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Differential Diversity-Embedding
Space-Time Block Coding for 2 and 4 Transmit Antennas

Payam Rabiei, Student Member, IEEE and Naofal Al-Dhahir, Fellow, IEEE

Abstract—Diversity-Embedding Space-Time Block Coding
(DE-STBC), introduced in [1], enables Unequal Error Protection
(UEP) using multiple transmit antennas. Even though these codes
do not require channel state information (CSI) at the transmitter,
they do need it at the receiver for decoding. A novel differential
DE-STBC scheme is proposed in this paper to eliminate the need
for channel estimation at the receiver which is especially costly
with multiple transmit and receive antennas. Most previously
proposed differential schemes in the literature are based on
orthogonal STBC and hence are not applicable to the non-
orthogonal family of DE-STBC considered in this paper.

Index Terms—Diversity embedding, differential detection de-
coding, throughput, unequal error protection, space-time coding.

I. INTRODUCTION

ACCURATE channel state information (CSI) is required in
a coherent communication system to enable reliable de-

coding at the receiver. Channel estimation, however, could be a
difficult task especially in a multi-input multi-output (MIMO)
systems. This is due to the increased number of channel
parameters to be estimated while the total transmitted power
stays the same. Eliminating channel estimation overhead and
complexity motivates differential schemes [6], [7], [8], [11]
at the expense of some performance loss. Most previous
works on differential STBC, are based on Orthogonal STBC
(OSTBC) [6], which utilize orthogonal matrices to encode
information symbols and suffer the minimum performance loss
(about 3-dB at high SNR) from coherent decoding. These
works are not applicable to the non-orthogonal DE-STBC
class of codes which provide an unequal error protection
(UEP) capability by assigning different diversity levels to the
information symbols [1], [3], [4]. By sacrificing some diversity
for the less-important information symbols, an overall rate-
increase is achieved. In DE-STBC, information symbols are
transmitted in layers, each operating at a suitable rate-diversity
trade-off point according to its quality of service (QoS)
requirements. This establishes a form of wireless communi-
cations where the high-rate layer makes opportunistic use of
good channel conditions to achieve high throughput, while the
embedded high-diversity layer ensures that at least the high-
priority symbols are decoded reliably. We emphasize that DE-
STBC is an open-loop transmission scheme and hence CSI
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knowledge at the transmitter is not required. The objective of
this paper is to design a differential DE-STBC scheme that
eliminates the need for CSI at the receiver as well.

There are two major challenges in designing differential
schemes for non-orthogonal STBC (such as DE-STBC). First,
we need to properly normalize the transmitted codewords to
ensure a fixed transmission energy and to guarantee that the
generated codewords do not blow up or diminish with repeated
application of the differential encoding rule. Furthermore,
this energy-normalizing factor is time-varying and must be
estimated and tracked at the receiver for reliable differential
decoding. Second, due to the non-orthogonal nature of DE-
STBC, the performance loss of the differential scheme from
its coherent counterpart could be significant (more than the
minimum 3 dB achieved with orthogonal STBC). In this paper,
we study these two problems and propose effective solutions
for both. The rest of the paper is organized as follows:
in Section II we define the system model and introduce a
DE-STBC design for 2 transmit antennas. In Section III,
we present the mathematical formulation of the proposed
differential scheme. Section IV generalizes our results to 4
transmit antennas and shows how to reduce the complexity
of the naive exhaustive search decoding. In Section V, we
discuss system design trade-offs. Finally, simulation results
are provided in Section VI.

II. SYSTEM MODEL

Consider a wireless communication system with M trans-
mit antennas and N receive antennas over a Rayleigh flat-
fading channel. The assumption of fixed channel during at
least two block transmissions is necessary to establish reliable
differential decoding at the receiver. The received signal is
an N × T matrix Rk whose (n, t) element rk

n,t is the
received symbol by antenna n at time slot t during kth block
where T is the block time duration. We define Uk as the kth
transmitted block of size M × T whose (m, t) element uk

m,t

is the transmitted symbol by antenna m in time slot t. The
channel is a quasi-static N× M matrix Hk whose entries are
assumed to be the samples of independent complex Gaussian
random variables with zero mean and variance of 0.5 per real
dimension. We have

Rk = HkUk + Zk (1)

where the elements of the noise vector Zk are assumed to be
zero-mean complex Gaussian random variables with variance
σ2 = 1

2SNR per real dimension. As a concrete example, we
start with the following DE-STBC codeword design for 2
transmit antennas proposed in [3] and develop its differential
encoding/decoding scheme and assume, for simplicity, one
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receive antenna (N = 1).

Ck =
[

ak
0 bk

0/Γ
−bk∗

1 /Γ ak∗
0

]
(2)

where (.)∗ denotes complex conjugation, ak
0 ∈ A and

(bk
0 , bk

1) ∈ B are the kth information symbols carved from
unit-energy QPSK signal sets A and B, and Γ > 1 is an
energy scaling factor to be optimized as a function of the
constellation size.1 It was shown in [3] that the diversity order
of information symbol ak

0 is 2 while that of bk
0 and bk

1 is 12.
The bit error rate (BER) performance of both diversity layers
depends on the choice of the scaling factor Γ. We will show
that by proper choice of Γ, we can reduce the performance gap
between coherent and differential decoding while ensuring that
the performance of the lower-diversity layer B still satisfies
a prescribed QoS level. The average transmitted energy in
the proposed differential scheme is normalized during each
block transmission where the energy normalizers are time-
varying due to the non-orthogonal structure of the codewords.
Therefore, they must be estimated at the receiver, which results
in further performance loss due to estimation errors and the
possible propagation of these errors through a received frame
of data.

III. DIFFERENTIAL ENCODING AND DECODING

In this section, we present our proposed differential encod-
ing/decoding scheme.

A. Differential Encoding

As we discussed in the previous section, the total transmit-
ted energy from all antennas is constrained to be a constant
independent of M ; i.e.

E

[
T∑

t=1

M∑
m=1

|uk
m,t|2
]

= T (3)

where E[.] is the expectation operation. The differential
scheme is initialized by transmitting U0 = I2, where I2 is
the 2 × 2 identity matrix, and proceeds as follows

V k = Uk−1Ck (4)

Uk =
V k

√
ek

(5)

where Uk−1 and Uk are the transmitted codewords at times
k − 1 and k, respectively, and ek is the energy normalizer
i.e. ek = tr{V kV kH}

T where tr{.} denotes the trace of the
matrix and (.)H is the Hermitian transpose. Hence, the energy

1For simplicity, our focus in this paper is on QPSK signal constellations
but our development is also applicable to any PSK constellation.

2These diversity orders assume coherent decoding. Deriving the diversity
orders for differential decoding is more challenging since the non-orthogonal
DE-STBC considered in this paper do not form a multiplicative group. Hence,
repeated multiplication of the codewords during differential encoding causes
the transmitted codewords to lose their special structure that enabled us to
prove the diversity orders in the coherent case.

constraint in (3) is satisfied since

E

[
T∑

t=1

M∑
m=1

|uk
m,t|2

]
= E
[
tr
{
UkUkH

}]
= E

[
tr

{
V kV kH

tr{V kV kH}
T

}]

= E
[

T

tr{V kV kH} tr{V kV kH}
]

= T

(6)

The corresponding received signal vectors over block trans-
missions k and k − 1 are

[Rk Rk−1] = [HkUk Hk−1Uk−1] + [Zk Zk−1] (7)

Substituting (4) and (5) into (7) and applying the quasi-static
channel assumption i.e. Hk = Hk−1, the kth received signal
block can be expressed in terms of the previously-received
block as follows

Rk =
Rk−1Ck

√
ek

+ Z̃k (8)

where

Z̃k = Zk − Zk−1Ck

√
ek

(9)

which has a variance of

σ̃2 = σ2

(
1 +

1
Tek

tr{CkCkH}
)

= σ2

(
1 +

(1 + 1/Γ2)
ek

)
(10)

which shows that the equivalent noise variance seen by the
differential decoder depends on Γ. Moreover, we can see
from (2) and (10) that as Γ increases, Ck tends towards an
orthogonal STBC with 3dB performance loss from coherent
decoding. Note that ek = 1 for orthogonal STBC and m-PSK
constellations. Mathematically

lim
Γ→∞

tr{CkCkH}
T

= lim
Γ→∞

tr

{[
1 + 1

Γ2
a0
Γ

(b0 − b1)
a∗
0
Γ

(b∗0 − b∗1) 1 + 1
Γ2

]}
2

= lim
Γ→∞

(
1 +

1

Γ2

)
= 1

(11)

B. Differential Decoding

Due to the non-orthogonality of DE-STBC, Maximum
Likelihood (ML) decoding can not be performed using simple
matched filtering as in orthogonal STBC and an exhaustive
search is needed whose complexity increases exponentially
with the constellation size and the number of transmit anten-
nas. Starting from (7) we can derive the ML decoding rule for
our non-orthogonal differential DE-STBC as follows

R �
[
Rk Rk−1

]
= Hk

[
Uk Uk−1

]
+
[
Zk Zk−1

]
= Hk

[
Uk−1Dk Uk−1

]
+
[
Zk Zk−1

]
= HkUk−1

[
Dk I

]
+
[
Zk Zk−1

]
� HG + Z

(12)

where H � HkUk−1 and Dk = Ck√
ek

. Since Z =[
Zk Zk−1

]
is AWGN and independent of G, we can write
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the exact ML decoding metric as follows

JML = arg min ‖R − HG‖2 (13)

which can be equivalently written as

JML = argmin
{‖Rk − HDk‖2 + ‖Rk−1 − H‖2

}
(14)

We can eliminate the dependence of JML on H = HkUk−1

by differentiating JML with respect to H to find the choice
of H which minimizes JML. Using the following identity on
the derivative of a quadratic function of a matrix with respect
to that matrix

∂(AX + b)HC(DX + e)

∂X
= (DX + e)HCHA + (AX + b)HCD

and equating to zero we get

0 =
∂JML

∂HkUk−1

=
∂
(
Rk − HkUk−1Dk

) (
Rk − HkUk−1Dk

)H
∂HkUk−1

+
∂
(
Rk−1 − HkUk−1

) (
Rk−1 − HkUk−1

)H
∂HkUk−1

=
(
Rk − HkUk−1Dk

) (
−DkH

)
+
(
Rk−1 − HkUk−1

)
(−1)

+
[(

−Dk
) (

RkH − DkHUk−1HHkH
)]H

+
[
(−1)

(
Rk−1H − Uk−1HHkH

)]H
= 2
(
Rk − HkUk−1Dk

) (
−DkH

)
− 2
(
Rk−1 − HkUk−1

)
= −RkDkH + HkUk−1DkDkH − Rk−1 + HkUk−1

= −
(
RkDkH + Rk−1

)
+ HkUk−1

(
I + DkDkH

)
(15)

Therefore, we can solve for the optimum choice of HkUk−1

from (15) to be

HkUk−1 =
(
RkDkH + Rk−1

) (
I + DkDkH

)−1
(16)

Substituting back in (14) for HkUk−1, the exact ML differ-
ential decoding metric is given by

JML = min
∥∥Rk − (RkDkH + Rk−1)(I + DkDkH)−1Dk

∥∥2
+ ‖Rk−1 − (RkDkH + Rk−1)(I + DkDkH)−1‖2

(17)

This metric is very complex to implement so the approximate
ML decoder can be derived by minimizing the suboptimal3

metric from (8) as follows

J approx

ML = arg min
ak
0 ,bk

0 ,bk
1

∥∥∥∥Rk − Rk−1Ck

√
ek

∥∥∥∥2 (18)

The performance of J approx

ML metric is compared with JML in
Fig.5 for Γ = 1.5 and 3. It is seen that for Γ = 1.5,
there is a small performance gap of about 0.5dB, however,
as Γ increases, this gap becomes negligible. The reason is
that JML collapses to J approx

ML for orthogonal STBC4 and m-
PSK constellations and since for large Γ, the off-diagonal
elements of Ck shrink to zero and the matrix becomes unitary,

3This metric is suboptimal since the equivalent noise term Z̃k in (8) is not
white and is dependent on Ck as evident from (9).

4This can be easily verified by substituting DkDkH = I2 in (17).

hence J approx

ML and JML are equivalent. The estimate of ek, at
the receiver denoted by êk, is calculated by differentially re-
encoding Ĉk when minimizing J approx

ML

V k = Uk−1Ĉk (19)

where V k and Uk−1 are the reconstructed matrices at the
receiver, representing V k and Uk−1, respectively. The estimate
of ek at the receiver is calculated as follows

êk =
tr{V kV kH}

T
=

E
[∑T

t=1

∑M
m=1 |vk

m,t|2
]

T
(20)

Error propagation could arise here because the estimated
codeword Ĉk is used to calculate V k.

IV. EXTENSION TO 4-TRANSMIT ANTENNAS

In this section, we present a DE-STBC construction for 4
transmit antennas which allows a reduced-complexity hybrid
maximum likelihood interference cancellation (HMLIC) de-
coding at the receiver without any performance loss from the
approximate ML decoding rule in (18). The codeword for the
2-transmit-antenna case in (2) is used as a building block to
form a 4 × 4 codeword as follows

Ck
4×4 =[
Ak Ck

(Ck)H (Ak)H

]
=

⎡⎢⎢⎣
ak
0 ak

1 ak
2 bk

0/Γ
−ak∗

1 ak∗
0 −bk∗

1 /Γ ak
2

ak∗
2 −bk

1/Γ −ak∗
0 ak

1

bk∗
0 /Γ −ak∗

2 ak∗
1 ak

0

⎤⎥⎥⎦
(21)

where Ak is a 2 × 2 Alamouti codeword [2]. We define
two diversity layers A and B where (ak

0 , ak
1 , a

k
2) ∈ A and

(bk
0 , bk

1) ∈ B. The rates of layers A and B are 3
4 and 1

2 ,
respectively, and the total code rate is 5

4 . It can be shown
[4] that with ML coherent decoding, diversity orders of 4
and 2 are achieved by Layers A and B, respectively. The
HMLIC decoding algorithm performs an exhaustive search
over layer B symbols followed by canceling their interference
from the original received vector. Then, layer A symbols
are decoded by performing a simple matched filtering (MF)
operation. Since the equivalent channel matrix (after canceling
the interference from layer B) is orthogonal, no performance
loss is incurred due to MF operation. Finally, from all the
codeword candidates, we select the one that results in the
smallest value for the approximate simple ML metric in (18).
Assuming one receive antenna, the received signal is given by

Rk =
Rk−1Ck

4×4√
ε̂k

+ Ẑk (22)

where ε̂k is the energy normalizer estimate for the 4-transmit-
antenna code. Note that ε̂k can be computed analogous to
êk in (20). The modified received symbols are computed by
cancelling the interference of the decoded symbols (b̂k

0 , b̂
k
1)

from the original received vector as follows

r
′k
1 = rk

1 − rk−1
4

b̂k∗
0

Γ
√

εk
; r

′k
2 = rk

2 + rk−1
3

b̂k
1

Γ
√

εk

r
′k
3 = rk

3 + rk−1
2

b̂k∗
1

Γ
√

εk
; r

′k
4 = rk

4 − rk−1
1

b̂k
0

Γ
√

εk

(23)
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The matched-filtering operation is performed by re-arranging
the resulting signal vector in the following form

R
′k �

(
r
′k
1 , r

′k
2 , r

′k
3 , r

′k
4 , r

′k∗
1 , r

′k∗
2 , r

′k∗
3 , r

′k∗
4

)T

= R̃k−1
(
ak
0 , a

k
1 , ak

2 , ak∗
0 , ak∗

1 , ak∗
2

)T
+ Zk

(24)

where R̃k−1 can be viewed as the equivalent channel matrix
and has the following orthogonal form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rk−1
1 0 0 0 −rk−1

2 rk−1
3

0 rk−1
1 0 rk−1

2 0 −rk−1
4

0 0 rk−1
1 −rk−1

3 rk−1
4 0

rk−1
4 rk−1

3 rk−1
2 0 0 0

0 −rk−1∗
2 rk−1∗

3 rk−1∗
1 0 0

rk−1∗
2 0 −rk−1∗

4 0 rk−1∗
1 0

−rk−1∗
3 rk−1∗

4 0 0 0 rk−1∗
1

0 0 0 rk−1∗
4 rk−1∗

3 rk−1∗
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Multiplying both sides of (24) by (R̃k−1)H we get

(R̃k−1)HR
′k =

(
4∑

i=1

|rk−1
i |2

)
Ω + (R̃k−1)HZk (25)

where Ω =
(
ak
0 , a

k
1 , ak

2 , ak∗
0 , ak∗

1 , ak∗
2

)T
. The HMLIC decod-

ing algorithm achieves the same performance as the approx-
imate ML decoding while reducing the decoding complexity
(for QPSK) from a size-45 exhaustive ML search to a size-16
ML search followed by a simple matched-filtering operation
for each candidate codeword.

V. THE ENERGY SCALING FACTOR Γ

Designing Γ in (2) and (21) involves a tradeoff between the
following conflicting objectives

1) Minimizing the performance gap between differential
and coherent decoding.

2) Minimizing the performance loss due to estimation of
the energy normalizer ek at the receiver.

3) Satisfying target BERs of diversity layers A and B.
4) Maximizing the throughput and reducing the SNR

crossover point with OSTBC (c.f. Fig. 3).

Eigenvalue analysis [5] provides an accurate performance
measure for non-orthogonal STBC design (such as the DE-
STBC considered in this paper). Assume B(c, c

′
) is the

difference between two non-orthogonal codewords c and c
′
,

then the closer the eigenvalues of B(c, c
′
)BH(c, c

′
) are to each

other and to tr
[
B(c, c

′
)BH(c, c

′
)
]
/T , the better the BER

performance of both the differential and coherent schemes will
be. The limiting case is the OSTBC where those eigenvalues
become identical. Assuming a unit-energy QPSK constella-
tion, we can calculate λ1 and λ2, the eigenvalues of CkCkH ,
as follows

0 = det
(
CkCkH − λI2

)
= det

(
1 + 1

Γ2 − λ a0
Γ (b0 − b1)

a∗
0
Γ (b∗0 − b∗1) 1 + 1

Γ2 − λ

)
⇒ λ1,2 = 1 +

1
Γ2

±
√

2
Γ

√
1 −�(b0b∗1)

(26)

0 5 10 15 20 25 30 35
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

Differential Alamouti

A DifferentialA Coherent

B Coherent

B Differential

Coherent Alamouti

Fig. 1. BER performance for differential and coherent decoding of Layers
A and B for 2 TX design.

The third term in (26) above is the absolute value of the off-
diagonal elements of CkCkH . As Γ increases, both λ1 and λ2

tend to 1 which corresponds to a 3dB performance gap from
coherent decoding.
For the DE-STBC design in (2) with QPSK modulation, as
we increase Γ up to 3, the eigenvalues of B(c, c

′
)BH(c, c

′
)

approximately approach the same value which satisfies our
first design objective. However, further increase in Γ, reduce
the receiver’s capability to decode (bk

0 , bk
1) and hence it fails

to meet the target BER of diversity layer B which is the
third design objective. Moreover, the SNR crossover point
shown in Fig. 3 between the throughput curves of the proposed
DE-STBC differential scheme and the Alamouti differential
scheme, occurs at higher SNR values as we increase Γ. Our
simulations show that the minimum SNR crossover point is
achieved by choosing Γ = 1.5. Further decrease in Γ from
1.5 towards 1 results in unacceptable performance for layer
A which also increases the SNR cross-over point in the
throughput plot in Fig.3 from its minimum value achieved
by Γ = 1.5. Based on the above observations, we conclude
that a range of 1.5 < Γ < 3 can be adopted and the exact
value of Γ in this range depends on which of the four design
objectives we want to emphasize more. More specifically,
a higher throughput can be achieved by choosing Γ closer
to 1.5 while a smaller BER gap is obtained by selecting Γ
near 3. Table I quantifies these design tradeoffs when the
target BERs of Layers A and B are set to 10−4 and 10−2,
respectively. It is worth emphasizing that the reported coherent
decoding performance assumes perfect CSI at the receiver.
With practical channel estimation effects, the performance gap
between differential and coherent decoding will be further
reduced.

VI. SIMULATION RESULTS

In this section, we present our simulation results for the
DE-STBC designs for M = 2 and 4 transmit antennas given
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TABLE I
REQUIRED SNR VALUES FOR DIFFERENTIAL AND COHERENT DECODING

OF LAYERS A AND B FOR 2 TX DESIGN IN (2). TARGET BERS FOR
LAYERS A AND B ARE 10−4 AND 10−2 , RESPECTIVELY

Scaling Factor Γ 1.5 2 3 4

Coherent A (dB) 23.2 21 18.9 18.22
Coherent B (dB) 22.3 23 26 28.9

Differential A (dB) 29.7 28 23.6 22.3
Differential B (dB) 26.3 26.7 28.9 31.5

SNR Gap A (dB) 6.5 7 4.7 4.08
SNR Gap B (dB) 4 3.7 2.9 2.6
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Γ = 1.5
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Fig. 2. Mean square error in estimating the energy normalizer ek at the
receiver for 2 TX design.

earlier. We compare the BER performance of each design
in differential and coherent transmission scenarios. First, to
illustrate the effect of Γ on performance, we plot the BER
of the 2-transmit-antenna design for Γ = 3 and 4. Fig. 1
compares the BER performance of diversity layers A and B
with coherent and differential decoding where it is clear that
the performance gap between the two schemes decreases as Γ
increases (see Table I). The BER performance for differential
and coherent Alamouti decoding is also given as a benchmark.
The transmission rate of both codes is 3 bits/sec/Hz and the
performance of the Alamouti scheme is sandwiched between
that of layers A and B as expected. Fig. 2 shows that the mean
square error (MSE) in estimating the energy normalizer ek at
the receiver (for the 2-transmit-antenna design) decreases as
Γ and/or SNR increases. Fig. 3 compares the throughput of
the DE-STBC design in (2) with that of the Alamouti STBC
assuming differential transmission where it can be seen that
the former outperforms the latter for medium to high SNR.
The SNR cross-over point is around 19 dB for Γ = 1.5. Since
this input SNR level is known at the transmitter, we can switch
between the two codes to achieve the highest throughput for
all SNR levels. Fig. 4 illustrates the BER performance of the
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Fig. 3. Throughput comparison between differential decoding of the
Alamouti STBC and our 2 TX DE-STBC for different values of Γ.
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Approx ML

Layer A 
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Fig. 4. BER performance comparison between HMLIC and approximate
ML decoding for 4 TX design Ck

4×4 at Γ = 1.5.

4 × 4 codeword Ck
4×4 in (21) for both diversity layers using

HMLIC decoding. Approximate ML decoding using the metric
in (18) is also compared with HMLIC decoding for Γ = 1.5
to confirm that no performance loss in incurred by using the
reduced-complexity HMLIC decoder. Finally, Fig. 5 compares
the performance of JML and J approx

ML metrics for 2 TX design
for Γ = 1.5 and 3 where we observe a small performance
loss when Γ = 1.5. However, for Γ = 3, their performance
becomes indistinguishable.

VII. CONCLUSIONS

We proposed a novel differential transmission scheme for
diversity-embedding STBC for 2 and 4 transmit antennas
where neither the transmitter nor the receiver have chan-
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Fig. 5. Performance comparison between exact (JML solid lines) and
approximate (Japprox

ML dashed lines) ML decoding for 2 TX design and
Γ = 1.5, 3 .

nel knowledge. Since the DE-STBC codewords are non-
orthogonal, a time-varying energy-normalizing factor is in-
troduced at the transmitter to ensure fixed-energy codewords.
We optimize the DE-STBC code design to satisfy target BER
performance levels for both diversity layers while maximizing
the throughput and minimizing the performance gap between
differential and coherent decoding. Extensions to frequency-
selective channels can be pursued by carefully integrating the
proposed scheme with orthogonal frequency division multi-
plexing (OFDM) [12], [13], [14], [15].
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