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a b s t r a c t

One of the challenges for clustering resides in dealing with data distributed in separated repositories,
because most clustering techniques require the data to be centralized. One of them, k-means, has been
elected as one of the most influential data mining algorithms for being simple, scalable and easily
modifiable to a variety of contexts and application domains. Although distributed versions of k-means
have been proposed, the algorithm is still sensitive to the selection of the initial cluster prototypes and
requires the number of clusters to be specified in advance. In this paper, we propose the use of
evolutionary algorithms to overcome the k-means limitations and, at the same time, to deal with
distributed data. Two different distribution approaches are adopted: the first obtains a final model
identical to the centralized version of the clustering algorithm; the second generates and selects clusters
for each distributed data subset and combines them afterwards. The algorithms are compared
experimentally from two perspectives: the theoretical one, through asymptotic complexity analyses;
and the experimental one, through a comparative evaluation of results obtained from a collection of
experiments and statistical tests. The obtained results indicate which variant is more adequate for each
application scenario.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The amount of data produced has grown substantially over the
years. Collections of documents, images, bioinformatics and others
types of data are created and increased by new technologies. There is a
trend and growing need to distribute large data sets in separate
repositories, known as data sites. In many cases, the data are naturally
distributed or generated and stored in different data sites. On these
grounds, computational techniques must be able to extract relevant
information from distributed data with good computational perfor-
mance and scalability [59,8]. However, most data mining techniques,
when proposed, consider the data being centralized. The centralization
of a large distributed data set implies high transference and storage
costs; thus it greatly increases the overall time of the mining process.
In most cases, this option is not feasible due to computational
limitations related to theworking memory capacity or time availability
for centralized (rather than distributed) processing.

Data clustering is a fundamental conceptual problem in
data mining, in which one aims at determining a finite set of
categories to describe a data set according to similarities among its
objects [31]. This problem has broad applicability in areas that

range from image and market segmentation to document cate-
gorization, bioinformatics and distributed computing (e.g., see
[32,58,8]), just to mention a few.

Many clustering algorithms have been proposed in the litera-
ture [32,58]. Among them, the k-means methods have been
investigated for more than half a century [51]. Recently, k-means
has been elected as one of the top 10 most influential data mining
algorithms, for being simple, scalable and easy to adapt to
different application domains [57]. However, k-means is sensitive
to the selection of the initial cluster prototypes, as it may converge
to suboptimal solutions if the initial prototypes are not properly
chosen [32]. In addition, it requires the number of clusters, k, to be
specified in advance. This can be quite restrictive in practice, since
the number of clusters in a data set is generally unknown,
especially in real-world applications involving high dimensional
and/or distributed data. For such applications, k-means may be
executed multiple times for incremental values of k (typically
starting from two) and the best partition obtained from all
executions, according to a specific cluster validity criterion, is
selected as the clustering solution [18,46]. Although this ordered
repetitive procedure may be efficient if the optimal number of
clusters is “small”, this may not be the case. In addition, even if this
is the case, one hardly knows about it in advance.

An alternative repetitive approach is executing k-means multiple
times with the number of clusters randomly drawn from a user-
defined interval. In this case, the problem is twofold: On one hand,
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if the optimal number of clusters is not within this interval, then the
corresponding solutionwill never be discovered. On the other hand,
if the interval is too much overestimated to be likely to comprise
the optimal value, then the worst-case (and even the average-case)
execution time may be prohibitive. This scenario may become
worse if the number of clusters to be drawn require replacement
due to the usual sensitivity of the k-means algorithm to the initial
position of prototypes.

A number of approximation algorithms have been investigated
in the literature in an attempt to circumvent the above-mentioned
limitations of the systematic approaches based on multiple execu-
tions of k-means. This includes the hybridization of k-means
with some sort of general purpose meta-heuristic adapted to
the clustering problem [48]. Evolutionary algorithms are meta-
heuristics widely believed to be able to provide satisfactory
suboptimal solutions to NP-hard problems in an acceptable time.
From a combinatorial optimization perspective, clustering pro-
blems can be formally classified as NP-hard [12]. Probably for this
reason, several evolutionary approaches for clustering problems
have been proposed in the literature (e.g., see the monograph by
[12] and the survey by [27] for extensive overviews). Of special
interest here are those approaches based on the use the k-means
as a local search operator to refine the global search performed by
the evolutionary procedure. For instance, [15,49,35,4,34,36,37,50]
adopted k-means for fine-tuning of partitions produced by evolu-
tionary operators designed to work with a fixed (user-defined)
number of clusters k. Just a few papers in the literature have been
devoted to evolutionary-guided k-means with a variable number
of clusters [27]. In particular, the Evolutionary Algorithm for
Clustering (EAC) proposed by [29] was mainly designed to evolve
partitions with variable k by eliminating, splitting, and merging
clusters that are systematically refined by the k-means algorithm.
The use of guided mutation operators with self-adjusting applica-
tion rates, among other additional features, improved the compu-
tational efficiency of EAC considerably [1]. The incorporation of
those features gave rise to the Fast Evolutionary Algorithm for
Clustering (F-EAC) [1], which showed (by means of extensive
experiments and statistical tests) to be significantly more efficient
than systematic approaches based on multiple executions of the
k-means algorithm when the number of clusters in a data set is
unknown [5,41]. Similar results were obtained when F-EAC was
compared with other approximation algorithms [42]. Additionally,
variants of the F-EAC were successfully developed for fuzzy
clustering and relational data [5,25].

The present paper gives evidence that evolutionary algorithms
for clustering can be successfully applied to distributed data.
In particular, the distributed version of the F-EAC, here called
Distributed Fast Evolutionary Algorithm for Clustering (DF-EAC), is
proposed in this paper in order to obtain the exact results as the
algorithm's centralized version. Additionally, the DF-EAC will
be compared to a category of algorithms based on the generation
and selection of k-means clustering in each data site and,
after that, the combination of the obtained clusters into a single
clustering solution that represents the whole data set. Algorithms
of this category are called Combinations of Distributed Clustering
(CDC) and were proposed in our preliminary work [40]. The algo-
rithms are compared from two perspectives: the theoretical one,
through asymptotic complexity analyses; and the experimental
one, through a comparative evaluation of results obtained from a
collection of experiments and statistical tests.

The remainder of this paper is organized as follows. In Section 2, a
brief description of the area within which this work falls is provided.
Then, in Section 3, the DF-EAC algorithm is presented, followed by a
description of how it is distributed and its complexity analysis.
The CDC algorithms are described in Section 4. In Section 5, DF-EAC
is experimentally compared to the CDC algorithms, in order to

determine which algorithms are most appropriate for each application
scenario. Finally, the conclusions are addressed in Section 6.

2. Distributed data mining and clustering

According to Zaki [60], Distributed Data Mining (DDM) are
techniques that involve discovering patterns or generating models
from distributed data for which centralization is not feasible nor
desirable. In order to solve this problem, different algorithms or
different parts of one algorithm are usually applied to distributed
subsets of the data and, later, the results are combined into a final
solution [16]. The DDM algorithms can be categorized as exact or
approximate [19]. On the one hand, exact algorithms produce a
final model identical to a hypothetical model generated by a
centralized algorithm having access to the full data set. On the
other hand, approximate algorithms produce a model that approx-
imates a centralized model, usually with less data transmission or
computational savings.

In order to meet the increasing need for distributed computa-
tional techniques with good performance and scalability, distrib-
uted versions of classical clustering algorithms have been
proposed. One of the most cited distributed versions of the
k-means algorithm was proposed by Dhillon and Modha [10], later
improved by Tian et al. [52] and adapted to peer-to-peer networks
by Bandyopadhyay et al. [3] and Datta et al. [6]. Forman and Zhang
[14] proposed a technique to parallelize algorithms based on
centroids, which includes not only the algorithm k-means, but
algorithms like the Expectation Maximization [39] and BIRCH [61].
Other papers proposed the distribution of hierarchical clustering
algorithms, with the main objective to divide the calculation of
data dissimilarity among different processing units [44,11]. Garg
et al. [17] proposed a parallel version of the BIRCH algorithm
that balances the computational load among processors in a cyclic
manner. Like the k-means, hierarchical algorithms were also
adapted to peer-to-peer networks [19]. However, distributed
versions of traditional clustering algorithms inherit the limitations
of their original versions, such as elevated computational costs or
inability to determine the best number of clusters in a data set.

Data privacy preservation may be a concern during distributed
clustering applications, especially if one or more distributed parts
of the algorithm require information about data objects that they
may not access. In this case, data transformation methods [43,53]
may be applied to the distributed data set before and after the
clustering algorithm. Such application is recommended for clus-
tering algorithms that consider the data objects as points in an
Euclidean space, which is the case of the algorithms compared in
this work.

3. Distributed fast evolutionary algorithm for clustering
(DF-EAC)

Essentially, DF-EAC is the exact distributed version of the F-EAC
algorithm [1,41]. A description of the F-EAC algorithm is presented
in Algorithm 1. Both were designed to efficiently evolve hard
data partitions (from now on referenced as partitions for short)
obtained from the k-means algorithm. A partition of a data set
X ¼ fx1; x2;…; xng, composed of a-dimensional feature or attribute
vectors xj, is a collection C ¼ fC1;C2;…;Ckg of k non-overlapping
data subsets Ci (clusters) such that C1 [ C2 [ ⋯ [ Ck ¼ X, Cia∅
and Ci \ Cl ¼∅ for ia l and i; lA ½1‥k�. In F-EAC and DF-EAC, parti-
tions are represented as genotypes (see Section 3.2) and evolved
through mutation and selection operators. These operators use
probabilistic rules to process partitions sampled from the search
space. Roughly speaking, better partitions have higher probabilities
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of being sampled. In other words, the evolutionary search is biased
towards more promising clustering solutions. To determine the
relative quality of each partition, here called fitness, a relative
validation index [31,55] is used to assess the appropriateness of
each obtained partition. When used for this purpose, the relative
index is considered a fitness function f ð�Þ (Section 3.5).

Algorithm 1. Fast Evolutionary Algorithm for Clustering (F-EAC).

Let kmax be the maximum initial number of clusters, SC1 be the
stopping criterion for k-means, SC2 be the F-EAC stopping criter-
ion, vVC be the best fitness value for the current generation and gS

be the corresponding (fittest) genotype, kn be the number of
clusters in gS, g be the generation counter, Pg be the current
population, jPj be the population size. Then, F-EAC can be
summarized as follows:

Require kmax, SC1, SC2 and jPj;
1: g←1;
2: initialize a population Pg of jPj genotypes encoding

kAf2;…; kmaxg random clusters each;
3: Repeat
4: apply the k-means algorithm to each genotype in Pg

until SC1 is met;
5: evaluate each genotype in Pg according to the fitness

function;
6: compute vVC, store its corresponding genotype gS;
7: kn← number of clusters of the partition encoded into gS;
8: if SC2 is not met then
9: apply elitist strategy;
10: select genotypes from Pg;
11: calculate which mutation operator will be applied to

each genotype;
12: for all selected genotypes do
13: select the clusters to be mutated;
14: apply mutation operators on the selected clusters to

create new genotypes;
15: end for;
16: copy the new genotypes to the next population Pgþ1;
17: g←gþ1;
18: end if;
19: until SC2 is met;
20: return kn and the corresponding genotype gS;

DF-EAC requires the number of genotypes jPj to be processed
during each iteration, which is known as population size. During
the initialization step (equivalent to Step 2 of Algorithm 1), the
genotypes are initialized by randomly drawing both the number of
clusters (k) and the prototypes for each partition, as described in
Section 3.3. This procedure favors diversity in the initial popula-
tion by creating initial partitions that represent different numbers
of clusters. Thus, the algorithm requires a maximum initial number
of clusters kmax. It is important to note that F-EAC is robust to the
choice of values for kmax since its evolutionary search operators are
able to properly increase or decrease the number of clusters of
partitions during execution [1,41,42]. DF-EAC holds these proper-
ties, as the algorithm is the exact implementation of F-EAC.

For each DF-EAC iteration (also known as generation), every
partition is fine-tuned with the k-means algorithm (equivalent to
Step 4 of Algorithm 1), as detailed in Section 3.4. Thus, DF-EAC
requires at least one stopping criterion (SC1) for k-means. In this
work, two stopping criteria are used as SC1: convergence or a
maximum number of iterations, t. Convergence is attained when
no significant difference is observed between the values of the

centroids in two consecutive iterations. Further details are dis-
cussed in Section 5.2.

The difference between F-EAC and DF-EAC lies in the method
of how the steps in the Algorithm 1 are implemented. For
example, DF-EAC is distributed among processing nodes (to be
described in Section 3.1), thus its codification and data structures
are also distributed (as presented in Section 3.2). During the
population initialization (Step 2 of Algorithm 1), DF-EAC must
synchronize information about the genotypes (detailed in Section
3.3), which is not necessary in F-EAC. Additionally, DF-EAC must
transmit information about the distributed data to apply k-means
(Step 4), calculate the fitness of the partitions (Step 5), and apply
the evolutionary operators (Steps 11–14). These steps are
described in Sections 3.4–3.6, respectively.

Not all DF-EAC steps need information from the data set. This is
the case in Step 9, in which an elitist strategy is adopted, copying
the genotype with the highest fitness into the next generation. The
remaining genotypes are selected for mutation according to
proportional selection [38] (e.g., the well-known roulette wheel
strategy) in Step 10. Optionally, a deterministic selection proce-
dure can also be adopted [1]. In particular, experimental results
suggest that the use of the (μþλ) strategy [13] produces similar
results. For further details on the F-EAC, refer to Alves et al. [1],
Naldi et al. [41].

Last but not least, DF-EAC requires the stopping criteria SC2 for
itself (equivalent to Step 19 of the Algorithm 1). For experimental
scenarios, where the algorithm is compared to other clustering
algorithms, a common practice consists of establishing a reference
value vR for the fitness of the genotypes [41,42]. In these scenarios,
the algorithm stops if the fitness values of one or more genotypes
are equal to or greater than vR. For other scenarios, such as
practical applications, other stopping criteria may be adopted
(e.g., imposing a maximum number of generations and/or a
minimum threshold for the population diversity, among others
[12]). Once stopped, the algorithm returns the best evaluated
partition gS and its number of clusters kn.

3.1. Distributed version of the algorithm

DF-EAC is distributed in processing nodes, which can be
divided into two types:

� Data node: a data node is responsible for all processing that
require direct access to a particular subset of the data. Each
data node is responsible for a single subset of the data, i.e., no
subset of the data can be shared by two or more data nodes.
Data nodes can receive/transmit information from/to other
data nodes or the master node.

� Master node: the master node organizes and processes the
information from the data nodes. Its final goal consists of
combining this information into a single clustering solution.
Additionally, the master node executes all DF-EAC steps that do
not require direct access to the data (equivalent to Steps 9, 10,
11 and 13 of Algorithm 1) and synchronizes the data nodes
during the other steps.

It is important to stress the difference between a DF-EAC node
and a data site. A DF-EAC node is a distributed fraction of the
algorithm while a data site is a data repository. Thus, it is possible
to process multiple DF-EAC nodes at the same data site if this data
site stores multiple data subsets. A typical (fully connected)
DF-EAC topology is presented in Fig. 1, where the arrows indicate
information being transmitted between nodes. In this topology,
each data site stores one of the s data subsets, which is processed
by one data node and all the data nodes are coordinated by
a master node. For the sake of simplicity, this topology is assumed
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in the remainder of this paper. However, other topologies are
possible. The only prerequisite is that all data nodes must be able
to send and receive information to/from the master node, either
directly or through intermediate data nodes.

3.2. Encoding scheme and data structures

As stated in Section 3.1, the DF-EAC data and master nodes
have different purposes. Thus, they need different encoding
schemes and data structures. In this work, the data structures
are divided as following:

� Local data structures: located in the data nodes, these data
structures store important information about the node's data
subset.

� Global data structures: located in the master node, this data
structure represents the partition of the whole data set.

DF-EAC assumes that the data set is distributed across mutually
exclusive subsets, to be processed by different data nodes. Data
distribution and data partition are two different concepts: the
former refers to the way the data is distributed among data nodes
and the latter is the final result of the clustering process. In order to
illustrate those concepts, consider a data set X ¼ fx1; x2;…; x10g in a
distributed scenario with three data sites responsible for processing
the data subsets: fx1; x2g, fx3; x4; x5; x6g, and fx7; x8; x9; x10g.
Fig. 2 illustrates the local and global data structures for this
data set, when partitioned into the clusters C1 ¼ fx1; x2; x3g, C2 ¼
fx4; x5; x6; x7g and C3 ¼ fx8;x9; x10g. The details will be discussed in
the following.

Originally, the F-EAC has a label-based integer encoding to
represent genotypes. More specifically, a genotype is an integer
vector of n positions, where n is the number of data set objects.
Each position corresponds to a particular object, i.e., the ith
position (gene) represents the ith data set object. Provided that
a genotype represents a partition formed by k clusters, each gene
has a value over the alphabet 1;2;3;…; k. For example, the
genotype g¼ ½1112222333� represents the partition exemplified
in Fig. 2, where label 1 is associated with cluster C1 (objects x1; x2

and x3), label 2 is associated with cluster C2 (objects x4; x5; x6 and
x7) and label 3 is associated with cluster C3 (objects x8; x9 and x10).
In the DF-EAC algorithm, a genotype g is stored in the master node
and consists of the concatenation of vectors g½j� for j¼ 1;…; s,
where g½j� contains the labels of the objects inside the jth data
node. Besides the genotypes, DF-EAC stores additional information
about the partitions in auxiliary data structures and variables in
order to accomplish computational savings.

The first auxiliary variable is k, which stores the number of
clusters. A copy of k is present at each DF-EAC node, since its
content is frequently required and has a low storage cost. Vector
nC represents the total number of objects each cluster contains

Fig. 2. Example of data structures for a genotype g in a DF-EAC population: g stores the genotype, g½j� stores the labels of the objects in the jth data node, k stores the number
of cluster, nC stores the number of objects in each cluster, nC ½j� stores the number of objects in the jth data node for each cluster, C stores the centroids of the clusters, fit
stores the fitness f ð�Þ for the partition g and each cluster Cl, D½j� stores the dissimilarities dðxi ; clÞ between the object xi and the centroid cl of cluster Cl.

Fig. 1. DF-EAC full connected topology.
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and is stored in the master node. Similarly, nC ½j� stores the number
of objects which are in the jth data node assigned to each cluster.
Thus, the information in nC is calculated as the sum ∑s

j ¼ 1nC ½j�
computed over all s data nodes.

Kept in the master node, matrix C stores the centroids of each
cluster. This matrix is transmitted, completely or partially, to the
data nodes when information about the centroids is needed.
Depending on the available memory, a copy of C may be stored in
each of the data nodes in order to achieve computational savings.

Some auxiliary structures are unique to the master node or the
data nodes. As presented in Section 3, the fitness is calculated by
means of a function f ð�Þ for the genotype g and each cluster Cl, for
l¼ 1…k. These values are stored in vector fit, accessed in the
master node only. Differently, matrix D½j� stores the dissimilarities
dðxi; clÞ between each object xi in the jth data node and the
centroid cl of the lth cluster, for l¼ 1…k. These dissimilarities are
directly related to the data and, for this reason, they are stored in
the data nodes.

3.3. Initialization

Unlike the F-EAC initialization (Step 2 of Algorithm 1), DF-EAC
demands the synchronization of the data nodes with the master node.
In this step, each data node loads the corresponding data subset and
informs the master node about its number of objects and attributes.
Then, a population with jPj genotypes and auxiliary data structures is
initialized in the master node. Each genotype represents a partition
with k clusters randomly drawn in the interval f2;…; kmaxg. In F-EAC,
the initial cluster prototypes are usually randomly drawn among the
objects of the data set [41,42]. This procedure is replicated in the
DF-EAC master node and the k chosen objects are requested to their
corresponding data nodes. In return, the data nodes that contain the
chosen objects transmit them to the master node. During this step, the
k value is transmitted and stored in every data node. There is no need
to update the genotypes and the rest of the auxiliary data structures in
the initialization step, since this will be made in the local search step
after the master node receives the prototypes.

3.4. Local search

During each generation, DF-EAC partitions are fine tuned by the
k-means algorithm (equivalent to Step 4 of Algorithm 1), in order

to search for higher quality partitions. Essentially, the k-means
algorithm has three main steps:

1. Calculate the dissimilarity between objects and centroids.
2. Assign each object to the cluster for which the centroid has the

lowest dissimilarity to this object.
3. Update the cluster centroids.

DF-EAC uses an adapted version of the distributed k-means
algorithm by Dhillon and Modha [10]. In the first step, the master
node transmits the centroids (matrix C) for all data nodes. After
that, the dissimilarity between objects of each data subset and the
centroids is calculated and stored in D½j�, for the jth data node and
j¼ f1;…; sg. Based on the dissimilarities stored in D½j�, each object
is assigned to the cluster which has the centroid with the lowest
dissimilarity to this object, characterizing k-means’ second step.
For the jth data node, this assignment is made by updating every
object label in g½j�, which allows the calculation of the number of
objects in each cluster and the storage of these calculated values in
nC ½j�. In the third step, the assigned objects are summed for each
cluster in every data node. Although the result of this sum is not
explicitly stored as part of the auxiliary data structures, we will
refer to the sum of all objects in the jth data node assigned to the
lth cluster as sCl

½j� ¼∑xi ½j�ACl
xi½j�, where xi½j� is an object of the lth

cluster in the jth data node. Then, the sums sCl
½j� are transmitted

along with g½j� and nC ½j� to the master node, for l¼ f1;…; kg and
j¼ f1;…; sg. The master node then calculates nC as follows:

nC ¼ ∑
s

j ¼ 1
nC ½j� ¼ ½jC1jjC2j⋯jCkj� ð1Þ

Once nC is obtained, the cluster centroids are straightforwardly
calculated by the following equation:

cl ¼ ∑
s

j ¼ 1

sCl
½j�

jClj
ð2Þ

where cl is the centroid of the lth cluster, sCl
½j� is the sum of all

objects in the jth data node assigned to the lth cluster and jClj is
the total number of objects assigned to the lth cluster. An overview
of the distributed local search procedure described in this section
is presented in Fig. 3.

Fig. 3. Distributed local search overview.
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3.5. Fitness calculation

The fitness function (equivalent to the Step 5 of Algorithm 1)
must be able to assess the quality of partitions and individual
clusters. One such a function, proposed by Hruschka et al. [28,29],
is a simplified (computationally much more efficient) version of
the well-known relative validation index Silhouette Width Criter-
ion [33]. The Simplified Silhouette index scored the best among
40 indexes in a recent comparative study [54,55]. It measures how
compact and separate the clusters of a given partition are. In this
sense, there is a synergy between this index and the k-means
algorithm, as both seek the same kind of partition. In order to
explain this index, let us consider an object xi belonging to cluster
Cl. The dissimilarity between xi and the centroid cl of Cl is denoted
by aðxiÞ, whereas the dissimilarity between xi and the centroid cm
of another cluster Cm is termed dðxi; cmÞ. After computing dðxi; cmÞ
for all clusters CmaCl, the lowest one is retained and termed bðxiÞ,
i.e., bðxiÞ ¼minma ldðxi; cmÞ. This value represents the dissimilarity
between xj and its nearest neighboring cluster. Once aðxjÞ and bðxiÞ
have been introduced, the Simplified Silhouette sðxiÞ can thus be
defined as

sðxiÞ ¼
bðxiÞ�aðxiÞ

maxfaðxiÞ; bðxiÞg
ð3Þ

It is easy to verify that 0rsðxiÞr1 if the objects are always
assigned to the cluster with the closest prototype. The higher sðxiÞ
the better the assignment of object xi to a given cluster. If sðxiÞ is
equal to zero, then it is not clear whether the object should have
been assigned to its current cluster or to a neighboring one. Finally,
if cluster Cl is a singleton, then sðxiÞ is not defined and the most
neutral choice is to set sðxiÞ ¼ 0 [33].

The Simplified Silhouette of a given collection of data objects is
defined as the arithmetic mean of the individual values sðxiÞ
computed for each object. This way, it is possible to compute the
index either for individual clusters (Cl) or for an entire data
partition (C) by calculating the mean of sðxiÞ over the correspond-
ing objects, as follows:

f ðClÞ ¼ ∑
xi ACl

sðxiÞ
jClj

ð4Þ

f ðCÞ ¼ ∑
n

i ¼ 1

sðxiÞ
n

ð5Þ

where j � j stands for the cardinality of a set.
In order to calculate the fitness of the DF-EAC partitions and

clusters, the master node transmits the centroids to every data
node. Having the centroids updated, the data nodes calculate the
simplified silhouette value for each object of the data subsets, by
using Eq. (3). After that, the simplified silhouette of the objects are
summed for each cluster and transmitted to the master node, i.e.,
a vector sfit ½j� ¼ ½sfit1 ½j� sfit2 ½j� ⋯ sfitk ½j�� is calculated and transmitted,
where sfitl ½j� is the sum of the simplified silhouette values of the
objects xi½j� in the jth data node belonging to the lth cluster:

sfitl ½j� ¼ ∑
xi ½j�ACl

sðxi½j�Þ: ð6Þ

Being ∑s
j ¼ 1sfitl ½j� ¼∑xi ACl

sðxiÞ and ∑s
j ¼ 1∑

k
l ¼ 1sfitl ½j� ¼∑n

i ¼ 1sðxiÞ,
the master node calculates the simplified silhouette value for
every partition and cluster1 by Eqs. (4) and (5).

3.6. Mutation operators

DF-EAC has two mutation operators. The first mutation opera-
tor (MO1) eliminates one or more selected clusters, assigning each
of their objects to the cluster for which the centroid is the least
dissimilar to this object. MO1 can only be applied to genotypes that
encode more than two clusters and at least two clusters must
remain after the application. The second mutation operator (MO2)
is only applied to clusters formed by at least two objects. It splits
one or more selected clusters into two new clusters each. To do so,
an object from the selected cluster is randomly chosen. This object
will then be used as seed to generate the new cluster, whereas the
farthest object from the randomly chosen object will also be used
as seed to generate another cluster. Each of the remaining objects
of the split cluster will be assigned to the new generated cluster
for which the seed is the least dissimilar to this object.

Both DF-EAC operators adopt a (probabilistic) informed search
strategy for mutation purposes. In particular, it has been hypo-
thesized that the better the cluster, the smaller should be its
probability of being mutated. Thus, good clusters tend to be
maintained during the evolutionary process, whereas bad clusters
are more likely to be mutated, hopefully improving the encoded
partition. The informed search is guided by the fitness of the
clusters (calculated as described in Section 3.5) and probabilistic
selection may be applied to chose the clusters to be mutated, e.g.,
the roulette wheel strategy [7]. In this case, a linear normalization
[7] is recommended before the selection, to avoid premature
convergence and balance the evolutionary pressure, as performed
in the original F-EAC [1] and predecessors [28,29]. This step is
equivalent to Step 13 of Algorithm 1.

Apart from the genotypes chosen by the elitist strategy (Step
9 of Algorithm 1), every genotype selected by proportional selec-
tion2 in Step 10 of Algorithm 1 is modified by one of the mutation
operators. In F-EAC, the mutation operator (to be applied) is
proportional to its performance during the evolutionary search.
From this perspective, if a particular mutation operator provides
better results in a given generation, then it will be applied with
higher probability in the next generation. One simple way of
accomplishing this is to consider the performance of the operators
individually for each genotype. If the use of an operator generated
a genotype with fitness higher than its predecessor, this operator
will be chosen to mutate the generated genotype afterwards.
Otherwise, the other operator will be chosen. If the genotype
belongs to the initial population or was selected by elitism, both
operators have the same chance of being chosen. This method was
successfully applied in [24,25] and will also be adopted in the
DF-EAC at the step equivalent to Step 11 of Algorithm 1.

A computationally efficient implementation of MO1 was pro-
posed in [41], where the objects of the eliminated clusters remain
unassigned until the next local search step (Section 3.4). This
implementation does not require access to the data information
and can be executed in the master node solely.3 After that, the
result of the MO1 is transmitted from the master node to the data
nodes in order to allow the update of the genotype and auxiliary
data structures.

The original MO2 needs multiple transmissions between nodes in
order to select seeds for the new clusters and to reassign the objects.
To reduce the number of transmissions in DF-EAC, a MO2 variant is
proposed and used here. In this variant, the master node randomly
chose two objects from each of the eliminated clusters to become the
seeds of new clusters. Then, the master node informs the data nodes

1 At this point, singleton clusters have their simplified silhouette assumed to be
0 by convention [33].

2 The well-known roulette wheel strategy [38] was applied.
3 For this reason, the efficient implementation of the MO1 will be adopted in

this work.
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which clusters were eliminated and requests for the objects chosen
to be seeds. After the seeds are received, they become cluster
prototypes in the master node and the rest of the objects of the
eliminated clusters remain unassigned until the next local search
step (Section 3.4). When compared with the original MO2 operator,
the proposed variant showed results of equivalent quality and
presented a significant reduction in data transfer.

3.7. DF-EAC complexity analysis

In this work, the complexity analysis of the DF-EAC algorithm is
threefold: it considers the computational complexity of the algo-
rithm, the storage cost of its data structures, and the amount of
data transmitted between nodes.

As far as the computational complexity is concerned, the
application of k-means to each genotype represents the main
computational burden of DF-EAC. The k-means algorithm compu-
tational complexity is assessed as Oðt � k̂max � nÞ, where n is the
number of objects in the distributed data set, k̂max is the highest
number of clusters ever encoded by a genotype during the
evolutionary search and t is the maximum number of k-means
iterations (see Section 3). Considering that the k-means algorithm
is applied to every genotype over all generations, the overall
computational cost of DF-EAC is (over) estimated as Oðgmax � jPj �
t � k̂max � nÞ for gmax generations and population size jPj. However, if
the distributed parts of the algorithm are executed in parallel, this
computational cost is proportionally divided by the number of
objects in each data node. Assuming nmax as the size of the larger
data subset, the DF-EAC has computational complexity estimated
as Oðgmax � jPj � t � k̂max � nmaxÞ when the data nodes execute the
algorithm in parallel. If the objects are evenly distributed among
the data nodes, i.e., nmax � n=s where s is the number of data
subsets, the algorithm computational cost can be assessed as
Oðgmax � jPj � t � k̂max � n=sÞ.

Concerning the storage cost, the DF-EAC largest data structures
are the D½j� matrices, which store the dissimilarity between the
objects of the jth data node and the centroids. The storage cost of
this data structure is estimated as Oðk̂max � nmaxÞ in the worst case.
Thus, the DF-EAC storage cost is assessed as OðjPj � k̂max � nmaxÞ,
which can be considered as OðjPj � k̂max � n=sÞ if nmax � n=s.
Although it is possible to reduce the DF-EAC storage cost by
reducing the population size jPj, the number of generations tends
to be inversely interdependent on the population size, in such a
way that decreasing one of them typically increases the other [41].

Finally, the largest amount of data transmitted between nodes
is matrix C, which stores the centroids of the clusters. This data
structure is transmitted during every k-means iteration and its
asymptotic complexity is calculated as Oðgmax � jPj � t � k̂max � a � sÞ,
where a is the number of attributes of the objects.

It is important to note that the amount of data transmitted by
the DF-EAC algorithm is independent of the number of objects of
the data set n, which makes DF-EAC data transmission scalable
with respect to this critical quantity.

4. Combinations of distributed clustering (CDC)

The Combinations of Distributed Clustering (CDC) is a category
of algorithms proposed in our preliminary work [40] and aimed at
combining distributed information about the data set into a final
clustering solution. The algorithms are distributed in data and
master nodes like the DF-EAC, as described in Section 3.1. Gen-
erally speaking, the CDC algorithms have two main steps: the first
step is the independent generation of clustering models in the
data nodes and the second step combines, in the master node, the
models obtained in the first step.

The first step of the CDC algorithms consists of clustering the
subsets of the distributed data set, i.e., generating data clusters for
each of the data nodes separately. In the present work, the F-EAC
(Algorithm 1) will be used in this step in order to independently
generate partitions for the subsets in the data nodes. After
receiving the resulting centroids and the number of objects in
each cluster from every data node, the master node generates a
combined partition of the data set in the second step of the CDC
algorithms. Because the centroids share the same feature space
(as the objects of the data set), it is possible to cluster these
centroids with clustering algorithms in order to obtain a meta-
partition. Let MX ¼ fc1; c2;…; ccg be the set of centroids from all
data nodes, resulting from the first step of a CDC algorithm, where
c is the total number of centroids. A meta-partition is a collec-
tion Mπ ¼ fMC1;MC2;…;MCmkg of meta-clusters MCi for which
MC1 [ MC2 [ ⋯ [ MCmk ¼MX, MCia∅ and MCi \ MCl ¼∅ for
ia l. The meta-partition can be converted into a global partition
of the original data set, replacing each centroid by the objects it
represents.

In order to obtain the global partition, it is possible to compute
the centroid of a meta-cluster as the mean of the objects it
represents. To do so, a meta-centroid is calculated as the mean
of the centroids in the meta-cluster weighted by the number of
objects that these centroids represent. Thus, the jth meta-centroid
is calculated as presented in the following equation:

mcj ¼
∑ci AMCj

cijCij
∑ci AMCj

jCij
ð7Þ

where jCij is the cardinality of the cluster for which ci is the
centroid.

In this work, three methods were chosen to combine (cluster)
the set of centroids MX thus giving rise to three different variants
of CDC: F-EAC (Algorithm 1) and the hierarchical algorithms
single-link and average-link [32]. As the hierarchical clustering is
a nested sequence of hard partitions, each level of the hierarchy is
evaluated with the Simplified Silhouette index (the same used as
the fitness function for F-EAC) and the best level (partition) is
chosen as the final solution. In CDC algorithms, the calculation of
the Simplified Silhouette index is exact, i.e., it obtains the same
result as the centralized version of the index. This is done by
transmitting the meta-centroids from the master node to the data
nodes and retrieving the Simplified Silhouette (Eq. (3)) value of
each object from the data nodes. A more detailed discussion about
the CDC algorithms can be found in [40].

4.1. Complexity of the CDC algorithms

Assuming that the ith data node has n½i� objects, the first step of
the CDC algorithms presents a computational complexity equiva-
lent to that of F-EAC [41] summed over the multiple data nodes,
i.e., Oðgmax � jPj � t � k̂max � ðn½1�þn½2�þ⋯þn½s�Þ, which is equivalent
to Oðgmax � jPj � t � k̂max � nÞ where gmax is the F-EAC maximum
number of generations, jPj is the population size, t is the limit of
k-means iterations, k̂max is the maximum number of clusters
codified by a genotype during the evolutionary search, s is the
number of data nodes, n is the number of objects in the whole
(distributed) data set and n½j� is the number of objects in the jth
data node. If executed in parallel, this complexity is reduced to
Oðgmax � jPj � t � k̂max � nmaxÞ, where nmax is the maximum number of
objects in a data node. Moreover, if nmax � n=s, then the complexity
of the CDC's first step is Oðgmax � jPj � t � k̂max � n=sÞ. The second step
of the CDC algorithms presents the computational complexity of
the clustering algorithm adopted. For this estimation, the number
of clustered objects is the total number of centroids which resulted
from the first step (c). If hierarchical algorithms are adopted, the
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second step has the computational complexity Oðc2 � log cÞ [32]. If
F-EAC is adopted, the computational cost of the second step is
Oðgmax � jPj � t � k̂max � cÞ [41].

The memory allocation cost in the first step is Oðk̂max� jPj � nmaxÞ.
In the second step, this cost is Oðk̂max � jPj � cÞ if the F-EAC algorithm
is adopted. Otherwise, if the hierarchical algorithms are used, the
dissimilarities between centroids lead to a memory allocation cost
of Oðc2Þ.

The amount of data transferred among the data nodes and the
master node by the CDC algorithms is also related to the clustering
algorithm used in their second step. To apply the Simplified
Silhouette index, the meta-centroids must be transmitted to the
data nodes. If the hierarchical algorithms are adopted, the total
number of meta-centroids is 2þ3þ⋯þkmax � kmaxðkmaxþ1Þ=2,
which requires the transmissions amounts of order Oðk2max � a � sÞ.
If F-EAC is adopted, then the data transmission is estimated as
Oðgmax � jPj � k̂max � a � sÞ in the worst case. Additionally, it is impor-
tant to note that the transmission cost of the algorithm does not
depend on the number of objects in the data set, which makes the
algorithm scalable in relation to this aspect.

5. Experiments

In [42,41], F-EAC has shown to be more computationally
efficient than procedures to circumvent k-means limitations based
on repetitive executions. Similar results were obtained in [5,25] for
fuzzy clustering and relational data. This efficiency is caused by the
evolutionary search through mutation and selection operators,
which are biased towards more promising clustering solutions.
Unlike the F-EAC, the repetitive procedures do not make use of the
information on the quality of previously assessed partitions to
generate potentially better partitions. Thus, the repetitive proce-
dures usually result in a higher number of k-means executions
than F-EAC. As presented in Section 3, DF-EAC is the exact
distributed version of the F-EAC algorithm, i.e., it produces a
clustering model identical to the one produced by F-EAC. Thus,
the DF-EAC inherits the computational efficiency of the F-EAC and
is expected to behave similarly when compared to these repetitive
procedures. As far as data transmission is concerned, the distrib-
uted k-means presents the highest transmission cost for DF-EAC
and procedures based on k-means repetitive executions. As these
repetitive procedures usually require more k-means executions
than DF-EAC, they tend to transfer a higher amount of data and,
therefore, result in a worse performance. For these reasons,
procedures based on k-means repetitive executions will not be
experimentally compared in this work.

Differently from the DF-EAC, approximate algorithms produce a
model that approximates (but may not be identical to) the type of
result sought by the F-EAC algorithm, aiming at less data transmis-
sion and potential computational savings. This is the case of CDC
presented in Section 4. In order to evaluate the two different types
of distributed algorithms that were studied, comparative experi-
ments between the DF-EAC and the CDC algorithms were exe-
cuted, taking into account three aspects: the quality of the
resulting partitions, the execution time, and the total amount of
data transferred between data nodes.

The quality of the resulting partitions is measured with the
well-known Corrected Rand (CR) external index [30] in relation to
the known clusters or “golden truth”. The index returns values in
the interval ½�1;1� and the higher the CR index value is, the better
the quality of the evaluated partition gets.

The execution time and amount of data transmitted was measured
using Matlab software in computers with quad core 3.0 GHz proces-
sors and 12 GB of RAM memory, one node per computer.
For these measurements, the data nodes executed in parallel and

the datawere transmitted concurrently. It is important to note that the
experiments presented in this section aim at comparing each of those
aspects independently, as the execution and transmission time are
machine dependent.

5.1. Data sets

A collection of artificial data sets analyzed in [20] was chosen
for the experiments presented here. These data sets contain
clusters generated from multivariate normal distributions and
their main features are:

� Overlapped clusters, with higher variance (elongated) in an
arbitrary direction.

� Varied numbers of clusters, k, where kAf4;10;20;40g.
� The number of objects in each cluster is randomly drawn from

the interval ½50;500� for data sets where kAf4;10g. For data
sets where kAf20;40g, this number is drawn uniformly from
the interval ½10;100�.

� Data objects are described by either a¼2 or a¼10 attributes.
� Ten sampling replications were generated for each combination

of k and a, producing a total of 80 data sets variations.

Originally, the chosen data sets are centralized, i.e., they are not
naturally distributed [20]. Thus, every data set had to be distrib-
uted across data subsets, one for each data node, according to the
following characteristics:

� Uniform data distribution among the data nodes: the data sets
were distributed into subsets of equal size, i.e., nmax � n=s,
where nmax is the size of the larger data subset, n is the number
of objects in the data set and s is the number of data subsets
(nodes).

� Different numbers of data nodes: to assess the impact of s on
the algorithms, the experiments were executed with s¼ 5, 20
and 80 data nodes for every data set.

� Different types of cluster balancing: for the ith known cluster,
the proportion of the number of objects is calculated as
pCi

¼ jCij=n, where jCij is the cardinality of cluster Ci. The
proportion of the ith known cluster in the jth data node is
pCi

½j� ¼ jCi½j�j=n½j�, where Ci½j� is the number of objects of the ith
known cluster in the jth data node and n½j� is the number of
objects in the jth data node. When the objects distribution
is balanced, the proportion of objects in the data nodes is
similar to the proportion in the data set, i.e., pCi

� pCi
½j�;

8 iAf1;…; kg; jAf1;…; sg. However, this balancing is not guar-
anteed in practical applications. For this reason, additionally
to the balanced distribution, the objects were distributed
with unbalanced proportions, i.e., pCi

apCi
½j�; 8 iAf1;…; kg; jA

f1;…; sg. Generally speaking, the method adopted to unbalance
the clusters proportions consists of choosing two clusters for
each data node. After that, the proportion of objects of the first
chosen cluster is increased while the proportion of the second
chosen cluster is decreased. This method is described in detail
in the supplementary material. The main objective is to verify
how much the quality of the approximate algorithms’ outcome
varies4 with the type of balance adopted during the objects
distribution.

4 DF-EAC, as an exact algorithm, always produces the same results that would
be produced if the data were centralized, no matter how the data are distributed
across nodes.
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5.2. Compared algorithms and stopping criteria

Comparisons involving computational efficiency of clustering
algorithms should not neglect the quality of the partitions
achieved by these algorithms. Bearing this in mind, it is reasonable
to assume that fair comparisons can be achieved if the algorithms
being analyzed are capable of finding partitions of equivalent
quality, which must be as high as possible. Therefore, an experi-
mental methodology developed by [5] and applied in [41] will
be adapted for this work. This methodology consists of using a
clustering validity index to determine whether the partitions
found by different algorithms have similar qualities. In order to
do so, it is necessary to set an acceptable reference value for the
validity index in such a way that: (i) it is as high as possible;
and (ii) the algorithms under investigation may be capable of
finding it.

The algorithms compared in this work fine tune partitions with
k-means. Thus, to estimate the reference value, the following
repetitive procedure was applied for each data set described in
Section 5.1 and each distributed subset:

1. Initialize the iterator counter i¼1.
2. k-means is applied to the data set (or subset) 100 times with

random initializations of cluster prototypes and k value as the
known number of clusters.

3. The Simplified Silhouette (Section 3.5) is used to evaluate every
partition resulting from Step 2 and the best value out of the 100
available values is stored in vi.

4. Return to Step 2 and increase i by one if ir30.
5. Calculate the reference value for this data set (or subset) as

vR ¼∑30
i ¼ 1vi=30.

The purpose of these steps is to make all the compared
algorithms able to find partitions of equivalent quality, from
different configurations of their parameters. Thus, the reference
value vR is used here as a guide to find reasonable partitions, i.e.,
partitions evaluated with values equal or superior to vR. When
such partition is obtained, the algorithm stops. In this work, this
stopping criterion is adopted by DF-EAC and also by the F-EAC
routine used as part of the CDC algorithms. Although this stopping
criterion may not have, for obvious reasons, a practical appeal, it
allows the comparison of different algorithms based on partitions
of reasonable quality. For practical application scenarios, other
stopping criteria may be used, such as imposing a maximum
number of generations and/or a minimum threshold for popula-
tion diversity [12].

As the CDC algorithms are approximate algorithms, it is not
possible to ensure that these algorithms are capable of resulting in
partitions with evaluation values equal to or higher than vR. Thus,
the reference value cannot be assumed as the only stopping
criterion for CDC. For this reason, a limit of 100 generations is
adopted as an additional stopping criterion for the F-EAC routine
used as part of the CDC algorithms.

DF-EAC and F-EAC initial populations are composed of parti-
tions with the number of clusters k randomly chosen in the
interval ½2;n1=2�, a commonly used rule of thumb [47,45,5]. From
the results for different population sizes reported in [41], it is
possible to observe that larger populations tend to make F-EAC
converge to good solutions in fewer generations, which, by their
turn, are more computationally costly than those related to
smaller populations. These results suggest that the algorithm is
reasonably robust to the choice of the population size jPj, espe-
cially if one considers that its effectiveness in solving the cluster-
ing problem is barely affected by this choice. Experiments in
[42,26,24,41] show that jPj ¼ 10 is a robust blind choice across
different data sets and, for this reason, will also be adopted here.

When adopted for local search strategy (Section 3.4), k-means
convergence is attained when no significant difference is observed
between the values of the centroids in two consecutive iterations,
for which a threshold of 10�3 is adopted in this work. Additionally,
given that the evolutionary search performed by F-EAC favors
a cumulative refinement of the data partitions,5 a maximum
number of iterations t is imposed to k-means. Empirical evidence
suggests that t¼5 or less repetitions ordinarily will suffice
[2,41,42]. Therefore, this value is adopted here.

In the experiments to be presented in Section 5.3, each node
(data or master) is executed exclusively in a single computer. Four
variants of the CDC algorithms were compared:

1. CDC-sl: hierarchical single-link as the 2nd step of CDC.
2. CDC-al: hierarchical average-link as the 2nd step of CDC.
3. CDC-FEAC: F-EAC as the 2nd step of CDC.
4. CDC-FEAC (10g): similar to CDC-FEAC, but this variant has a

third stopping criterion for F-EAC during the combination
of clusters (CDC second step). The algorithm stops after 10
consecutive generations without improvement on the fitness
value of the best partition of the population.

As addressed in Section 5.1, the data sets were distributed with
different types of balance. Each of the four CDC variants was
applied to the balanced and unbalanced distributed data sets.
Results from CDC variants applied to the unbalanced data set will
be distinguished from other results with the symbol (U) in the
tables presented in Section 5.3. It is important to note that the
DF-EAC results are identical to those obtained by F-EAC for
centralized data. Thus, the DF-EAC results are independent of the
type of balance when data are distributed and will not be applied
to unbalanced distributed data sets.

5.3. Results

In order to assess the significance of the experimental results,
hypothesis tests were adopted. The ANalysis Of VAriance (ANOVA)
test [56] assumes that the compared samples are drawn from
populations with normal distributions and similar variances [9].
As these requirements are not ensured here, we applied the (non-
parametric) Friedman test [23] with 95% confidence. When the
null hypothesis was rejected, indicating that there is statistical
evidence to support that the compared results are different,
the Bonferroni procedure [22,21] was applied (using Matlabs) to
the critical values to compensate for the multiple comparisons and
maintain the actual level of statistical confidence at 95%.

Table 1
Mean and standard deviation (within parentheses) values obtained by the
compared algorithms when applied to the collection of data sets distributed across
five data nodes.

Algorithm CR Time (s) Transmission (kB)

1 CDC-sl 0.8451 (0.1361) 3.14 (2.07) 255.44 (183.42)
2 CDC-sl (U) 0.8091 (0.1929) 4.91 (7.69) 212.05 (183.89)
3 CDC-al 0.8532 (0.1494) 3.19 (2.08) 255.44 (183.42)
4 CDC-al (U) 0.8284 (0.1852) 4.94 (7.69) 212.05 (183.89)
5 CDC-FEAC 0.8326 (0.1325) 15.28 (15.60) 2055.53 (3235.86)
6 CDC-FEAC (U) 0.8149 (0.1582) 26.28 (22.06) 2882.62 (3628.17)
7 CDC-FEAC (10g) 0.8194 (0.1390) 8.05 (5.05) 865.79 (939.65)
8 CDC-FEAC (10g) (U) 0.7967 (0.1630) 11.03 (9.34) 948.26 (974.23)
9 DF-EAC 0.8392 (0.1116) 1.69 (1.91) 3348.15 (6149.13)

5 Refer to [26] for a comprehensive experimental study related to this issue.
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All compared algorithms were executed 30 times for each data
set and the mean values over these executions are presented in
Tables 1, 3 and 5, for data distributions in 5, 20, and 80 data nodes,
respectively. The best mean value and the values without statis-
tically significant difference with respect to the best one are
highlighted in bold.

As presented in Table 1, every compared algorithmwas able to find
partitions of reasonable quality in experiments with five data nodes, i.
e., partitions with CR index mean values above 0.7. Additionally, CR
index mean values were very similar for all algorithms. The best CR
mean values were obtained by CDC-al, followed by CDC-sl (with no
statistically significant difference) and DF-EAC.

When computational time is regarded, DF-EAC obtained the
lower mean value, followed by CDC-sl and CDC-al. On the other
hand, the amount of data transmitted by DF-EAC is higher than
that of any other compared algorithm, specially the CDC variants
that apply hierarchical algorithms in the second step. Thus, CDC
can obtain good quality partitions with some data transmission
savings, but requires more computational time than DF-EAC.

Being an approximated algorithm, CDC-FEAC was not able to
find partitions with evaluation values higher than or equal to the
reference value vR in all executions, which made the algorithm
halt after the 100 generation limit. The adoption of the 10
generation without improvement limit (10g) caused a significant
reduction in the computation time and amount of data trans-
mitted by the algorithm, with only a small loss in the mean quality
of the resulting partitions.

The unbalanced distribution caused a minor reduction in the
quality of the partitions obtained by the CDC algorithms and a
small increase in their computational times.

Table 1 presents comparisons between the evaluated algo-
rithms regarding their execution time and amount of data trans-
mitted, but not both at the same time. If a specific hardware
configuration is assumed, i.e., a specific relation between compu-
tational power and capacity of data transmission among nodes is
adopted, it is possible to assess which algorithm has better
performance considering both aspects together. Based on the
mean computational time and the mean amount of data trans-
mitted, a performance comparison among algorithms is estimated
in Table 2. Symbol D in position (i,j) indicates that the algorithm of
the ith line is faster than the algorithm in the jth column and
symbol , indicates the opposite, regardless of the data transmis-
sion rate. In other cases, the result is dependent on the data
transmission rate and, in these cases, symbol 4 followed by a
number x in position (i,j) indicates that the algorithm in the ith
line should have a better performance than the algorithm in the
jth column if the data transmission rate is higher than x. Other-
wise, symbol o followed by a number x indicates that the
transmission rate must be lower than x if the algorithm in the
ith line should have a better performance than the algorithm in
the jth column. It is important to note that the performance

estimation presented here considers that all computers have the
same configuration of the computer described in this work and
each computer must be associated with a single node (master or
data). Additionally, transmissions are assumed to be executed
concurrently, which is the worst application scenario.

The results presented in Table 2 obtained with data sets
distributed into five nodes indicate that the CDC variants with
hierarchical clustering (numbers 1–4) have similar computational
performance, which are superior to the CDC variants with F-EAC
(numbers 5–8). DF-EAC may outperform the CDC algorithms if the
transmission rate is high enough. For instance, transmission rates
over 1000 kB/s (which are common in local networks) allow
DF-EAC to have a performance better than most CDC variants.

The results obtained with data sets distributed into 20 nodes
are presented in Tables 3 and 4.

The comparison of the CR index values between Tables 1 and 3
reflects a reduction in the main partition quality of the CDC variants
with hierarchical algorithms (numbers 1–4), when the number of
data nodes increases. This quality reduction did not occur with the
CDC-FEAC variants (numbers 5–8) and the DF-EAC algorithm. How-
ever, CDC-FEAC variants required the highest computational time to
execute and, when applied to unbalanced data, the algorithm had
the largest amount of data transmitted. The adoption of the 10
generation without improvement limitation (10g) considerably
reduced both computational time and transmission costs, with minor
reductions in the CR index mean values as a tradeoff. Thus, this
limitation showed to be an interesting choice for applications on
systems with low data transmission rates.

DF-EAC is once again the algorithm with the lowest mean
computational time. Its mean CR index values are similar in
Tables 1 and 3, which results from the fact that the algorithm is
the exact version of F-EAC.6

Additionally, the results presented in Table 3 indicate that the
unbalanced distribution did not jeopardize the quality of parti-
tions for the majority of the compared algorithms.

Similar to Table 2, a performance comparison among algorithms
is estimated in Table 4 for data sets distributed into 20 data nodes.

The estimation presented in Table 4 indicates that the CDC
variants with hierarchical algorithms (numbers 1–4) have similar
performances, which are superior to the performances of other
CDC variants. However, CDC-al and CDC-sl have the lower quality
partitions for data sets distributed into 20 nodes (Table 3). If the
transmission rate is above 8000 kB/s, DF-EAC may outperform all
the CDC variants. Even a transmission rate above 500 kB/s may
suffice for DF-EAC to outperform the CDC-FEAC variants (numbers
5–6) and its mean CR index value is close to the best one presented
in Table 3. For systems with low transmission rates, CDC-FEAC

Table 2
Comparison of algorithm performances for data sets distributed into five nodes. D means that the algorithm in the line is faster than the algorithm in the column and ,

means the opposite. Symbol 4 followed by a number indicates that the data transmission rate (in kB/s) should be higher than this number for the algorithm in the line to
have a better performance than the algorithm in the column, whereas symbol o indicates the opposite.

1 2 3 4 5 6 7 8 9

1 – 424:58 n 424:14 n n n n o2123:24
2 o24:58 – o25:20 n n n n n o973:33
3 , 425:20 – 424:74 n n n n o2060:95
4 o24:14 , o24:74 – n n n n o963:73
5 , , , , – n , , o95:07
6 , , , , , – , , o18:93
7 , , , , n n – n o390:03
8 , , , , n n , – o256:75
9 42123:24 4973:33 42060:95 4963:73 495:07 418:93 4390:03 4256:75 –

6 The CR results in Tables 1 and 3 are not exactly the same for DF-EAC because
this is a randomized (non-deterministic) algorithm.
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(10g) showed a good relation between performance and partition
quality (Tables 3 and 4).

The results obtained with data sets distributed into 80 nodes
are presented in Tables 5 and 6.

The results in Tables 1, 3 and 5 reflect a degradation of the CR
index values for the CDC variants with hierarchical algorithms
(numbers 1–4) when the number of data nodes increases. One of
the main reasons for this degradation is the overlap between
clusters in the data sets, which becomes more evident as the
number of data nodes increases. The increase in the number of
data nodes generated a larger amount of cluster centroids in the
first step of the CDC algorithms. The larger the amount of
centroids, the more information about the overlap between
clusters is present in the second step of the CDC algorithms. For
example, a data set used in this experiment and the centroids
obtained from the first step of the CDC algorithms are presented in
Fig. 4 for distributions into 5, 20 and 80 data nodes. This example
illustrates how the overlap between clusters becomes more
evident as the number of centroids increases. The hierarchical
algorithms used by CDCs 1–4, especially single-link, do not
properly handle data with overlapping clusters.

Additionally, the second step of the CDC algorithms must be
able to combine clusters that, altogether, have enough evidence to
characterize the underlying structure of the data set. The parti-
tions resulting from the CDC first step have CR index mean value of
0.76 over the data sets distributed among five nodes. This value
decreases to 0.74 and 0.56 when the data sets are distributed into
20 and 80 nodes, respectively, which indicates that the increase in
the number of data nodes (and the consequent reduction in the
number of objects per node) results in partitions in the nodes less
similar to the structure of the data sets.

Unlike the hierarchical variants, the CR index values obtained
from the CDC-FEAC variants (numbers 5–8) were slightly affected
by the increase of the number of nodes (Tables 1, 3, and 5).

Moreover, the limit of 10 generations without improvement (10g)
reduced the computation time and the amount of data transmitted
by the algorithm, causing only a small reduction in the mean
quality of the resulting partitions.

The results presented in Table 5 indicate that the unbalanced
distribution did not jeopardize the quality of any algorithm
compared.

As expected from an exact algorithm, the quality of the DF-EAC
partitions is robust to different types of data distributions, which is
indicated by the mean CR values in Tables 1, 3, and 5. Additionally,
for data sets distributed into 80 nodes, the algorithm has the best
CR index values and the best mean computational time at the
same time, with a transmission rate lower than the CDC variant
with the best partition quality (number 6).

Analogous to Table 2, a performance comparison among
algorithms is estimated in Table 6 for data sets distributed into
80 data nodes.

Due to the number of data nodes and, hence, the amount
of data transmissions, algorithms with low data transmissions
resulted in the best performances for data sets distributed into 80
data nodes. Exceptions may occur if the transmission rates are
high, as indicated in Table 6.

6. Conclusions

From the experiments presented in this paper, it is concluded
that DF-EAC is robust to different types of data distribution. This is
due to the fact that the algorithm is the exact version of F-EAC, i.e.,
its results over distributed data are analogous to those obtained by
the centralized version of the algorithm. Additionally, DF-EAC has
a linear computational complexity in relation to its main para-
meters and resulted in the lower mean computational time for all
experiments presented in this paper. However, the algorithm

Table 3
Mean and standard deviation (within parentheses) values obtained by the
compared algorithms when applied to the collection of data sets distributed across
20 data nodes.

Algorithm CR Time (s) Transmission (kB)

1 CDC-sl 0.6310 (0.2930) 1.66 (0.92) 1290.41 (840.20)
2 CDC-sl (U) 0.6408 (0.3020) 2.07 (2.16) 1283.34 (836.64)
3 CDC-al 0.7394 (0.2881) 2.26 (1.49) 1290.41 (840.20)
4 CDC-al (U) 0.7322 (0.2953) 2.18 (2.22) 1283.34 (836.64)
5 CDC-FEAC 0.8321 (0.1414) 9.76 (10.44) 7857.03 (11479.87)
6 CDC-FEAC (U) 0.8389 (0.1550) 14.89 (12.97) 15 154.84 (19411.24)
7 CDC-FEAC (10g) 0.8228 (0.1484) 5.27 (3.55) 3686.41 (3802.90)
8 CDC-FEAC (10g) (U) 0.8251 (0.1604) 5.57 (3.81) 4351.37 (4639.09)
9 DF-EAC 0.8418 (0.1048) 0.89 (0.95) 12 843.76 (21723.35))

Table 4
Comparison of algorithm performances for data sets distributed into 20 nodes. Dmeans that the algorithm in the line is faster than the algorithm in the column and,means
the opposite. Symbol 4 followed by a number indicates that the data transmission rate (in kB/s) should be higher than this number for the algorithm in the line to have a
better performance than the algorithm in the column, whereas symbol o indicates the opposite.

1 2 3 4 5 6 7 8 9

1 – 417:25 n 413:62 n n n n o14977:03
2 o17:25 – n n n n n n o9788:75
3 , , – , n n n n o8404:61
4 o13:62 , n – n n n n o8958:63
5 , , , , – n , , o562:20
6 , , , , , – , , ,

7 , , , , n n – n o2092:21
8 , , , , n n , – o1815:08
9 414977:03 49788:75 48404:61 48958:63 4562:20 n 42092:21 41815:08 –

Table 5
Mean and standard deviation (within parentheses) values obtained by the
compared algorithms when applied to the collection of data sets distributed across
80 data nodes.

Algorithm CR Time (s) Transmission (kB)

1 CDC-sl 0.2310 (0.2971) 0.97 (0.65) 5127.95 (3342.77)
2 CDC-sl (U) 0.2480 (0.3080) 0.91 (0.61) 5124.81 (3338.31)
3 CDC-al 0.5753 (0.3236) 3.76 (3.58) 5127.95 (3342.77)
4 CDC-al (U) 0.6196 (0.3121) 2.50 (2.05) 5124.81 (3338.31)
5 CDC-FEAC 0.7729 (0.2117) 18.41 (15.49) 61 525.95 (74502.38)
6 CDC-FEAC (U) 0.8123 (0.1780) 18.07 (14.31) 68 201.59 (80820.47)
7 CDC-FEAC (10g) 0.7609 (0.2177) 5.53 (3.60) 16 158.76 (16939.77)
8 CDC-FEAC (10g) (U) 0.8021 (0.1786) 5.30 (3.28) 17 386.12 (18348.24)
9 DF-EAC 0.8403 (0.1027) 0.84 (0.82) 52 939.23 (86617.73)
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interactively transmits data between master and data nodes,
which demands considerable transmission speed. Thus, the
algorithm is recommended for systems with average or high
transmission rates.

Although the experimental results presented in this paper
indicate that the CDC variants which use hierarchical algorithms
significantly reduced the amount of data transmitted, the quality of
their partitions tends to decrease with the growth of the number of
data nodes. The quality of the partitions of the CDC-FEAC variants
for an increasing number of data nodes was not as much affected as
the quality of the CDC hierarchical variants. Also, this quality was
not significantly affected by unbalanced distributions with respect
to the clusters known to exist in the data sets. However, a limit of
generations without improvement should be adopted for the CDC-
FEAC to obtain significant savings in the transmission costs. Thus,
the CDC-FEAC variant with the generation limitation is recom-
mended for systems with low transmission rates.
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