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Abstract— In this paper, we consider the problem of keeping
the state of a system outside of an undesired set of states
with probability at least P. We focus on a class of order
preserving systems with a constant input disturbance that is
extracted from a known probability distribution. Leveraging
the structure of the system, we construct an explicit supervisor
that guarantees the system state to be kept outside the undesired
set with at least probability P. We apply this supervisor to a
collision avoidance problem, where a semi-autonomous vehicle
is engaged in preventing a rear-end collision with a preceding
human-driven vehicle, while stopping at a stop sign. We apply
the designed supervisor in simulations in which the preceding
vehicle trajectories are taken from a test data set. Using this
data, we demonstrate experimentally that the probability of
preventing a rear-end collision while stopping at the stop sign
is at least P, as expected from theory. The simulation results
further show that this probability is very close to P, indicating
that the supervisor is not conservative.

I. INTRODUCTION

The problem of designing control strategies that guarantee
the safety of a system, that is, avoidance of a dangerous
set of states, has been studied for many years in the
context of deterministic systems, chiefly by [1]–[3]. This
problem has been solved by deriving the Hamilton-Jacobi-
Bellman equation whose solutions describe the boundary of
the maximal safe controlled invariant set. While in general
computing this set is computationally difficult, a number of
ground transportation systems can be modeled by a special
class of systems, called order preserving systems, that allow
computationally efficient solutions [4]–[8].

When the system model is stochastic, the problem of
designing safety-enforcing controllers has been addressed
only more recently. In particular, the maximum achievable
safety probability for a given initial state for stochastic
nonlinear and hybrid systems has been investigated in [9].
In [10] and [11], the corresponding control policy that
guarantees this maximal safety probability is also provided.
Safety for a given probability P, which is our primary goal
in this work, for a particular class of systems has been
addressed in [20]. This problem is of practical relevance in
a number of application scenarios, including the design of
on-board driver-assist systems that warn/override the driver
to guarantee a prescribed safety level. The application of our
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algorithms to collision avoidance scenarios near stop signs
is the second goal of our work.

The problem of preventing or mitigating collisions near
intersections (signaled or not) is a major focus of research
due to the large number of collisions and fatalities that still
occur today world-wide [12]. For example, in the United
States, over the last several years an average of 21% of the
fatalities and roughly 50% of the serious injuries have been
attributed to intersections [13]. In order to design driver-assist
systems that apply a warning or an override at the right time
when the surrounding vehicles do not communicate, it is
important to have a model of the behavior of these vehi-
cles. Previously, deterministic models were considered for
controller design, wherein the vehicle behavior was modeled
through a set of modes with bounded disturbances capturing
the variability among and within drivers in each mode (see
[4] and [5]). Since driver’s behavior and variability among
drivers is better captured by probabilistic disturbances, we
consider here a model where the disturbance has a probability
distribution, which can be learned from data. This allows to
design warnings and overrides that are less conservative and
can guarantee a given probability of safety.

In [14] and [15], HMMs (Hidden Markov Model) were
employed as a stochastic model for driver behavior for
estimation/prediction purposes. While these models provide
the desired results for estimation/prediction tasks, given
their complexity, they are less suited for real-time control
purposes. In this paper, we therefore consider a simpler
model in which the continuous dynamics are order preserving
and the disturbance inputs are constant parameters distributed
according to a Gaussian probability distribution. With these
assumptions, we provide a control map that can be efficiently
computed on-line for guaranteeing a given probability of
safety P. We apply our algorithms to a collision avoidance
scenario wherein one vehicle needs to stop at a stop sign
while preventing a collision with a preceding human-driven
vehicle. The model of the preceding vehicle is learned from
data gathered from vehicles driving in Ann Arbor (MI).
A different data set for the preceding vehicle trajectories
was used in simulations to emulate the preceding vehicle.
In these simulations, the following vehicle was supervised
through our control algorithm that provided overrides to
ensure a probability of safety P. Simulation results show
that the prescribed probability of safety P (and not more
than P) was indeed ensured validating the algorithms on
experimental data and demonstrating the non-conservatism
of the approach.

This paper is organized as follows. In Section II, we pro-



vide details of the stochastic model, introduce the collision
avoidance application, and formulate the control problems.
In Section III, we solve the control problems and in Section
IV we provide the details of the implementation.

II. STOCHASTIC MODEL

A. System Model

We start with some basic definitions.
Definition 1: For all w,z∈Rn we have that w≤ z (w< z),

if and only if wi ≤ zi (wi < zi) for all i ∈ {1,2, ...,n}, in
which wi denotes the ith component of w. We denote the
piecewise continuous signal on U by S(U ) : R+→U . For
U ⊂ Rm we define the partial order (strict partial order)
by component-wise ordering for all times, that is, for all
w,z∈ S(U ) we have that w≤ z (w< z) provided w(t)≤ z(t)
(w(t) < z(t)) for all t ∈ R+. The map f : P→ Q is order
preserving (strict order preserving) provided if for x,y ∈ P
we have x≤ y (x < y), then f (x)≤ f (y) ( f (x)< f (y)).

Definition 2: A continuous system is a collection Σ =
(X ,U,∆,O, f ,h), with state x ∈ X ⊂ Rn, control input u ∈
U ⊂ Rm, disturbance input d ∈ ∆ ⊂ Rq, output y ∈ O ⊂ X ,
vector field in the form of f : X ×U ×∆→ X , and output
map h : X → O.

Definition 3: For Σ1 = (X1,U1,∆1,O1, f 1,h1) and Σ2 =
(X2,U2,∆2,O2, f 2,h2), we define the parallel composition
Σ = Σ1||Σ2 := (X ,U,∆,O, f ,h), in which X = X1×X2, U :=
U1×U2, ∆ := ∆1×∆2, O := O1×O2, f := ( f 1, f 2) and h :=
(h1,h2).

We denote the flow of a system Σ at time t ∈ R+ by
φ(t,x,u,d), with initial condition x ∈ X , control input signal
u ∈ S(U), and disturbance input signal d ∈ S(∆). We also
denote the ith component of the flow by φi(t,x,u,d).

Definition 4: A continuous system Σ = (X ,U,∆,O, f ,h)
is called input/output order preserving (strict input/output
order preserving) with respect to the control input signal,
if the map h(φ(t,x, ·,d)) : S(U)→ O, for any fixed t, x and
d, is order preserving (strict order preserving).

Definition 5: A continuous system Σ = (X ,U,∆,O, f ,h)
is called input/output order preserving (strict input/output
order preserving) with respect to the disturbance input signal,
if the map h(φ(t,x,u, ·)) : S(∆)→ O, for any fixed t, x and
u, is order preserving (strict order preserving).

In this paper, we consider system Σ∗=Σ1||Σ2, which is the
parallel composition of Σ1 = (X1,U, /0,O1, f 1,h1) and Σ2 =

(X2, /0,∆,O2, f 2,h2), where x1 ∈ X1 ⊂ Rn1
, x2 ∈ X2 ⊂ Rn2

,
u ∈ U = [um,uM] ⊂ Rm, with um ∈ Rm and uM ∈ Rm the
minimal and the maximal control inputs for Σ1, respectively,
d ∈ ∆ = R, y1 ∈ O1, y2 ∈ O2, h1 : X1 → O1, h2 : X2 → O2,
f 1 : X1 ×U → X1 and f 2 : X2 × ∆ → X2. Since ∆1 = /0
and U2 = /0, we represent the flows of systems Σ1 and Σ2

by φ 1(t,x1,u) and φ 2(t,x2,d), respectively. The following
assumptions are made on system Σ∗.

Assumption 1: System Σ1 is input/output order preserv-
ing with respect to the control input and its flow φ 1 is
continuous in all arguments.

Assumption 2: System Σ2 is strict input/output order
preserving with respect to the disturbance input and its flow
φ 2 is continuous in all arguments.

Assumption 3: The disturbance input is a constant with
Gaussian distribution, that is, d(t) := d ∼N (µ,σ2), for all
t ∈ R+.

B. Application Scenario

We consider the scenario of two consecutive vehicles
approaching a stop sign. We assume that the following
vehicle (FV) is equipped with the collision avoidance system,
while the preceding vehicle (PV) is fully human driven. We
consider two types of “collisions”: type (1), the rear-end
collision between the two vehicles; type (2), crossing the stop
sign with a high velocity. We denote longitudinal position
and velocity of PV by xp and vp, respectively. Similarly, x f
and v f are position and velocity of FV, respectively. The
longitudinal position of the stop sign is St and the maximum
allowable velocity of FV at the stop sign is vT . The minimum
allowable distance between the two vehicles is δ > 0. The
scenario is depicted in Figure 1.

Fig. 1: Collision scenarios.

The system model for the application scenario is given by
Σapp :=Σ1||Σ2, where Σ1 and Σ2 are FV and PV, respectively.
Hence, x1 = (x f ,v f )

T , x2 = (xp,vp)
T , y1 = x f , y2 = xp,

h1(x1) = x f and h2(x2) = xp. The deceleration due to the
rolling resistance and the slope of the road of FV are ar and
as, respectively. We let D denote the drag coefficient. We
also assume that the speed of both vehicles is non-negative.
The control input is u ∈U ⊂R, and the disturbance input is
d ∈ R. We define functions f 1(x1,u1) and f 2(x2,u2), where
u1 = u and u2 = d, as follows.

for i ∈ {1,2}, f i(xi,ui) =

{
f̄ i(xi,ui) if vi > 0
0 if vi ≤ 0 , (1)

where v1 = v f and v2 = vp. Also, f̄ 1(x1,u) and f̄ 2(x2,d) are

f̄ 1(x1,u) =
(
v f , u−Dv2

f −ar−as
)T

, (2a)

f̄ 2(x2,d) = (vp, axp +bvp +d)T . (2b)

The term axp+bvp+d is the acceleration of PV. More details
on this model are provided in Section IV. We assume that
d ∼N (µ,σ2), which is consistent with Assumption 3.

Based on Assumption 1, the flow h1(φ 1(t,x1,u)) =
φ 1

1 (t,x
1,u) = x f (t) must be order preserving with respect to



u. In the following proposition, we prove that both x f (t) and
φ 1

2 (t,x
1,u) = v f (t) are order preserving with respect to u.

Proposition 1: The flows φ 1
1 (t,x

1,u) and φ 1
2 (t,x

1,u) of
Σapp are order preserving with respect to the control input.

Proof: (Sketch) We consider two different control input
signals u1 and u2 such that u1 > u2. Then using equation (2a)
and continuity of the flow with respect to time we can prove
that for the velocity of FV at time t corresponding to u1
and u2 starting from the same initial condition, denoted by
v f ,1(t) and v f ,2(t), respectively, we have v f ,1(t)− v f ,2(t) ≥
0. Since x f ,1(t)− x f ,2(t) =

∫ t
0 v f ,1(s)− v f ,2(s)ds, then also

x f ,1(t)− x f ,2(t)≥ 0 (see [19] for more details).
In Proposition 2, we prove that Assumption 2 is also valid

for our application scenario, that is, xp(t)= h2(φ 2(t,x2,d))=
φ 2

1 (t,x
2,d) is strictly order preserving with respect to d.

Proposition 2: The flow φ 2
1 (t,x

2,d) of Σapp is strictly
order preserving with respect to the disturbance input.

Proof: (Sketch) From the definition of f̄ 2(x2,d) in (2b)
we have that the velocity of PV, for vp(t) > 0, satisfies the
differential equation v̈p − bv̇p − avp = 0. We consider two
disturbance signals d1 and d2 such that d1 > d2, and then
by solving the differential equation we can prove that for
any t ∈ R+, for the velocity at time t corresponding to d1

and d2, denoted by vp,1(t) and vp,2(t), respectively, we have
v1

p(t)−v2
p(t)> 0 (see [19] for more details). Since xp,1(t)−

xp,2(t) =
∫ t

0 vp,1(s)− vp,2(s)ds > 0, then xp is strictly order
preserving with respect to the disturbance input d.

C. Problem Formulation

We use Pr(·) to denote the probability. We use dimS to
denote the dimension of a vector space S. The ith row and
jth column of a matrix A is denoted by Ai j. A static feedback
map is represented by π : X →U , where u(t) = π(x(t)). For
a set S⊂ X , we define Sc := {x ∈ X | x /∈ S}.

Assumption 4: Bad set is in the form B = B1∪B2, where

B1 =
N⋃

j=1

{
x ∈ X

∣∣ G j(x1)> g j } and

B2 =
{

x ∈ X
∣∣ Z1h1(x1)−Z2h2(x2)> H

}
,

where Z1 and Z2 are non-negative r× dim(O1) and r×
dim(O2) matrices, respectively, H is a r-dimensional vector,
G j : X1→ Rp j

and g j is a p j-dimensional vector.
Assumption 5: For fixed t ∈ R+, x1 ∈ X1, and j ∈

{1, ...,N}, G j(φ 1(t,x1, ·)) : S(U)→ Rp j
is order preserving.

The two following problems concerned with the proba-
bilistic safety of system Σ∗ must be solved.

Problem 1: For system Σ∗, with Assumptions 1-5 and
P ∈ (0,1), find the open loop maximal safe set given by

W := {x ∈ X | ∃ u ∈ S(U) s.t. Pr(φ(t,x,u,d) /∈ B,

∀t ∈ R+ and d(t)∼N (µ,σ2))≥ P}.
Problem 2: For system Σ∗, with Assumptions 1-5 and

P∈ (0,1), find a control map π : X→U such that for all x∈
W we have Pr(∀t ∈R+ and d(t)∼N (µ,σ2),φ(t,x,u,d) /∈
B)≥ P, where u(t) = π(x(t)).

Since d(t) = d ∼N (µ,σ2), for compactness, throughout
the rest of the paper whenever we refer to d we intend it in
the form of Assumption 3, unless otherwise stated.

If we let Z1 = Z2 = 1, H =−δ , G1(x1)= x1, g1 =(St,vT )
T

and N = 1, the bad set of the application scenario, as depicted
in Figure 1, can be written in the form of Assumption 4.
We have proven in Proposition 1 that the flows of x f and
v f are order preserving with respect to u. Therefore, since
G1(x1) = x1 = (x f ,v f )

T , Assumption 5 is also valid for Σapp.

III. SOLUTIONS

A. Solution to Problem 1

Before proposing the solution, we define the P-safety
capture set.

Definition 6: The P-safety capture set (P ∈ (0,1)) for a
given control input signal u ∈ S(U) is defined as

Cu(P) := {x ∈ X | Pr (∀t ∈ R+,φ(t,x,u,d) /∈ B )< P} .
The following Lemma shows that Cu(P) can be written as

the union of two sets, which is convenient for computational
purposes.

Lemma 1: The P-safety capture set for a given control
input signal u ∈ S(U), for B in the form of Assumption 4,
can be written as Cu = Su

1 ∪Su
2 , where

Su
1 :=

{
x ∈ X

∣∣ Pr
(
∀t ∈ R+,Z1h1(φ 1(t,x1,u))−

Z2h2(φ 2(t,x2,d))≤ H
)
< P

}
,

Su
2 := {x ∈ X | ∃ t ∈ R+,∃ j ∈ {1, ...,N} s.t.

G j(φ 1(t,x1,u))> g j} .
Proof: The bad set based on Assumption 4 is B =

B1∪B2. According to Definition 6, the P-safety capture set
for input signal u for this bad set is given by

Cu(P) = {x ∈ X | Pr (φ(t,x,u,d) /∈ B1∧
φ(t,x,u,d) /∈ B2, ∀t ∈ R+)< P} . (3)

Let the set S be defined as

S := {x ∈ X | ∃ t ∈ R+ s.t. φ(t,x,u,d) ∈ B1}, (4)

which based on Assumption 4 is

{x ∈ X |∃ t ∈R+,∃ j ∈ {1, ...,N} s.t. G j(φ 1(t,x1,u))> g j}.
(5)

We can write (3) in the form of Cu(P) = CS
u(P)∪CSc

u (P),
where for S ∈ {S,Sc} we define

CS
u(P) := {x ∈ S | Pr(φ(t,x,u,d) /∈ B1∧

φ(t,x,u,d) /∈ B2,∀t ∈ R+)< P}. (6)

If x ∈ S, since from Assumption 4 for all j ∈ {1, ...,N},
G j is not function of the disturbance input d, then from (4)
and (5) we have Pr(φ(t,x,u,d) /∈ B1, ∀t ∈ R+) = Pr(∀ j ∈
{1, ...,N},∀t ∈ R+,G j(φ 1(t,x1,u)) ≤ g j) = 0. Therefore, if
x ∈ S we have Pr(φ(t,x,u,d) /∈ B1 ∧ φ(t,x,u,d) /∈ B2,∀t ∈
R+) = 0 < P, which is true for all P ∈ (0,1). This implies
that the capture set, from equations Cu(P) =CS

u(P)∪CSc
u (P)

and (6), can be written as Cu(P) = S∪CSc
u (P).



If x ∈ Sc, similarly, from Assumption 4, equation (4) and
equation (5), we obtain Pr(φ(t,x,u,d) /∈ B1, ∀t ∈ R+) = 1,
which is independent of the event φ(t,x,u,d) ∈ B2. There-
fore, if x ∈ Sc we have

Pr (φ(t,x,u,d) /∈ B1∧φ(t,x,u,d) /∈ B2, ∀t ∈ R+) =

Pr(φ(t,x,u,d) /∈ B1,∀t ∈ R+)Pr(φ(t,x,u,d) /∈ B2,∀t ∈ R+),
(7)

which since Pr(φ(t,x,u,d) /∈B1,∀t ∈R+)= 1, can be written
in the form

Pr (φ(t,x,u,d) /∈ B2, ∀t ∈ R+) . (8)

From equations (6), (7) and (8), the capture set can be written
in the form Cu(P) = S∪{x ∈ Sc | Pr(φ(t,x,u,d) /∈ B2,∀t ∈
R+) < P}. Since for any set S, {x ∈ S |Pr(φ(t,x,u,d) /∈
B2,∀t ∈ R+)< P} ⊂ S, and S∪Sc = X , then

Cu(P) = S∪{x ∈ X |Pr (φ(t,x,u,d) /∈ B2,∀t ∈ R+)< P} .
(9)

If we replace S in (9) with its definition from (4) and (5), and
use the definition of B2 from Assumption 4, we can write
(9) in the form of the statement of the Lemma.

Using the Q-notation [18], the following lemma provides
a convenient way to compute set Su

1 in Lemma 1.
Lemma 2: Let

F t,x,u(d) := Z1h1(φ 1(t,x1,u))−Z2h2(φ 2(t,x2,d)),

with F t,x,u
i denoting the ith component of F t,x,u, and let d̄ :=

µ +σQ−1(P), and the pair (t∗, i∗) (not necessarily unique)
be such that

(t∗, i∗) = arg min
t∈R+

i∈{1,...,r}

(
Hi−F t,x,u

i (d̄)
)
.

Then, we have

Su
1 =

{
x ∈ X

∣∣∣ Hi∗ < F t∗,x,u
i∗ (d̄)

}
.

Proof: (⇒) Since based on Assumption 2, the function
h2(φ 2(t,x2,d)) is strictly order preserving with respect to d,
then based on Assumption 4, Z2h2(φ 2(t,x2,d)) is also strictly
order preserving with respect to d, and since h1(φ 1(t,x1,u))
is not a function of d, then F t,x,u(d) is a strictly decreasing
function of d, and therefore invertible. Hence, we can define(

F t,x,u
i

)−1
(α) :=

{
d ∈ R

∣∣ F t,x,u
i (d) = α

}
. (10)

Using this property and the fact that in this part of the proof
x∈ Su

1 , based on the definition of Su
1 from Lemma 1 we have

Pr
(
∀t ∈ R+,Z1h1(φ 1(t,x1,u))−Z2h2(φ 2(t,x2,d))≤ H

)
=

Pr
(
∀t ∈ R+,F t,x,u(d)≤ H

)
=

Pr
(
∀t ∈ R+,∀i ∈ {1, ...,r},F t,x,u

i (d)≤ Hi
)
=

Pr
(
∀t ∈ R+,∀i ∈ {1, ...,r},d≥ (F t,x,u

i )−1(Hi)
)
=

Pr

d≥ max
t∈R+

i∈{1,...,r}

(F t,x,u
i )−1(Hi)

=

min
t∈R+

i∈{1,...,r}

Pr
(

d≥
(
F t,x,u

i

)−1
(Hi)

)
< P. (11)

We prove that Hi∗ < F t∗,x,u
i∗ (d̄). Assume that by contra-

diction Hi∗ ≥ F t∗,x,u
i∗ (d̄). Then based on the definition of

the pair (t∗, i∗), for all t ∈ R+ and i ∈ {1, ...,r}, we must
have Hi ≥ F t,x,u

i (d̄), which because of the strictly decreasing
property of F t,x,u

i (d) with respect to d, can be written as

∀t ∈ R+, ∀i ∈ {1, ...,r}, (F t,x,u
i )−1(Hi)≤ d̄. (12)

Since based on Assumption 3, for all t ∈ R+ we have
d(t) = d ∼N (µ,σ2), then using the Q-notation and the def-
inition of d̄ we have Pr(d≥ d̄) = P. This relationship along
with equation (12) implies that Pr(d ≥ (F t,x,u

i )−1(Hi)) ≥
P, for all t ∈ R+ and i ∈ {1, ...,r}. This contradicts (11).
Therefore, Hi∗ < F t∗,x,u

i∗ (d̄).
(⇐) If for x∈ X we have Hi∗ < F t∗,x,u

i∗ (d̄), then because of
the strictly decreasing property of F t∗,x,u

i∗ with respect to d,
we have (F t∗,x,u

i∗ )−1(Hi∗) > d̄. This relationship along with
Pr(d ≥ d̄) = P implies that Pr(d ≥ (F t∗,x,u

i∗ )−1(Hi∗)) < P,
which because of the strictly decreasing property of F t∗,x,u

i∗

with respect to d, can be written as Pr(Hi∗ ≥ F t∗,x,u
i∗ (d))< P.

Since Pr(∀t ∈R+, ∀i∈ {1, ...,r}, Hi≥F t,x,u
i (d))≤Pr(Hi∗ ≥

F t∗,x,u
i∗ (d)), then we have

Pr(∀t ∈ R+, ∀i ∈ {1, ...,r}, F t,x,u
i (d)≤ Hi) =

Pr(∀t ∈ R+, F t,x,u(d)≤ H)< P. (13)

If we replace F t,x,u(d) in (13) with its definition from the
statement of the lemma, we conclude x ∈ Su

1 .
Lemmas 1 and 2 together provide a means to compute the

capture set. These lemmas are used to prove the following
theorem and in Section IV to provide algorithmic procedures
for the computation of the capture set.

Theorem 1: For system Σ∗, with Assumptions 1-5, x∈W
if and only if x /∈Cum(P).

Proof: (⇐) If x /∈Cum(P) then x ∈Cc
um(P). Therefore,

Pr(φ(t,x,um,d) /∈ B, ∀t ∈ R+)≥ P, which implies x ∈W .
(⇒) If x ∈W , then there is control input signal u′ ∈ S(U)

such that Pr(φ(t,x,u′,d) /∈B,∀t ∈R+)≥P. If we replace the
relation “<” in Definition 6 with “≥”, and use the results of
Lemmas 1 and 2, we conclude that for x ∈W we must have
that there is control input signal u′ ∈ S(U) such that

Pr(∀t ∈R+,Z1h1(φ 1(t,x1,u′))−Z2h2(φ 2(t,x2,d))≤H)≥ P

and ∀t ∈ R+, ∀ j ∈ {1, ...,N}, G j(φ 1(t,x1,u′))≤ g j. (14)

We prove that x /∈Cum(P). Assume that by contradiction x ∈
Cum(P), then based on Lemmas 1 and 2, at least one of the
following cases must hold. Case (1): Hi∗ <F t∗,x,um

i∗ (d̄), where

(t∗, i∗) = arg min
t∈R+

i∈{1,...,r}

(
Hi−F t,x,um

i (d̄)
)

; (15)

or Case (2): there is a time t ∈R+ and a j ∈ {1, ...,N} such
that G j(φ 1(t,x1,um))> g j.

Case (1): If x ∈ W , then according to (14) and Lemma



2 (with relation “<” replaced with “≥”), there is a control
input signal u′ ∈ S(U) such that Hi′ ≥ F t ′,x,u′

i′ (d̄), where

(t ′, i′) = arg min
t∈R+

i∈{1,...,r}

(
Hi−F t,x,u′

i (d̄)
)
. (16)

If Hi′ ≥ F t ′,x,u′
i′ (d̄), then according to (16) we also have Hi∗ ≥

F t∗,x,u′
i∗ (d̄). This result along with equation Hi∗ < F t∗,x,um

i∗ (d̄),
which is the main assumption in Case (1), implies that
F t∗,x,u′

i∗ (d̄)≤Hi∗ < F t∗,x,um
i∗ (d̄), which based on the definition

of F t∗,x,um
i∗ and F t∗,x,u′

i∗ from Lemma 2 can be expanded to

dim(O1)

∑
l1=1

Z1
i∗l1h1

l1(φ
1(t∗,x1,u′))−

dim(O2)

∑
l2=1

Z2
i∗l2h2

l2(φ
2(t∗,x2, d̄))<

dim(O1)

∑
l3=1

Z1
i∗l3h1

l3(φ
1(t∗,x1,um))−

dim(O2)

∑
l4=1

Z2
i∗l4h2

l4(φ
2(t∗,x2, d̄))

⇒
dim(O1)

∑
l=1

Z1
i∗l
[
h1

l (φ
1(t∗,x1,u′))−h1

l (φ
1(t∗,x1,um))

]
< 0.

(17)
Since um is the minimal control input and based on As-
sumption 1, h1 is an order preserving function of u, then
for all l ∈ {1, ...,dim(O1)} we have h1

l (φ
1(t∗,x1,u′)) −

h1
l (φ

1(t∗,x1,um))≥ 0. In turn, from Assumption 4 we have
Z1

i∗l ≥ 0. These two statements together contradict (17).
Therefore, Hi∗ ≥ F t∗,x,um

i∗ (d̄) and Case (1) cannot hold.
Case (2): If x ∈ Cum(P), then based on Lemma 1 we

must have a time τ ∈ R+ and a j ∈ {1, ...,N} such that
G j(φ 1(τ,x1,um))> g j. Because of the order preserving prop-
erty of function G j(φ 1(τ,x1,u)) with respect to u based on
Assumption 5, for all u ∈ S(U) we have G j(φ 1(τ,x1,um))≤
G j(φ 1(τ,x1,u)). Therefore, if G j(φ 1(τ,x1,um)) > g j, then
we also have G j(φ 1(τ,x1,u)) > g j for all u ∈ S(U). Since
x ∈ W , then based on (14) there is also a control in-
put signal u′ ∈ S(U) such that for all t ∈ R+ and j ∈
{1, ...,N}, G j(φ 1(t,x1,u′))≤ g j. Since this statement is valid
for all t ∈ R+, then G j(φ 1(τ,x1,u′) ≤ g j, which contra-
dicts our previous statement that for all u ∈ S(U) we have
G j(φ 1(τ,x1,u)) > g j. Therefore, there is no j ∈ {1, ...,N}
and τ ∈ R+ such that G j(φ 1(τ,x1,um)) > g j. This implies
that Case (2) cannot hold. Since neither of Case 1 or Case
2 holds, then x 6∈Cum(P).

B. Solution to Problem 2

We define the boundary of a set C as ∂C =Cl(C)∩Cl(Cc),
where Cl(C) represents the closure of the set C. We consider
the feedback control map

π(x) =
{

U if x /∈ {Cum(P)∪∂Cum(P)}
um if x ∈ {Cum(P)∪∂Cum(P)}

, (18)

and state the following theorem.
Theorem 2: For system Σ∗, with Assumptions 1-5, for

all x ∈W the feedback map π : X →U , as defined in (18),
guarantees that Pr(φ(t,x,u,d) /∈ B,∀t ∈ R+)≥ P.

Proof: Recall that d(t) ≡ d for some d ∼N (µ,σ2).
Setting d̄ = µ +σQ−1(P), this implies that Pr(d(t)≥ d̄, ∀t ∈
R+) = P. Consequently, it suffices to show that

φ(t,x,u,d) /∈ B, ∀t ∈ R+, ∀d ≥ d̄.

We do this with a contradiction argument. Assume therefore
that there exist d ≥ d̄ and t∗ ∈ R+ such that

φ(t∗,x,u,d) ∈ B. (19)

As B⊂Cum(P), it is clear that φ(t∗,x,u,d) ∈Cum(P). Defin-
ing t̄ = sup{t ∈ [0, t∗] | φ(t,x,u,d) ∈ Cum(P)

c}, it follows
from the continuity of the flow with respect to time that
x̄ = φ(t̄,x,u,d) ∈ ∂Cum(P). Moreover, by the very definition
of t̄ and the static feedback controller π , u(t) = um for
all t ≥ t̄. Next notice that Cum(P) is open. Indeed this is
a consequence of Lemma 1 and Lemma 2. Openness of
Cum(P) together with these Lemmas implies in turn that for
all j ∈ {1, . . . ,N} and t ∈ R+, there exist k ∈ {1, . . . ,r} and
i ∈ {1, . . . ,q} such that

F t,x̄,um
k (d̄)≤ Hk and G j

i (φ
1(t, x̄1,um))≤ g j

i . (20)

Finally, by the order preserving property of d→ φ 2(t,x,d),
this implies also that

F t,x̄,um
k (d)≤ Hk, ∀t ∈ R+. (21)

However, (20)-(21) assure that φ(t,x,u,d) /∈ B for all t ≥ t̄
contradicting (19).

IV. IMPLEMENTATION AND SIMULATION

A. Algorithm

Based on Theorem 2, if we can calculate Cum(P), then
equation (18) provides a control map that guarantees the
minimum safety P. Also, Lemma 1 and Lemma 2 together
provide us with a relationship that can be used to compute
the capture set. For u = um we have

Cum(P) = Sum
1 ∪Sum

2 , (22)

where Sum
1 and Sum

2 can be computed from Lemma 2 and
Lemma 1, respectively.

Equation (22) requires to determine mint∈R+(Hi −
F t,x,um

i (d̄)) and to check whether there is a t ∈R+ such that
G j(φ 1(t,x1,um)) > g j. The following assumption allows us
to determine such a minimum and to check the existence of
such t on a bounded time interval (0,τ] with known τ .

Assumption 6: Let u1 = u and u2 = d, then f 1(x1,u) and
f 2(x2,d) in system Σ∗ are in the following form:

for i ∈ {1,2}, f i(xi,ui) =

{
f̄ i(xi,ui) if d

dt hi(xi)> 0
0 if d

dt hi(xi)≤ 0
,

and there is a finite time τ ∈ (0,∞) such that τ = min{t ∈
R+ | d

dt h1(φ 1(t,x1,um)) = 0}.
Note that functions f 1(x1,u) and f 2(x2,d) of Σapp are in

the above form. Moreover, we can set a um such that for all
t ∈R+, um−Dv2

f (t)−ar−as < 0. Since d
dt h1(φ 1(t,x1,um))=

v f (t) and v̇ f (t)= um−Dv2
f (t)−ar−as, we can guarantee that

τ is a finite time, which physically relates to the fact that a



continuous braking effort will make the velocity of FV reach
zero in a finite time.

Proposition 3: Assumption 6 leads to the following rela-
tionship

min
t∈R+

i∈{1,...,r}

(
Hi−F t,x,um

i (d̄)
)
= min

t∈(0,τ]
i∈{1,...,r}

(
Hi−F t,x,um

i (d̄)
)
. (23)

Also, for any j ∈ {1, ...,N}, there is a t ∈ R+ such that
G j(φ 1(t,x1,um))> g j, if and only if there is a t ∈ (0,τ] such
that G j(φ 1(t,x1,um))> g j.

Proof: In the first part, we prove that equation (23)
holds. Based on the model of Σ∗ and Assumption 6, for all
t > τ we have ẋ1(t) = φ̇ 1(t,x1,um) = 0. Therefore,

Z1 d
dt

h1(x1(t))−Z2 d
dt

h2(x2(t)) = Z1Jh1(x1(t))ẋ1(t)−

Z2 d
dt

h2(x2(t)) =−Z2 d
dt

h2(x2(t)), (24)

where Jh1(x1(t)) is the Jacobian of function h1 defined as
Jh1(x1(t))i j =

∂h1
i

∂x1
j
. Since d

dt h2(x2(t)) = Jh2(x2(t))ẋ2(t), then

based on Assumption 6 we have that d
dt h2(x2(t))≥ 0. Based

on (24), the definition of F t,x,um(d̄), and the fact that Z2 is
non-negative, this implies that for all t ≥ τ we have d

dt (H−
F t,x,um(d̄)) = − d

dt (F
t,x,um(d̄)) = Z2 d

dt h2(x2(t)) ≥ 0. There-
fore, argmint∈R+(H−F t,x,um(d̄))∈ (0,τ], which implies that
(23) holds. In the next part, we prove that for a j ∈ {1, ...,N}
there is a t ∈R+ such that G j(φ 1(t,x1,um))> g j, if and only
if there is a t ∈ (0,τ] such that G j(φ 1(t,x1,um))> g j.

(⇒) We assume that there is a t ∈ R+ and j ∈ {1, ...,N}
such that G j(φ 1(t,x1,um)) > g j, and by contradiction t /∈
(0,τ]. This implies that we must have for all t ∈ (0,τ]
and j ∈ {1, ...,N}, G j(x1(t)) ≤ g j, while there is a t∗ ∈
(τ,∞) such that G j(x1(t∗)) > g j. Therefore, G j(x1(t∗)) >
maxt∈(0,τ] G j(x1(t)). For all t ≥ τ we have d

dt G j(x1(t)) =
JG j(x1(t))ẋ1 = 0, where JG j(x1(t)) is the Jacobian of
function G j. This implies that G j(x1(t∗)) = G j(x1(τ)),
which contradicts our previous statement that G j(x1(t∗)) >
maxt∈(0,τ] G j(x1(t)). Therefore, t ∈ (0,τ].

(⇐) If there is a time t ∈ (0,τ] and a j ∈ {1, ...,N} such
that G j(x1(t)) > g j, since (0,τ] ⊂ (0,∞), the relationship
t ∈ (0,∞) is trivially satisfied.

In order to implement the feedback map (18), we use a
discrete-time algorithm. We use the forward Euler approxi-
mation for discretization. The time step size is denoted by
∆t. We also denote the state of the system at step k by
x[k] = (x1[k],x2[k])T . Therefore, x(k∆t) = x[k], where x(k∆t)
is the state of the system at time k∆t in the continuous-time
model. We also define the function Fi[k] as follows.

Fi[k] :=
dim(O1)

∑
l1=1

Z1
il1h1

l1(x
1[k])−

dim(O2)

∑
l2=1

Z2
il2h2

l2(x
2[k]). (25)

All other notations are similar to the continuous-time model.
Note that x1[k] and x2[k] in (25) depend on the initial
condition and the inputs. Algorithm 1 shows the discrete-
time implementation of (18).

Algorithm 1 Control Feedback Computation

Require: x[0] = (x1[0],x2[0])T : the current state.
u[0]: the current input to the system.
d̄← µ +σQ−1(P) (use z-table for Q−1(P) [16])
k← 0
x[k+1]← x[k]+∆t( f (x[k],u[0], d̄))
while d

dt h1(x1[k]) = h1(x1[k+1])−h1(x1[k])
∆t > 0 do

for i = 1 to i = r do
if Hi−Fi[k]≤ 0 then

u← um, STOP.
end if

end for
for j = 1 to j = N do

if G j(x1[k])−g j ≥ 0 then
u← um, STOP.

end if
end for
k← k+1
x[k+1] = x[k]+∆t( f (x[k],um, d̄))

end while
u ∈U

B. Simulations and Data Analysis

Figure 2 shows the path that was used to generate the
data for both identifying the parameters of PV model, that
is, a, b, µ and σ in equation (2b) (note that in equation (2b),
d ∼N (µ,σ2)), and validating our algorithm. This path is

Fig. 2: The path that is used for data acquisition.

located in Ann Arbor, Michigan, and it is 11 km long and
consists of 30 study areas. The study area is a part of the
road at which the driver frequently reduces his/her speed
such as intersections, roundabouts or stop signs. The data of
any of these regions is used to identify the model parameters.
At each study area, the vehicle software provides the relative
distance to the study area’s lowest velocity point St−x f (e.g.,
the stop sign at an intersection), and the vehicle’s lowest
velocity vT . Position and speed of our test vehicle at study
areas are depicted in Figure 3.

We have used the least squares method to calculate the
parameters a, b, µ and σ from the data of 420 trajectories,
as depicted in Figure 3. In particular, using equations (1) and



(a) (b)

Fig. 3: Trajectories of position and speed of 420 profiles
of the test vehicle at study areas [units and numbers are
removed as they are proprietary information].

(2b) for vp[k]≥ 0 we have[
xp[k+1]
vp[k+1]

]
=

[
xp[k]+∆tvp[k]

vp[k]+∆t(axp[k]+bvp[k]+µ)

]
. (26)

By replacing xp[k] in the second equation of (26) with
xp[k− 1] + ∆tvp[k− 1], we obtain vp[k + 1] = a(∆txp[k−
1]+∆t2vp[k−1])+(1+b∆t)vp[k]+µ∆t. We define the new
parameters a′ = a, b′ = 1 + b∆t and µ ′ = µ . Minimizing
the mean square error for speed leads to the following
optimization problem:

min
X
||CX−D||2, with X = (a′,b′,µ ′)T , (27)

where C(1,1)=∆txp[1], C(1,2)= vp[1], C(1,3)=∆t, and for
k≥ 2 we have C(k,1) = ∆txp[k−1]+∆t2vp[k−1], C(k,2) =
vp[k], C(k,3) = ∆t, D(k−1) = vp[k], and the variance can be
computed using

σ
2 =

∑
Nd
i=1

∣∣axp[i]+bvp[i]+µ−ap[i]
∣∣2

Nd
,

where Nd is the number of data points.
In order to test that Algorithm 1 can save the vehicles

from collisions 100P% of the total collision instances, we
determined the empirical safety level as follows. By the law
of large numbers, for an event x with mean µ we have
Pr(limT→∞

N
T = µ) = 1, where N

T is the fraction of times in T
trials that the event x has been observed. We then generated
an initial condition for FV and chose a trajectory for PV
among our available data, which consists of 420 trajectories,
randomly, for T times. Based on the law of large numbers,
for a large T we expect to observe approximately (1−P)T
number of collisions. The logic diagram of our tests is shown
in Figure 4. The result of running the algorithm for T =10000
times is shown in Table I, where we can see the empirical
safety level is very close to the safety level that the feedback
map (18) provides, validating our supervisor design. In

Safety (100P%) Tests (T ) Empirical safety (100(1− N
T ))

70% 10000 72.2%
80% 10000 82.3%
90% 10000 91.7%

TABLE I: Result of running the test of Figure 4 for P = 0.7,
P = 0.8 and P = 0.9, each for 10000 times.

Fig. 4: Test to evaluate the safety of the system.

order to verify that the parameters are not overfitted, we must
check how a model that is constructed based on a limited set
of data will respond to a new dataset. We use the k-fold cross
validation method, as introduced in [17], with k = 10. Thus,
we partition our available data of 420 trajectories, depicted
in Figure 3, into 10 groups (each group with 42 trajectories)
and solve the minimization problem (27) using the data of
9 groups and run the tests of Figure 4 on the 10th group.
We repeat this for all 10 groups and compare their average
empirical safety level with the expected safety level as we
have done in Table I. The result is shown in Table II. Table

Safety (100P%) 70% 80% 90%
Group 1 67.8% 80.3% 88.9%
Group 2 69% 79.8% 90.3%
Group 3 68.8% 80.1% 89.2%
Group 4 72.1% 81.3% 92.1%
Group 5 71.3% 80.2% 91.1%
Group 6 69.8% 78.3% 90.5%
Group 7 71.1% 80.3% 93%
Group 8 68.3% 79.5% 92.1%
Group 9 70.4% 80% 91.2%
Group 10 70.3% 80.3% 88.9%
Average 69.89% 80.1% 90.73%

TABLE II: Result of 10-fold cross validation.

II shows that the model parameters a, b, µ and σ are not
overfitted, since the algorithm leads to an empirical safety
level 1− N

T close to P independent of the training data.
Since we have identified the parameters based on the

data of the test vehicle, we have to verify that this model
guarantees the minimum P-safety when the measurements
of position and speed of PV are obtained through radar, as
vehicles appear randomly in front of FV (the test vehicle). In
Table III, we show the results. In this case, 68 trajectories of
PV have been used. Table III shows that although we have
identified the parameters based on the data of the test vehicle,
they still can be used to ensure the desired safety level in
the presence of the randomly appearing PVs detected from
radar.

In Figure 5, we show the results of simulations for an



Safety (100P%) Tests (T ) Empirical safety (100(1− N
T ))

70% 5000 70.2%
80% 5000 79.8%
90% 5000 91.1%

TABLE III: Results of running the test of Figure 4 for data
of PV with the model built based on the data of the test
vehicle.

arbitrary trajectory of PV chosen from our data for P = 0.8,
P = 0.98 and the deterministic model as was suggested in
[4] and [5]. Figure (5-a) shows the relative distance between
vehicles, and Figure (5-b) shows v f . In Figures (5-c) and (5-
d), we have plotted the control input. In Figure (5-d), we have
used a counter that keeps the control input um on for at least
1s whenever the system exits Cum . This way, as we can see
from the plots, the number of switches between um and u∈U
has reduced significantly in Figure (5-d) compared to Figure
(5-c). From all plots, it is clear that the deterministic model
is more conservative than the stochastic one, and P = 0.98
is more conservative than P = 0.8.

(a) (b)

(c) (d)

Fig. 5: Simulation results [units and numbers are removed
as they are proprietary information].

V. CONCLUSIONS
In this work, we have provided a control feedback map that

guarantees the safety of a class of stochastic order preserving
systems with the minimum probability P. The results of
Table I show that the safety probability is actually very close
to P, indicating that the feedback map is not conservative.
Table II shows that the parameters are not overfitted, and
Table III further indicates that the parameters can be safely
identified through data of a test vehicle and still capture
behaviors of PV as obtained through radar.

Algorithm 1 along with an algorithm that provides both

warnings to drivers and automatic brake, is eventually being
implemented on a Prius vehicle. As part of the future works,
we will investigate different models for the acceleration of
PV instead of the linear function, in order to provide even
more accurate models.
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