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Abstract: Two dimensional packing problem arises in the industry whenever one must place
multiple items inside a container such that there is no collision between the items, while either
minimizing the size of the container or maximizing the area occupied by the items. High material
utilization is of particular interest to mass production industries since small improvements of
the layout can result in large savings of material and considerably reduce production cost. In
this work the Simulated Annealing is combined with deterministic heuristics (larger first (LF),
bottom left (BL) and translations only (Tr)) and compared. The rotational generic approach
has discrete (sequence of placement) and continuous (angle and position) parameters. It is
very important to notice that the cost function (non occupied space) has only discrete values.
Copyright c⃝2009 IFAC.
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1. INTRODUCTION TO PLACEMENT PROBLEMS

Several industrial problems involve placing objects into a
container without overlap, with the goal of minimizing a
certain objective function. The nesting problem is strongly
NP-hard. Furthermore, the geometrical aspects of this
problem make it really hard to solve in practice.

The global optimization algorithm Simulated Annealing
(SA) has been proposed by Kirkpatrick et al. (1983)
in the area of combinatorial optimization, that is, when
the cost function is defined in a discrete domain. The
SA algorithm was modified in order to apply to the
optimization of functions defined in a continuous domain
by Corana et al. (1987) using distinct steps according
to temperature intervals. Martins and Tsuzuki (2008)
proposed a SA algorithm with adaptive neighborhood that
can be used with discrete and continuous domain.

The SA was applied to solve the placement problem
through different strategies: Gomes and Oliveira (2006)
proposed an algorithm where the sequence of place-
ment is controlled by discrete parameters, Heckmann and
Lengauer (1995) proposed an algorithm where the transla-
tion of items is controlled by continuous parameters. Mar-
tins and Tsuzuki (2007) proposed a generic approach to
solve the placement problem by controlling simultaneously
three types of parameters: sequence of placement, rotation
and translation of items.

1 This author was partially supported by CNPq and FAPESP.

This work turned off some of the controls and combined
the SA with deterministic heuristics: larger first (LF),
bottom left (BL) and translation only (Tr). A total of
seven different strategies can be defined by combining
probabilistic and deterministic heuristics.

2. SIMULATED ANNEALING

SA is the probabilistic meta–heuristic adopted in this
work. It has been chosen due to its capacity of “escape”
from local minima (which are very frequent in this prob-
lem). It is also worth of mention that the process of recrys-
tallization, the inspiration for SA, is a natural instance of
a placement problem.

SA is a hill-climbing local exploration optimization heuris-
tic, which means it can skip local minima by allowing
the exploration of the space in directions that lead to a
local increase on the cost function. It sequentially applies
random modifications on the evaluation point of the cost
function. If a modification yields a point of smaller cost,
it is automatically kept. Otherwise, the modification also
can be kept with a probability obtained from the Boltzman
distribution

P (∆E) = e−
∆E
kT (1)

where P (∆E) is the probability of the optimization pro-
cess to keep a modification that incurs an increase ∆E
of the cost function. k is a parameter of the process
(analogous to the Stefan–Boltzman constant) and T is the
instantaneous “temperature” of the process. This temper-
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ature is defined by a cooling schedule, and it is the main
control parameter of the process.

The choice of the cooling schedule and of the next can-
didate distribution are typically the most important ones
in the definition of a SA algorithm. In Bohachevsky et al.
(1986), the next candidate point is obtained by first gen-
erating a random direction vector the multiplying it by a
fixed step size, and summing the resulting vector to the
current candidate point. The value of the step size should
be chosen so that the percentage of accepted ascent steps
with respect to the total number of generated ascent steps
is about 60%. It is suggested to split the SA algorithm in
two phases: a global phase in which the algorithm globally
explores the feasible regions and a local phase which starts
from the best point observed in the global phase (which,
hopefully, is close enough to the global optimum). In the
case of continuous domain, the local phase employs the
same SA algorithm used in the global phase, but with
a much lower value for the step size, which reduces the
algorithm to a local exploration of the region around the
best point observed in the global phase.

The directions are randomly sampled from the uniform
distribution over the unit (n− 1) dimensional sphere, and
the step size is the same in each direction. In this way
the feasible region is explored in an isotropic way and it is
assumed that the objective function behaves in the same
way in every direction. But this is often not the case. The
placement problem studied here has an objective function
where different directions should have different step sizes,
i.e. the space should be searched in an anisotropic way.

In the ASA proposed by Ingber (1989) the temperature
is not only employed in the acceptance function, but also
in the densities of the distribution of the next candidate
point. ASA used the Cauchy distribution, that has a fatter
tail allowing easier access to test local minima in the search
for the global minimum. Consequently, the algorithm can
do global exploration even at the local phase with a low
probability.

The SA algorithm used in this work was proposed by
Martins and Tsuzuki (2008) and it uses an adaptive
neighborhood algorithm to define the densities of the
distribution of the next candidate point.

3. DETERMINISTIC HEURISTICS

The great majority of the published articles are related
to translation only placement problems (Wäscher et al.
(2007)). Deterministic heuristics are mainly used in the
definition of the placement order and item translation
(Dowsland et al. (2002); Hifi and Hallah (2003); Jakobs
(1996); Liu and Teng (1999)). In this section it is discussed
the limitations of deterministic heuristics when applied to
the placement problem on fixed dimensions container.

3.1 Placement Order

The main influence of the items sorting is evidently upon
the selection of the subset of items that will be placed
in the container. That happens because the items to be
placed in the container from a certain position in the
sequence find it already obstructed, and have a very low

(a) (b)

Fig. 1. (a) Problem instance whose optimal solution cannot
be reached through LF heuristic combined with the
no–fit polygon for defining the translation. (b) Prob-
lem instance solved with a placement order produced
by the SA.

possibility of finding a collision–free placement. Still, the
influence of the sorting on quality of the final layout itself
should not be underestimated. This happens because of
the way the sequential placement heuristics work. Those
heuristics, in order to avoid dealing with the combinatorial
nature of the packing problem, usually consider only the
items already placed. As such, they try to place new items
by estimating the needs of space of the items still unplaced.
The consequence of such behavior is that those heuristics
generate better layouts when the needs of space for the
items to be placed are more predictable. As this prediction
is particular to the placement heuristic, there is a strong
coupling between the former and the placement order
heuristic.

One family of sorting heuristics that frequently appear is
composed of heuristics that sort the items in a decreasing
size order. Kopardekar and Mital (1999) showed that those
heuristics are based in observations of human experts that
deal with packing problems. Those experts tend to place
first the larger items in the container. Those heuristic
are collectively called heuristics of LF. They differ by the
particular definition of “size” adopted. This is the most
studied problem in the literature. Many works on meta–
heuristics applied to the cutting and packing problem ap-
ply the meta–heuristic exclusively to the placement order
(Dowsland et al. (2002); Gomes and Oliveira (2002); Hal-
lah et al. (2001); Hifi and Hallah (2003); Jakobs (1996)).

This relatively simple sorting heuristic obtains surprisingly
good results in the majority of the problem instances.
That can be explained by the previously exposed relation
between the predictability of the space needs for the latter
items and the final layout quality. It is easy to see that
a large number of small items can be fitted in a larger
variety of regions than a small number of large items of
the same total area. As such, it is naturally easier to place
small items in an already obstructed container.

As it is common with deterministic heuristics, it is easy
to produce problem instances where the LF heuristics
produce bad results. Figure 1 shows the best solution
for a problem instance that cannot be obtained with a
LF heuristic. For this problem, the translation heuristic
always try to place the item using the no–fit polygon
concept.
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Fig. 2. Simple packing problem whose optimal solution
cannot be reached through a translational BL heuris-
tic. This problem instance was solved with transla-
tions produced by the SA.

3.2 Item Translation

The most commonly adopted deterministic heuristic for
the item translation is the BL heuristic. On this approach,
the items are placed in the container at the lowest left-
most free position available. The popularity of the BL
heuristic can be understood by its low computational cost.
Besides that, by naturally nesting the items next to the
walls of the container (this is an heuristic applied almost
exclusively to rectangular containers), it keeps a single
large unobstructed area (in opposition to several small free
areas), where a larger variety of items may be fitted. One
must notice, that it is easy to produce packing problem
instances where the global optimal is unreachable by the
BL heuristic (see Fig. 2).

4. THE STUDIED ALGORITHM

Recently, researchers used the no–fit polygon concept to
ensure feasible layouts; i.e. layouts where the items do
not overlap and fit inside the container. This concept was
first introduced by Art (1966). The no–fit polygon is used
to efficiently avoid overlapping among the items and to
place them inside the container. The algorithm studied
in this work is a constructive approach with discrete and
continuous parameters controlled by the SA.

The items are sequentially placed, one at a time. When
placing an item a rotation is applied and the item is placed
on the boundary of its no–fit polygon. The item placement
is described in details by Martins and Tsuzuki (2006,
2007). The rotation, the translation and the sequence are
controlled by the SA algorithm. The complete algorithm
is referenced as NONE in the tables. This placement
algorithm can be adapted to use deterministic heuristics.
The LF adaptation defines initially an ordered sequence
of items that will never change during the optimization.
The BL adaptation places the item on the lowest leftmost
vertex from its no–fit polygon.

It is important to notice that the placement problem
on fixed dimensions containers has a particularity that
increases the difficult of its approach with traditional
optimization techniques, the fact that its cost function (the
non–occupied space) assumes only discrete values, while its
parameters are continuous. A related dual problem that

is the problem of, given a set of items, find the smallest
container where the whole set can be placed has a much
larger coverage in the literature (Wäscher et al. (2007)).

To make the cost function smoother, the cost of a given
solution can be modified in order to reflect how close
this solution is to having a non–placed item fitted in the
container. Martins and Tsuzuki (2006, 2007) proposed a
solution where for each non–placed item, a limited–depth
binary search is performed to find a scale factor (between
0 and 1) that, when applied to the item, would allow it to
be fitted in the container.

5. RESULTS

All problem instances studied here have a solution where
all items can be fitted in the container. The optimization
method was implemented in C++ using a modified version
of the PolyBoolean library developed by Leonov (1998).
The vertices of the polygons can assume only discrete
values. The random–number generation uses the Mersene-
Twister generator proposed by Matsumoto and Nishimura
(1998).

When evaluating the algorithm performance from the
obtained results, one must take in account the fact that
usually, a solution as good as the final one is found in
much less iterations than it takes for the algorithm to
converge. Of course, letting the algorithm take its course
is the only generic way to know if any previously found
solution will be the best found, but this suggests that an
algorithm that keeps track of the best found solution may
be interrupted and still return a satisfactory solution. The
adopted convergence condition is that the algorithm stops
when during 10 consecutive temperatures the simulated
annealing algorithm accepted only solutions equivalent to
the best found solution. All tests were executed in a 2.21
GHz Phenom 9550 processor. Every example was executed
30 times for each depth of the binary search.

5.1 LF Fails Puzzle

The LF fails puzzle consists of the placement of five
convex items. Figure 1.(b) shows the final solution of this
problem. The SA algorithm avoided the LF deterministic
heuristic.

One can observe from Table 1 that there is a large dif-
ference between scaled and not scaled runs for the ro-
tational placement. The translational placements reached
the global minimum at every run and it was reached in
approximately 124 times fewer iterations and 350 times
smaller execution time when compared to the respective
rotational heuristic. The number of runs that reached the
global minimum for rotational placement are smaller when
compared to translational placement, as a consequence of
the strong discretization of the cost function. By modifying
the convergence condition to 50 consecutive temperatures
(instead of 10), this example showed a much better con-
vergence to the global minimum.

5.2 BL Fails Puzzle

The BL fails puzzle consists of the placement of five
identical convex items. Figure 2 shows the final solution of
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Table 1. Statistics for the rotational LF fails
puzzle. The columns represent respectively
the adopted deterministic heuristics, the fixed
depth of the binary search, converged energy
level, number of iterations to converge, time
in seconds to converge, and the percentage of
runs that converged to the global optimum.
The container area is 2.4% larger than the total

area of the items. α = 0.99.

Scale Aconv Nconv Tconv Pconv

0 20.9 34094 17.2 0.0%
BL 1 2.4 129386 227.3 100.0%

2 2.8 78123 227.2 93.3%
0 22.4 23168 9.1 0.0%

NONE 1 9.8 168559 290.6 56.7%
2 5.1 87328 279.5 80.0%
0 2.4 774 0.2 100.0%

TrBL 1 2.4 787 0.6 100.0%
2 2.4 394 0.5 100.0%
0 2.4 759 0.2 100.0%

Tr 1 2.4 736 0.5 100.0%
2 2.4 743 0.9 100.0%

Table 2. Statistics for the translational BL fails
puzzle. The container area is 29.8% larger than

the total area of the items. α = 0.99.

Scale Aconv Nconv Tconv Pconv

0 29.8 1501 0.5 100.0%
Tr 1 29.8 1517 1.3 100.0%

2 29.8 1630 2.5 100.0%
0 29.8 1462 0.5 100.0%

TrLF 1 29.8 1491 1.4 100.0%
2 29.8 1646 2.5 100.0%

(a) (b)

Fig. 3. The small puzzle solved with SA applied to the
rotations of the items. The result shown in (a) used a
BL heuristic for the translations and the result shown
in (b) used only probabilistic heuristics. The non–
convex items were manually decomposed into convex
polygons.

this problem. One can observe from Table 2 the execution
time increased compared to the value of the depth search.
The global minimum was reached at every run.

5.3 Small Puzzle

This example is a fairy simple puzzle with four non–
convex non–congruent polygons. The non–convex items
are manually decomposed into convex polygons in a pre–
processing step. This decomposition does not affect the
final solution. Figures 3.(a) and 3.(b) show final solutions
of this problem.

Table 3. Statistics for the rotational small
puzzle. The container area is 3.4% (2.0%)
larger than the total area of the items for
rotational (translational) placement. α = 0.99.

Depth Aconv Nconv Tconv Pconv

0 7.6 333724 214.4 80.0%
BL 1 4.9 376969 873.5 90.3%

2 3.9 336757 1395.1 96.8%
0 19.4 310905 151.0 33.3%

NONE 1 3.9 352691 820.3 96.7%
2 3.4 319794 1246.9 100.0%
0 6.7 300547 132.1 83.3%

LF 1 3.4 296675 700.5 100.0%
2 3.4 290491 1147.3 100.0%
0 4.8 327544 247.2 93.3%

BLLF 1 3.9 315758 842.5 96.8%
2 3.4 329677 1291.6 100.0%
0 2.0 7892 1.3 100.0%

TrBL 1 2.0 7783 4.6 100.0%
2 2.0 8202 1.4 100.0%
0 2.0 7789 1.2 100.0%

Tr 1 2.0 8135 5.3 100.0%
2 2.0 8131 9.2 100.0%
0 2.0 8218 0.9 100.0%

TrLF 1 2.0 7999 4.9 100.0%
2 2.0 8051 9.0 100.0%

Fig. 4. Final solution of a tangram puzzle with 7 items.

One can observe from Table 3 that deeper depth searches
improved the optimization process for the rotational place-
ment, as a higher percentage of runs reached the global
minimum. The convergence ratio of the generic rotational
with no scaling showed to be very poor, the convergence
ratio increased as the value of the depth search increased.
The translational placement reached the convergence in
179 times smaller execution time and 40 times fewer iter-
ations when compared to the respective rotational place-
ments.

5.4 Tangram Puzzle

The tangram puzzle consists of the placement of seven
convex non–congruent items. Figure 4 shows the final
solution of this problem.

One can observe from Table 4 the execution time increased
compared to the value of the depth search. The trans-
lational placement reached the global minimum at every
execution and it was reached in approximately 4290 times
fewer iterations and 968 times smaller execution time when
compared to the respective rotational placement.
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Table 4. Statistics for the rotational tangram.
The container area is 3.3% (0.2%) larger than
the total area of the items for rotational (trans-
lational) placement. α = 0.99. It is impossible
to reach the global optimum through the BLLF

deterministic heuristic.

Scale Aconv Nconv Tconv Pconv

0 11.6 1222277 1102.7 36.7%
BL 1 6.5 1855716 4136.6 76.7%

2 5.9 1566501 5164.2 76.7%
0 11.8 1224384 1209.6 33.3%

NONE 1 7.1 1648268 3717.4 76.7%
2 9.8 2024080 6593.5 38.5%
0 8.2 1062867 901.6 70.0%

LF 1 8.4 1885168 4268.0 56.7%
2 6.8 1443964 5165.9 76.7%
0 0.2 3161 1.7 100.0%

TrBL 1 0.2 3258 3.4 100.0%
2 0.2 3688 5.9 100.0%
0 0.2 3774 1.9 100.0%

Tr 1 0.2 4000 4.5 100.0%
2 0.2 4000 6.8 100.0%
0 0.2 3260 1.1 100.0%

TrLF 1 0.2 3666 2.9 100.0%
2 0.2 4065 5.2 100.0%

Fig. 5. Container with a hole puzzle.

5.5 Container with a Hole Puzzle

The container with a hole is a variation from the tangram
puzzle. The holes are placed as normal polygons that are
placed first and are not manipulated by the SA algorithm.
The non–convex holes are manually decomposed into con-
vex polygons in a pre–processing step. This decomposition
does not affect the final solution. Figure 5 shows the final
solution of this problem.

One can observe from Table 5 the execution time increased
compared to the value of the depth search. The rotational
and translational placements reached the global minimum
at almost every execution and it was reached in approx-
imately 65 times fewer iterations and 47 times smaller
execution time when compared to the respective rotation
heuristic.

5.6 Irregular Shaped Container Puzzle

The problem shown in Fig. 6 illustrates that the algorithm
can deal with non–convex containers and items. The non–
convex container is represented as a convex container with
two holes touching its boundary.

Table 5. Statistics for the rotational container
with a hole. The container area is 3.4% larger

than the total area of the items. α = 0.99.

Scale Aconv Nconv Tconv Pconv

0 4.0 558786 517.9 90.0%
BL 1 3.4 100107 309.9 100.0%

2 3.4 152724 765.5 100.0%
0 3.4 170089 159.2 100.0%

NONE 1 3.4 93903 262.7 100.0%
2 3.4 73791 318.9 100.0%
0 3.4 34945 41.2 100.0%

LF 1 3.4 26200 69.9 100.0%
2 3.4 30150 124.7 100.0%
0 3.4 21490 29.5 100.0%

BLLF 1 3.4 22072 70.8 100.0%
2 3.4 22473 106.7 100.0%
0 4.8 1160 2.1 96.7%

TrBL 1 4.3 1427 5.0 83.3%
2 3.7 1447 7.5 90.0%
0 3.4 800 1.0 100.0%

Tr 1 3.4 987 2.8 100.0%
2 3.4 768 3.1 100.0%
0 3.4 2453 2.4 100.0%

TrLF 1 3.4 3250 10.0 100.0%
2 3.4 2880 10.6 100.0%

Fig. 6. Puzzle with a irregular shaped container.

Table 6. Statistics for the rotational irreg-
ular shaped container puzzle. The container
area is 3.9% larger than the total area of the
items. α = 0.99. It is impossible to reach the
global optimum through the BLLF determin-

istic heuristic.

Scale Aconv Nconv Tconv Pconv

0 23.7 295871 295.3 26.7%
BL 1 12.6 409522 1669.4 60.0%

2 9.7 370431 2536.6 73.3%
0 17.7 241374 164.4 46.7%

NONE 1 5.3 298855 1196.6 93.3%
2 5.0 262793 1900.3 96.7%
0 20.5 216075 175.2 46.7%

LF 1 8.9 322785 1459.3 83.3%
2 7.7 289439 2091.3 86.7%
0 3.9 800 0.2 100.0%

TrBL 1 3.9 800 1.9 100.0%
2 3.9 800 3.5 100.0%
0 3.9 797 0.2 100.0%

Tr 1 3.9 790 1.3 100.0%
2 3.9 810 2.4 100.0%
0 3.9 769 0.2 100.0%

TrLF 1 3.9 796 1.5 100.0%
2 3.9 814 2.6 100.0%
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One can observe from Table 6 the execution time increased
compared to the value of the depth search. The trans-
lational placement reached the global minimum at every
execution and it was reached 850 times fewer iterations
and 377 times smaller execution time when compared to
the rotational placement.

6. DISCUSSION

On problems without limitations on the nature of the items
(convex and non–convex), the rotation establishment be-
comes a combinatorial problem of difficult solution. As
shown by Chazelle (1983) that proposed an algorithm
O

[
p3q3(p + q)log(p + q)

]
for determining if a given poly-

gon P (with p vertices) can fit into a polygon Q (with q
vertices), where translations and/or rotations are allowed.
Chazelle (1983) proposed also an algorithm O (p + q) for
determining if a given polygon P (with p vertices) can fit
into a polygon Q (with q vertices), where only translations
are allowed. This combinatorial difficulty explains that the
convergence ratio to the global minimum of the rotational
placement was smaller when compared to the translational
placement and the greater processing time spend by the
rotational placement when compared to the translational
placement.

Each example has its own feature: fails with the LF
strategy, fails with the BL strategy, non convex items,
non convex container and holes inside the container. The
majority of the rotational placements have the convergence
ratio improved for deeper depth searches.

Considering the convergence ratio for rotational place-
ments, the BL strategy (when possible) had a better
performance, following the generic probabilistic approach
and the LF strategy. The combination of LF and BL
(when possible) converged to the global minimum at every
execution.

7. CONCLUSIONS

This work deals with the problem of minimizing the waste
of space that occurs on rotational and translational place-
ments of a set of irregular bi–dimensional items inside
a bi–dimensional container with fixed dimensions. The
placement of an item is controlled by the following SA
parameters: the rotation applied, the placement of items
and the sequence of placement. Discrete and continuous
parameters are present. The rotational placement is a com-
plex combinatorial problem that showed a good conver-
gence ratio when combined with deterministic heuristics.
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