
International Journal of Systems Science
Vol. 39, No. 10, October 2008, 1025–1032

Non-descriptor dynamic output feedback ESPR controller design

for continuous-time descriptor systems
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In this article, the non-descriptor output feedback controller for extended strictly positive real (ESPR) control
problem of continuous-time descriptor systems is proposed. More precisely, the proposed controller will achieve
the ESPR property for the closed-loop transfer matrices while the regularity, impulse immunity and stability of
the closed-loop system can be guaranteed. Furthermore, the desired controller is in non-descriptor form and can
be carried out by solving a set of linear matrix inequalities; thus it is realisable and efficiently computable.
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1. Introduction

The descriptor model is a natural mathematical

representation for many practical systems because it
provides a description of the dynamic as well as the
algebraic relationships between the chosen descriptor

variables simultaneously. Due to its more direct and
general description than the state-space representation
of dynamic systems, such a model has been employed

in different areas of research, e.g. robotics, chemical
process control, power systems and highly intercon-
nected large-scale systems (Lewis and Mertzios 1989).

The (strict) positive realness of transfer matrix is an

essential property in network and circuit theory

(Newcomb 1966). Due to contributions of Yakubovich

and Kalman, the Kalman–Yakubovich–Popov lemma

(also called the positive real lemma) hasmany important

researches in control system theory, e.g. stability

analysis (Popov 1973), absolute stability (Xiao and

Hill 1998), adaptive control (Barabanov et al. 1996;Kuo

2007), optimal control (Anderson and Moore 1990;

Barabanov et al. 1996) and robust control (Barabanov

et al. 1996; Yau, Kuo, and Yan 2006), etc. Besides,

Haddad and Bernstein (1991, 1993) propose algebraic

conditions to guarantee the property of extended strict

positive realness (ESPR), a stronger sense of the strict

positive realness (SPR), of a transfer matrix and study

the connection with robust stability. The problem of

designing a controller such that the closed-loop system

possesses the positive real property is tackled for state-

space systems in Sum, Khargonekar, and Shim (1994);

Turan, Safonov, and Huang (1997).

Viewing the importance of (extended) SPR, it is an
interesting topic to investigate the positive real
property of descriptor systems and its correlative
control problem. Zhang, Lam, and Xu (2002) propose
linear matrix inequalities’ (LMI) conditions to
characterise (extended) SPR property for both
continuous-time and discrete-time descriptor systems.
But they do not study the associated control problem.
Wang, Yung, and Chang (2001) derived a necessary
and sufficient condition in generalised algebraic
Riccati equation (GARE) to characterise ESPR of a
continuous-time descriptor system. Based on it, they
also propose a method, by solving two coupled
GAREs, to determine all parameters of a dynamic
output feedback controller to stabilise the descriptor
system and make the closed-loop transfer matrix
ESPR. However, there is no discussion on numerical
solution to these GAREs. Furthermore, the proposed
controller is a descriptor system, and it is often difficult
to physically realise (Dai 1989).

In this article, based on LMI analysis conditions
for ESPR property of descriptor systems, a synthesis
condition for the existence of non-descriptor output
feedback controller is derived. The necessary part of
the condition is LMIs and the sufficient condition can
be given as biaffine matrix inequalities. In order to
derive the synthesis condition, a modified version of
the linearising change of variables approach
(Gahient 1996) is used in the corresponding case for
descriptor systems. The proposed controller will
achieve the ESPR property for the closed-loop transfer
matrices while the regularity, impulse immunity and
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stability of the closed-loop system can be guaranteed.

Since the desired controller is in non-descriptor form

and can be carried out by solving a set of LMIs, it is

realisable and efficiently computable.
Notations employed in the article are explained as

follows: let M be a matrix of complex numbers with

proper dimension, MT and M* stand for the transpose

and the hermitian of M, individually; M4 0

(or M5 0) means that M is positive (or negative)

definite; while, by M� 0 (or M� 0), M is positive

(or negative) semi-definite; and M4N (or M�N) is

equivalent to M�N4 0 (or M�N� 0). The identity

matrix with dimension r� r is denoted by Ir and we

simply use I to indicate any identity matrix with proper

dimension. In the sequel, <n denotes the n-dimensional

Euclidean space, <n�m denotes the set of all n�m real

matrices and Re[s] denotes the real part of s.

2. Preliminaries

We consider the following descriptor system

E _xðtÞ ¼ AxðtÞ þ BwðtÞ

zðtÞ ¼ CxðtÞ þDwðtÞ ð1Þ

where x 2 <n is the descriptor variable, w 2 <nw is the

exogenous input and z 2 <nz is the external output.

The matrix E possibly being singular, i.e.

rank(E)¼ r� n, and other matrices are constant of

appropriate dimensions. When only the behaviour of

the descriptor variable in an unforced system (1) is

concerned, the simple notation (E,A) will be employed.

Some important features of the study of descriptor

systems are recalled below.

Definition 1 (Dai 1989): A pair (E,A) is called regular

if det(sE�A) is not identically zero, called impulse-free

i.e. (sE�A)�1 is proper, if degree of det(sE�A) is

equal to rank(E), and called stable if all the roots of

det(sE�A)¼ 0 lie in the open left-half plane.

Furthermore, we call the pair (E,A) admissible if it is

regular, impulse-free and stable.

If the descriptor system (1) is regular, the transfer

matrix from w to z is well defined by

Tzw ¼ CðsE� AÞ�1BþD:

In the following, we give the definition about ESPR of

the rational transfer matrix.

Definition 2 (Haddad and Bernstein 1993; Wang et al.

2001): Let Tzw(s) be a square real rational transfer

matrix in s. Tzw(s) is said to be an ESPR if it is analytic

in Re[s]� 0 and Tzwð j!Þ þ T�zwð j!Þ > 0 for all
! 2 ½0,1�.

Next, we recall a generalisation of the well-known
Kalman–Yacubovich–Popov positive lemma (or ESPR
lemma) for system (1). This lemma provides a
necessary and sufficient LMI condition for the
admissibility of (E,A) pair with Tzw being ESPR.

Lemma 1 (Wang et al. 2001; Zhang et al.
2002): Consider system (1) and suppose that
DþDT4 0. Then the following statements are
equivalent.

(1) (E,A) is admissible and Tzw is ESPR.
(2) There exists a non-singular matrix P such

that

ATPþ PTA PTB� CT

BTP� C � DþDT
� �

" #
< 0

ETP ¼ PTE � 0:

Remark 1: Freund and Jarry (2004) prove the LMIs
condition for positive realness of system (1), i.e. the
LMIs

ATPþ PTA PTB� CT

BTP� C � DþDT
� �

" #
� 0

ETP ¼ PTE � 0;

have a solution P, then Tzw(s) analytic in Re[s]4 0
and TzwðsÞ þ T�zwðsÞ � 0 for all Re[s]4 0. This result
seems more general than Lemma 1. However, it
cannot guarantee the pair (E,A) is impulse-free
and the necessary condition needs an additional
assumption DþDT �M0 þMT

0 where M0 is
the matrix in the expansion Tzw ¼ �

p
i¼�1Mis

i

about s¼1.

3. Main result

Consider the standard block diagram shown in
Figure 1. The plant G is a descriptor system
described by

E _xðtÞ ¼ AxðtÞ þ B1wðtÞ þ B2uðtÞ

zðtÞ ¼ C1xðtÞ þD11wðtÞ þD12uðtÞ

yðtÞ ¼ C2xðtÞ þD21wðtÞ ð2Þ

where xðtÞ 2 <n is the descriptor variable, uðtÞ 2 <nu is
the control input, wðtÞ 2 <m is the exogenous input,
zðtÞ 2 <m is the controlled output and yðtÞ 2 <ny is the
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measured output. Note that the signals w and z have

the same dimensions. The objective of synthesis

problem is to find a controller K such that the

closed-loop system of Figure 1 is admissible when

w¼ 0 and the transfer matrix Tzw is ESPR.
In this article, we consider a non-descriptor

dynamic output feedback controller, which is

described as

_xcðtÞ ¼ AcxcðtÞ þ BcyðtÞ

uðtÞ ¼ CcxcðtÞ þDcyðtÞ: ð3Þ

Note that we assume that the controller (3) has the

order as rank(E). Therefore, the resulting closed-loop

system is

Ecl _xclðtÞ ¼ AclxclðtÞ þ BclwðtÞ

zðtÞ ¼ CclxclðtÞ þDclwðtÞ ð4Þ

where xclðtÞ ¼ ½ x
TðtÞ xTc ðtÞ �

T and

Ecl ¼
E 0

0 Ir

� �
, Acl ¼

Aþ B2DcC2 B2Cc

BcC2 Ac

� �
,

Bcl ¼
B1 þ B2DcD21

BcD21

� �
Ccl ¼ C1 þD12DcC2 D12Cc

� �
,

Dcl ¼ D11 þD12DcD21:

Our purpose is to find Ac, Bc, Cc and Dc such that the

closed-loop system (4) satisfies the objective of control

problem.

Theorem 1: Assume that the matrix E of system (2) has

the following form

E ¼
Ir 0

0 0

� �
:

The following statements are equivalent.

(1) There exists a controller (3) to make the

closed-loop system (4) meet Dcl þDT
cl > 0 and

be admissible with ESPR Tzw.
(2) There exist two non-singular matrices

P ¼
P1 0

P3 P4

� �
and Q ¼

Q1 0

Q3 Q4

� �
,

which are partitioned in accordance with the

block structure of E, and Ak, Ck, Dk such that

�1 �2

�T
2 �4

� �
< 0 ð5Þ

EQ E ~I

~ITET ~ITPTE ~I

" #
¼
ðEQÞT E ~I

~ITET ~ITETP ~I

" #
� 0 ð6Þ

where

Moreover, if the matrix inequalities are feasible then

find non-singular matrices R1 2 <
r�r and S1 2 <

r�r

such that

Ir � P1Q1 ¼ R1S1: ð7Þ

Figure 1. Standard block diagram.

�1 ¼
AQþ ðAQÞT þ B2Ĉk þ B2Ĉk

� �T
ÂT

k þ ðAþ B2DkC2Þ ~I

Âk þ ~ITðAþ B2DkC2Þ
T ~IT ATP ~Iþ CT

2B
T
k

� �
þ ATP ~Iþ CT

2B
T
k

� �T ~I

2
4

3
5

�2 ¼
B1 þ B2DkD21 � ðC1QþD12ĈkÞ

T

~ITPTB1 þ BkD21 � ~ITðC1 þD12DkC2Þ
T

" #

�4 ¼ � ðD11 þD12DkD21Þ þ ðD11 þD12DkD21Þ
T

� �
Âk ¼ Ak

~IT þ BkC2 þ ~ITPTA
� � 0

In�r

� �
Q4 0 In�r
� �

Ĉk ¼ Ck
~IT þDkC2

0

In�r

� �
Q4 0 In�r
� �

~I ¼ Ir 0
� �T

International Journal of Systems Science 1027
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The parameters of controller (3) are given by

Dc ¼ Dk

Cc ¼ Ck �DkC2Q ~I
�

ÞS�11

Bc ¼ R�11 Bk � ~I TPTB2Dk

� �
Ac ¼ R�11 Ak � BkC2Q ~I� ~I TPTAQ ~I

�
ÞS�11

� R�11
~ITPTB2Cc: ð8Þ

Proof: [(1)) (2)] If statement (1) holds, then by

Lemma 1, there exists a non-singular matrix X

satisfying

AT
clXþ XTAcl XTBcl � CT

cl

BT
clX� Ccl � Dcl þDT

cl

� �
" #

< 0 ð9Þ

ET
clX ¼ XTEcl � 0 ð10Þ

Partitioning X in accordance with the block structure

of Ecl as

X ¼
X1 X2

X3 X4

� �

and let

X�1 ¼: Y ¼
Y1 Y2

Y3 Y4

� �
:

Denoting

P :¼ X1, L :¼ X3, Q :¼ Y1 and S :¼ Y3: ð11Þ

Partitioning P and Q in accordance with the block

structure of E as

P ¼
P1 P2

P3 P4

� �
and Q ¼

Q1 Q2

Q3 Q4

� �
:

From (10) and the relationship of matrix congruence

on (10), i.e. EclY¼ (EclY)
T
� 0, we can get

ETP ¼ PTE,
P1 P2

0 0

� �
¼

PT
1 0

PT
2 0

" #
,

EQ ¼ QTET ,
Q1 Q2

0 0

� �
¼

QT
1 0

QT
2 0

" #
:

They imply that P2¼ 0 and Q2¼ 0. Hence, P and Q

have the following form

P ¼
P1 0

P3 P4

� �
and Q ¼

Q1 0

Q3 Q4

� �
:

According to the theory of the change of variable

(Gahient 1996), without loss of generality, we may

assume that

�1 ¼
Q ~I

S 0

" #
and �2 ¼

In P ~I

0 L ~I

" #

are non-singular. Since XY¼ I, the following

representation holds

X�1 ¼ �2:

Therefore, in terms of matrix congruence, we get

ð10Þ , �T
1E

T
clX�1 ¼ �T

1X
TEcl�1 � 0

, �T
1E

T
cl�2 ¼ �T

2Ecl�1 � 0

,
EQ E ~I

~ITPTEQþ ~ITLTS ~ITPTE ~I

" #

¼
EQ E ~I

~ITPTEQþ ~ITLTS ~ITPTE ~I

" #T

� 0:

From the (1, 2) block of the above inequality, we get

QTETP ~Iþ STL ~I ¼ E ~I ð12Þ

and have shown that there exists a non-singular matrix

X satisfying (10), which is equivalent to the existing

two non-singular matrices P and Q satisfying (6).
Next, we show that (5) holds for the same P and Q

matrices. Multiplying (9) to the left by

�T
1 0

0 I

� �

and to the right by its transpose, we get the following

equivalent condition

�T
1A

T
cl�2 þ�T

2Acl�1 �T
2Bcl ��T

1C
T
cl

BT
cl�1 � Ccl�1 �ðDcl þDT

clÞ

" #
< 0 ð13Þ

Let

Âk ¼ ~ITLTAcSþ ~ITPTB2CcSþ ~ITLTBcC2Q

þ ~ITPTB2DcC2Qþ ~ITPTAQ

Bk ¼ ~ITLTBc þ ~ITPTB2Dc

Ĉk ¼ CcSþDcC2Q

Dk ¼ Dc ð14Þ

1028 J.L. Chen
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then the elements of (13) can be expressed as

�T
1A

T
cl�2

¼
QT ST

~IT 0

� �
AT þ CT

2D
T
c B

T
2 CT

2B
T
c

CT
c B

T
2 AT

c

" #
�

I P ~I

0 L ~I

" #

¼
ðAQÞT þ B2Ĉk

� �T
ÂT

k

~ITðAþ B2DcC2Þ
T ~IT ATP ~Iþ CT

2B
T
k

� �
2
4

3
5

�T
2Bcl ��T

1C
T
cl

¼
I 0

~ITPT ~ITLT

� �
B1 þ B2DcD21

BcD21

� �

�
QT ST

~IT 0

� �
CT

1 þ CT
2D

T
c D

T
12

CT
c D

T
12

" #

¼
B1 þ B2DkD21 � C1QþD12Ĉk

� �T
~ITPTB1 þ BkD21 � ~ITðC1 þD12DkC2Þ

T

2
4

3
5

� ðDcl þDT
clÞ

¼ �
�
ðD11 þD12DkD21Þ þ ðD11 þD12DkD21Þ

T
�
:

Denoting

W :¼ Y2 and R :¼ X2

and matrices R, S, W and L, partitioned in accordance

with the block structure of E as

R ¼
R1

R2

� �
, S ¼ S1 S2

� �
,

W ¼
W1

W2

� �
, L ¼ L1 L2

� �
:

From (12) and the relationship of matrix congruence

on (10), i.e. EclY ¼ ðEclYÞ
T
� 0, it is easy to show that

ST ¼ EW and LT ¼ ETR. Therefore, we get

ST
1 ¼W1, S2 ¼ 0, LT

1 ¼ R1 and L2 ¼ 0:

The representations of ÂK and Ĉk in (14) can be

rewritten as

Âk ¼ ~ITLTAcSþ ~ITPTB2CcSþ ~ITLTBcC2Q

þ ~ITPTB2DcC2Qþ ~ITPTAQ

¼ ~ITLTAcSþ ~ITPTB2CcSþ ~ITPTAQþ BkC2Q

¼ Ak
~IT þ BkC2 þ ~ITPTA

� � 0

In�r

� �
Q4 0 In�r
� �

ð15Þ

Ĉk ¼ CcSþDcC2Q

¼ Ck
~IT þDcC2

0

In�r

� �
Q4 0 In�r
� �

ð16Þ

where

Ak ¼ R1AcS1 þ ~ITPTB2CcS1 þ BkC2Q ~Iþ ~ITPAQ ~I

Ck ¼ CcS1 þDcC2Q ~I:

Therefore, the implication from (9), hence equivalently

(13) and also (5) has been proved. By XY¼ I, it implies

that

X1Y1 þ X2Y3 ¼ I) PQþ RS ¼ I:

Therefore, it is easy to show that (7) is holding. The

formulas listed in (8) for computing the parameters of
controller can be derived from (14), (15) and (16)

easily. We complete this part of the proof.
[(2)) (1)] From Lemma 1, to show the hold of

statement (1), we need to prove the statement (2)
implies the existence of a matrix X satisfying (12) and

(13). Since P and Q are non-singular, it implies that P1

and Q1 are also non-singular. Without loss of

generality, we may assume that I�P1Q1 is also
non-singular. Otherwise, by letting

P̂ :¼ Pþ
"I 0

0 0

� �
¼

P1 0

P3 P4

� �
¼

P1 þ "I 0

P3 P4

� �
,

where " is a small enough positive real number so that

P̂ and Q satisfy (5), (6), and the non-singularity of

Q�11 � P1 � "I is guaranteed. Denote P̂1 :¼ P1 þ "I
and replace P1 with P̂1. Thus, I� P̂1Q1 becomes

non-singular because of the following identity

I� P̂1Q1 ¼ I� ðP1 þ "IÞQ1 ¼ ðQ
�1
1 � P1 � "IÞQ1:

Since I�P1Q1 is non-singular, R1 and S1 can be

computed via a full rank factorisation of
I�P1Q1¼R1S1, and let ST

1 ¼W1, L
T
1 ¼ R1. If we

choose

X ¼
X1 X2

X3 X4

� �
:¼

In P ~I

0 L ~I

" #
Q ~I

S 0

" #�1
¼ �2�

�1
1 ,

where L¼ [L1 0] and S ¼ ½ST
1 0 �T. Note that,

by (7),

STL ~IþQTETP ~I ¼
ST
1L1

0

� �
þ

Q1P1

0

� �

¼
ST
1R

T
1

0

� �
þ

Q1P1

0

� �

¼
Ir

0

� �
¼ E ~I;

i.e. (12) holds. Then from the first part of the proof it

can be checked that the constructed matrix X does

International Journal of Systems Science 1029
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satisfy (10). Similarly, from (8), (14), (15) and (16),

condition (5) implies condition (13). Therefore, the

constructed matrix X satisfies (9) also and the proof is

completed. œ

Remark 2: If the matrix E of system (2) cannot meet

the assumptions of Theorem 1, by taking the singular

value decomposition (SVD) on E, there exist two

non-singular matrices U and V such that

�E :¼ UEV ¼
Ir 0

0 0

� �
:

Then, by defining �x :¼ V�1x, system (2) is converted

into

�E _�xðtÞ ¼ �A �xðtÞ þ �B1wðtÞ þ �B2uðtÞ

zðtÞ ¼ �C1xðtÞ þ �D11wðtÞ þ �D12uðtÞ

yðtÞ ¼ �C2xðtÞ þ �D21wðtÞ ð17Þ

where �A ¼ UAV, �B1 ¼ UB1, �B2 ¼ UB2, �C1 ¼

C1V, �C2 ¼ C2V, �D11 ¼ D11, �D12 ¼ D12, �D21 ¼ D21.

By Theorem 1, the parameters of controller are

obtained from (8) and the closed-loop system can be

described as

�Ecl
_�xclðtÞ ¼ �Acl �xclðtÞ þ �BclwðtÞ

zðtÞ ¼ �Ccl �xclðtÞ þ �DclwðtÞ ð18Þ

where �xclðtÞ ¼ ½ �xTðtÞ xTc ðtÞ �
T and

�Ecl ¼
�E 0

0 Ir

" #
, �Acl ¼

�Aþ �B2Dc
�C2

�B2Cc

Bc
�C2 Ac

" #
,

�Bcl ¼
�B1 þ �B2Dc

�D21

Bc
�D21

" #

�Ccl ¼ �C1 þ �D12Dc
�C2

�D12Cc

� �
,

�Dcl ¼ �D11 þ �D12Dc
�D21:

Note that

rank �Ecl

� �
¼ rank

�E 0

0 Ir

" # !

¼ rank
U 0

0 Ir

� �
E 0

0 Ir

� �
V 0

0 Ir

� �	 

¼ rankðEclÞ

det s �Ecl � �Acl

� �
¼ det

U 0

0 Ir

� �
sEcl � Aclð Þ

V 0

0 Ir

� �	 


¼ det
U 0

0 Ir

� �	 

det sEcl � Aclð Þ det

V 0

0 Ir

� �	 


and

�Ccl s �Ecl � �Acl

� ��1 �Bcl þ �Dcl

¼ Ccl

V 0

0 Ir

� �
V 0

0 Ir

� ��1
sEcl � Aclð Þ

�1

�
U 0

0 Ir

� ��1 U 0

0 Ir

� �
Bcl þDcl

¼ Ccl sEcl � Aclð Þ
�1Bcl þDcl

Therefore, the two closed-loop systems (4) and (18) are

equivalent in the sense that they share the same

admissibility and the same transfer matrix, hence the

same ESPR property. It shows that given two systems

(2) and (17), if a dynamical output feedback controller

(3) satisfies the closed-loop system (4), which is

admissible and Tzw is ESPR for one, it also satisfies

for the other.

Remark 3: It is worth to note that (5) is a biaffine

matrix inequality. By the following separate procedure,

the inequality (5) can be dealt with LMI. At first,

we assign a non-singular matrix Q4. Once Q4 is

determined, then (5) is an LMI in the variables P,

Q1, Q3, Ak, Bk, Ck, and Dk. Thus, we can use LMI

software packages to solve (5) and (6) and get a set of

solution matrices. In the following numerical example,

we use this approach to design the controller.

4. Numerical example

In this section, an illustrative example is given to verify

the theoretical result obtained in this article. Consider

the following descriptor system

1 0 0

0 1 0

0 0 0

2
64

3
75 _xðtÞ ¼

�1 0 �1

0 �1 0

1 0 0

2
64

3
75xðtÞ

þ

1 �1

0 1

2 1

2
64

3
75wðtÞ þ

1 0

0 1

1 �1

2
64

3
75uðtÞ

zðtÞ ¼
�1 �1 1

�2 1 1

� �
xðtÞ þ

2 1

0 2

� �
wðtÞ

þ
1 1

0 �1

� �
uðtÞ

yðtÞ ¼ ½ 0 1 �1 �xðtÞ þ ½ 1 1 �wðtÞ:

It is easy to check that the pair (E,A) is not impulse-

free because

deg½detðsE� AÞ� ¼ deg½sþ 1� ¼ 1 < 2 ¼ rankðEÞ:
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The transfer matrix Tzw of open-loop system is

2sþ 7
s2 þ 3sþ 1

sþ 1

2sþ 7
s2 þ 5sþ 5

sþ 1

2
664

3
775

which is not ESPR because the minimal eigenvalue

of Tzwðj10Þ þ TT
zwð�j10Þ is �2.6938. In this example,

the non-descriptor form of dynamic output feedback

controller (3) is designed so that the closed-loop system

(4) is admissible and Tzw is ESPR. By Theorem 1

and Remark 3, we set Q4¼ 1 at first and then we

use the software of SCILAB LMITOOL (Ghaoui,

Nikoukhah, and Delebecque 1995) to solve the LMIs

(5) and (6). After several iterations, the solver returns

P ¼

83:1399 185:6928 0

185:6928 430:8988 0

�3:5353 �6:9612 1

2
64

3
75;

Q1 ¼
1654:5611 1422:5647

1422:5647 7017:4026

� �
,

Q3 ¼ ½ 2836:3957 508:433 �;

Ak ¼
5:3605 �20:3147

6:449 �25:2261

� �
, Bk ¼

�98:1605

�236:3062

� �
;

Ck ¼
�701:0718 3252:8793

947:4477 4680:2145

� �
, Dk ¼

4:2025

�1:0791

� �
:

By full rank factorisation for (7), we get

R1 ¼
�765:7947 �53:9889

�1770:2099 23:3557

� �
,

S1 ¼
520:5848 1857:1688

56:6411 �15:8771

� �
:

Therefore, from (8), the parameters of controller are

Ac ¼
�1:1983 6:5939

�0:2625 0:724

� �
, Bc ¼

0:2921

0:0896

� �
;

Cc ¼
�11:2985 196:3659

5:7622 �63:1687

� �
, Dc ¼

4:2024

�1:0791

� �
:

Since the finite eigenvalues of closed-loop system are

�0.3333, �4.0015 and �1.2921� j 0.4153, by

Definition 1, the closed-loop system is admissible.

The minimal eigenvalue of Tzwð j!Þ þ TT
zwð�j!Þ for !

ranging from 0 to 100 is displayed in Figure 2. It is

clear to see that Tzw is ESPR.

5. Conclusion

We considered ESPR control problem for descriptor

systems, i.e. the resulting controller renders the closed-

loop system to be admissible with ESPR transfer

matrix, via non-descriptor dynamic output feedback

controllers. Based on the ESPR lemma, a necessary

and sufficient condition for non-descriptor controllers

is given by biaffine matrix inequality conditions. By the

technique described in Remark 3, these matrix inequal-

ities became LMIs and controller computation is

possible by LMI tools. Since the desired controller is

in non-descriptor form and can be carried out by

solving a set of LMIs, it is realisable and efficiently

computable.
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