attenuation in steady state operation. The
performance of the three algorithms, however, differed greatly during the transient tests.
The non-recursive SEC algorithm had sluggish vibration rejection after the sudden change
in imbalance. Good performance was not recovered until all the measurements previous
to the change had moved out of the batch. The recursive SEC algorithm performed much
better at this since the corruption of its estimates was not severe enough to cause
adaptation instability. The recursive gain scheduled algorithm had the best performance
during this test. The midspan vibration was canceled after one adaptation.

During the rotor run-up test, the NR-SEC algorithm had poor performance near the
critical speed since the estimator could not track the changes in the influence coefficient
matrix. This performance was better, however, than that of the R-SEC algorithm. Poor
tracking with this algorithm resulted in the adaptation process instability.  The
performance of the R-GS algorithm during this test was excellent; the midspan vibration
was canceled over the entire operating speed range.
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APPENDIX

A.1.  Control Laws

A.1.1.   Non-Recursive SEC

The NR-SEC control law minimizes the performance index

                                                           { }11 ++= i
T
i WXXEJ (A1)

where { }•E  is the expected value operator. Substitution of Eqn. (4) into this and changing
the index to i+1 yields
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Assuming T is known (certainty equivalence assumption), this can be simplified to
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Since there is no a priori information available about Qi+1, the expected value of this
vector is assumed to be equal to that experienced in cycle i (a posteriori information),
that is

                                                            { } { } iii QQEQE ˆ
1 ==+ (A4)

Here, it is assumed that the estimate produced by the least-squares estimator is unbiased.
Substituting Eqn. (A4) into Eqn. (A3) and setting the first variation of J with respect to
U i

T
+1 equal to zero yields
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Now, solving for U i+1 yields the optimal control law

                                                      U T WT T WQi i i
T

i i
T

i+ +

−
= −1 1

2
1

ω $ $ $ $ (A6)



A.1.2..  Recursive SEC

Solving Eqn. (4) for Qi  yields

                                                              ( )ii
i

i TUXQ −=
2

1

ω
(A7)

Substituting (A7) into (A4) yields

                                                               i
i

ii Q
TUX

E ˆ
2

=










 −

ω
(A8)

or

                                                               ( ) iiii
i

QUTX ˆˆ1
2

=−
ω

(A9)

(once again, using a certainty equivalence assumption). Substituting this expression into
Eqn. (A6) yields

                                                   [ ]






 −








=

−+
+ i

T
ii

T
ii

i

i
i WXTTWTUU ˆˆˆ 1

2
1

1 ω
ω (A10)

This control law was simplified for implementation by assuming that ω ωi i+ =1  yielding
Eqn. (8).

A.2.  Stability and Performance Robustness of R-GS Algorithm

A.2.1  Stability and Performance Robustness for Square T

Assuming the rotor is at constant speed ω and that the uncontrolled vibration is constant,
the vibration during schedule i+1 can be related to that during schedule i via

                                                      ( )iiii UUTXX −+= ++ 11 (A11)

Substituting Eqns. (13) and (14) into this expression yields

                                              [ ] ( ) ia
TT

i XETWTTWTIX






 −−=

−
+ ωωωω

ˆˆˆˆ 1
1 (A12)

For square T , this simplifies to

                                                            [ ] iai XETX 1
1

ˆ−
+ = ω (A13)

If



                                                                ( ) 1ˆ 1 <−
aETωσ (A14)

then the 2-norm of the vibration vector will decrease with each adaptation, and therefore
converges to zero indicating both stability and optimal performance. Condition (A14) will
be satisfied if

                                                               ( ) ( ) 1ˆ 1 <−
aET σσ ω (A15)

Using the identity

                                                              ( ) ( )MM σσ 11 =− (A16)

Eqn. (A15) can be written as

                                                               ( ) ( )ωσσ TEa
ˆ< (A17)

A.2.2.  Stability Robustness for Non-Square T

Substituting Eqns. (4) and (14) into Eqn. (13) yields

                                                  ( ){ }iiiaii QUETAUU 2
1

ˆ ωωω +−−=+ (A18)

The equilibrium solution U eq  to this difference equation must satisfy

                                                  ( ){ }iieqaeqeq QUETAUU 2ˆ ωωω +−−= (A19)

Subtracting Eqn. (A19) from (A18) yields

                                                      { } iai UEATAIU δδ ωωω +−=+
ˆ

1 (A20)

where δU i  is the difference between U i  and the equilibrium solution. Therefore, this
difference becomes smaller with each iteration if

                                                                 ( ) 1ˆ <+− aEATAI ωωωσ                                    (A21)

Since A T Iω ω
$ = , this equation simplifies to

                                                                   ( ) 1<aEAωσ (A22)

Condition (A22) will be satisfied if

                                                                   ( ) ( ) 1<aEA σσ ω (A23)



Therefore, a sufficient condition for stability of the adaptation process is

                                                            ( ) ( )ωσ
σ

A
Ea

1
< (A24)

Under this condition the control vector will converge to the equilibrium solution of Eqn.
(A19)

                                                       U I A E A Qeq a i= − − −ω ω ω
2 1 (A25)

and the adaptation process will be stable.



Figure 1: Magnetic bearing test rig
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Figure 2: RMS Synchronous vibration amplitudes without and with the NR-SEC,
R-SEC, and R-GS adaptive open loop control algorithms, 2700 rpm.
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Figure 3: Synchronous midspan vibration amplitude without adaptive open loop control
during the simulated change in balance, 2200 rpm.
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Figure 4: Synchronous midspan vibration amplitude with the NR-SEC algorithm
during the simulated change in balance, 2200 rpm.
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Figure 5: Synchronous midspan vibration amplitude with the R-SEC algorithm
during the simulated change in balance, 2200 rpm.
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Figure 6: Synchronous midspan vibration amplitude with the R-GS algorithm
during the simulated change in balance, 2200 rpm.
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Figure 7: Synchronous vibration amplitudes without adaptive open loop control during
a 30 second run-up from 1200 to 3000 rpm.
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Figure 8: Synchronous vibration amplitudes with the NR-SEC algorithm
during a 30 second run-up from 1200 to 3000 rpm.



Rotor Speed (rpm)

Sy
nc

hr
on

ou
s 

V
ib

ra
tio

n 
(m

ic
ro

ns
)

0

50

100

150

200

250

300

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

Inboard

Outboard

Midspan

Figure 9: Synchronous vibration amplitudes with the R-SEC algorithm
during a 30 second run-up from 1200 to 3000 rpm.
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Figure 10: Synchronous vibration amplitudes with the R-GS algorithm
during a 30 second run-up from 1200 to 3000 rpm.


