
Development of CMS-based Web-Applications Using a Model-Driven Approach

João de Sousa Saraiva, Alberto Rodrigues da Silva
INESC-ID / Instituto Superior Técnico,

Rua Alves Redol, 9, 1000-029 Lisboa, Portugal,
joao.saraiva@inesc-id.pt, alberto.silva@acm.org

Abstract—The emerging Model-Driven Engineering
paradigm advocates the use of models as first-class citizens
in the software development process, while artifacts such as
documentation and source-code can be quickly produced from
those models by using automated transformations. One of
the many types of deployment platforms that can potentially
benefit from such model-driven approaches are Content
Management Systems, as these approaches can significantly
accelerate the development of new web-applications and
features, as well as simplify their maintenance. This work
proposes the creation of a model-driven approach for
the development of web-applications based on Content
Management Systems. This approach is based on the creation
of two modeling languages (which are situated at different
levels of abstraction, and are used to both quickly model
a web-application and provide a common ground for the
creation of additional languages), and a mechanism for the
processing of models specified using those languages. The
current results of this work so far are the development of
a Content Management System that effectively supports
web-applications of medium complexity, and the creation of a
reference case study that will be used to validate this work.

Keywords: Software Design; Software Construction; Software
Engineering Tools and Methods.

I. INTRODUCTION

The expansion of the Internet in the last years has made
it a powerful platform for the deployment of a variety
of artifacts and systems. This has led to the appearance
of a myriad of frameworks and libraries1 that attempt to
harness the power of Internet-based technologies in order
to accomplish various objectives. An (increasingly popular)
example of this are the many web-oriented CMS (Content
Management System) [1]–[5] and ECM (Enterprise Content
Management) [6]–[9] systems that are available today, with
the objective of facilitating the management and publication
of digital contents on an intranet, or even on the Internet.

Although it is usually not their main goal, CMS systems
can also be used as support platforms for web-applications
to be used in the dynamic management of websites and
their contents [10], [11]. These systems typically present

1The main difference between a framework and a library is that a
library is just code that the developer can (re)use in the application, while
a framework typically provides: (1) a number of “hooks” to which a
developer can/must provide functionality; and (2) generic functionality that
the developer can choose to override or specialize. In the context of web-
applications, the terms framework and platform are usually interchangeable.

aspects such as extensibility and modularity, independence
between content and presentation, support for several types
of contents, support for access management and user con-
trol, dynamic management of layout and visual appear-
ance, or support for workflow definition and execution. On
the other hand, ECM systems are typically regular web-
applications oriented towards using Internet-based technolo-
gies and workflows to capture, manage, store, preserve, and
deliver content and documents in the context of organiza-
tional processes [7]. Nevertheless, these two areas are not
disjoint [6], and it is not unusual to find a CMS system
acting as a repository for an organization’s documents and
contents, albeit at a very “primitive” level (e.g., no checking
for duplicate information, no logical grouping of documents,
and no support for providing metadata for each document).
Also, a CMS platform can be used to perform the same
tasks as an ECM platform, as long as the CMS provides the
developer with adequate functionality and hooks [11].

Due to the different objectives of each framework (which,
in turn, influences the nature of the hooks and functionality
provided by the framework), they are often “accompanied”
by approaches to the manual development of simple web-
applications based on that framework. It is important to note
that, although these CMS frameworks are themselves web-
applications, they also provide a set of “high-level” concepts
– such as user, role, or module – that are necessary to
develop more complex web-applications (thus enabling the
creation of web-applications that are themselves supported
by other, lower-level, web-applications). Additionally, CMS-
based web-applications are limited only by the underlying
CMS itself (and its technology, of course). Of particular
importance to this work are model-driven approaches, which
are becoming increasingly popular due to the emergence of
the Model-Driven Engineering (MDE) paradigm [12], [13].
MDE advocates the use of models as first-class citizens in
the software development process, while artifacts such as
documentation and source-code can be produced from those
models by using automated transformations.

We believe that CMS systems have the potential for be-
coming the next generation of web-application frameworks,
as they provide most (if not all) of the functionality that can
be found in regular frameworks, and provide facilities for
addressing typical issues that must be repeatedly addressed
by developers (e.g., the management of users and roles). We

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357272068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


also believe that CMS systems can benefit from MDE-based
development approaches, as these approaches can accelerate
the development of new features, the rapid deployment, as
well as simplify their maintenance. It is the goal of this
work to propose a MDE-based development approach for
the development of web-applications on CMS platforms.

This paper is organized into six sections. Section 1 intro-
duces the context of development approaches for CMS-based
web-applications. Section 2 summarizes the current state-of-
the-art regarding the area of this work. Section 3 presents the
research objectives of this work, and our intended approach
to achieve them. Section 4 describes our progress so far, and
Section 5 presents our plan for the remainder of this work.
Finally, Section 6 presents the main conclusion.

II. STATE-OF-THE-ART

This work addresses the field of development of web-
applications based on CMS systems. Although some pro-
posals exist regarding languages for generic web-application
development (of which we highlight WebML, UWE, and
XIS2), we have not found any related work regarding the
use of CMS systems as platforms for web-applications.

The Web Modeling Language (WebML) [14]–[16] ad-
dresses the high-level, platform-independent graphical spec-
ification of web-applications (which can be supported by
a CASE tool called WebRatio) and targets web sites that
require such advanced features as the one-to-one person-
alization of content and the delivery of information on
multiple devices (e.g., PCs, PDAs, WAP phones) [17]. The
specification of a site in WebML consists of four perspec-
tives [18]: (1) the Structural Model, which expresses the
data content of the site, in terms of the relevant entities
and relationships; (2) the Hypertext Model, describing the
hypertext contents that can be published in the site, as well
as the navigation between those different hypertext contents;
(3) the Presentation Model, which expresses the layout and
graphic appearance of pages, independently of the output
device and of the rendition language, by means of an abstract
XML syntax; and (4) the Personalization Model, in which
users and user groups are explicitly modeled in the form of
predefined entities called User and Group, whose features
can be used for storing individual or group-specific content.

The UML-based Web Engineering (UWE) [14], [19] is
a software engineering approach for development of ap-
plications in the web domain, based on OMG standards
(e.g., UML, MDA, OCL, XMI), that focuses on models and
model transformations, more specifically on systematization
and automatic generation. The UWE notation is defined as
a UML profile, tailored for an intuitive modeling of web-
applications [20]; because of its compliance with standards,
UWE can be used in existing UML tools or as plug-ins.
Its main characteristic is the use of UML for all models, in
particular [21]: (1) using “pure” UML whenever possible;
and (2) for web-specific features, such as nodes and links

of the hypertext structure, the UWE profile includes stereo-
types, tagged values and constraints defined for the modeling
elements. UWE comprises [21]: (1) a modeling language
for graphically representing web-application models; (2) a
method supporting semi-automatic generation; and (3) a
process for the development life-cycle of web-applications.

The “eXtreme Modeling Interactive Systems” (XIS2, typ-
ically just called XIS for simplicity) language [22] is also
defined as a UML profile, and it is oriented towards interac-
tive systems for different platforms, such as desktop, web, or
mobile platforms, instead of just web-based platforms. The
XIS2 language defines six types of models: (1) the Domain
View; (2) the Business-Entities View; (3) the Actors View;
(4) the Use-Cases View; (5) the User-Interfaces View; and
(6) the Navigation View. Although the Domain View, the
User-Interfaces View, and the Navigation View are concep-
tually similar to what can be found in UWE, XIS explicitly
addresses the behavioral aspect (through the capture of user-
interface patterns), enabling interaction between users and
computer applications.

Although these languages and approaches do not address
CMS-based development, we do not consider this to be
a key problem because, until recently, CMS systems did
not provide the necessary functionality to be considered
adequate in the development of a web-application (in fact,
currently only a few CMS systems do). However, our anal-
ysis of these languages does present some limitations (that,
nevertheless, we believe are not exclusive to the languages
mentioned in this section), the most relevant of which are
that they either: (1) try to address multiple abstraction levels
simultaneously [19], [22]; or (2) require additional work
besides the specification of the web-application’s model,
to address low-level details [15]. For example, although
these languages provide a relatively quick way of creating
a web-based application, low-level details (e.g., the number
of columns in a table, or whether the rows in a table should
be colored in an alternate fashion) are typically considered
as “implementation details” that should not be specified in
a high-level language (although CSS-based – or similar –
guidelines and techniques can be used to somewhat mitigate
this) [15], a guideline with which we agree. On the other
hand, when a language does provide a way to address such
low-level details, it is usually by means of “property” mecha-
nisms such as UML’s tagged-values [19], [22], which leads,
in practice, to the lowering of the language’s abstraction
level, because those properties can/should only be used by
developers that are familiar with the low-level details that
those properties represent.

Although it can be argued that, after generating the web-
application, developers can directly edit the obtained source-
code, one of the main objectives of MDE is precisely
to avoid editing of the generated low-level artifacts (such
as source-code), because this would force developers to
(re)adopt the “traditional” development approaches at some



point in the web-application’s development (if so, MDE-
based approaches would present no real advantage over
traditional development approaches).

Although our proposal also intends to deal both with
“quick and easy” modeling and with low-level details, it
does not intend to define a single language that solves these
problems, as we believe that concentrating all these details
into a single language is what actually triggers these prob-
lems in the first place. Instead, we propose to define a set
of languages (situated at different levels of abstraction) and
use a model-oriented variant of the well-known compilation
process: a high-level modeling language (which is actually
a set of mnemonics for a lower-level language) will be
used to quickly specify a web-application, and a low-level
language will be used to address details regarding CMS-
based implementation. This proposal is further explained in
the next section.

We have not found any related work regarding the use of
CMS systems as platforms for web-applications (although
some CMS systems are starting to evolve towards this end,
such as Drupal [23] or WebComfort [11], [24]). However, we
have noticed that proposals addressing parts of our intended
work are beginning to surface. A good example can be
found in [25], which presents the creation of a model inter-
preting web-application (designated “Integration Generator”,
conceptually similar to our own notion of “CMS Model
Interpreter”) that interacts with the Limestone CMS [26].
This application receives a XML file (which, in turn, results
from the processing of a UWE model file – in XMI – with
a XSLT style sheet), and is responsible for configuring the
target CMS system, interacting with the backing data-store
(such as a database server), and generating the necessary
support files (e.g., ASP.NET pages and user controls).

III. RESEARCH OBJECTIVES AND APPROACH

The research hypothesis that this thesis intends to address
is that “development of CMS-based web-applications can be
improved by means of a MDE-based approach”. To address
this thesis statement, we are to define an adequate approach,
and evaluate whether web-application development using
that approach presents concrete advantages over a traditional
(source-code-based) development approach.

This approach should address at least the specification of
the following issues (additional issues are also likely to be
addressed during the course of this research work):

• Domain model, including constraints;
• Web-site structure, using CMS-oriented concepts (e.g.,

pages, page layouts);
• Navigation model and User-Interfaces model, using

CMS-oriented concepts (e.g., tab, module), related to
the web-site’s structure;

• The web-application’s behavior (by means of mecha-
nisms similar to use-cases, interaction diagrams, and
pseudo-code);

• CMS integration aspects (e.g., extensions provided by
the modeled web-application).

This work is to be validated by means of a number of
case-studies. One of those case-studies will be WebC-Docs
[27], a Document Management System web-application that
is based on the WebComfort CMS framework [11], [24].

We intend to achieve our goal by developing not one
modeling language, but rather two such languages: CMS-
IL (CMS Intermediate Language) and CMS-ML (CMS
Modeling Language).

CMS-IL will be a relatively-low-level language that will
nevertheless be independent of any CMS platform; because
of this independence of specific CMS platforms, this lan-
guage will likely be based on the CMS generic metamodel
presented in [10]. It is important to note that the main
objective of CMS-IL is to provide a “common ground”
for the specification of CMS-based web-applications, and
not to provide a way to produce web-application models in
a simple and easy fashion. Depending on the capabilities
of the target CMS platform, CMS-IL models are meant to
be used as input to source-code generators or to a “CMS
Model Interpreter” component located on the target CMS
(this component will typically consist of a CMS module
that will interpret the CMS-IL model).

On the other hand, CMS-ML will be a language at a
higher level of abstraction than CMS-IL (it will provide a
set of mnemonics that completely encapsulate the CMS-IL
language). Unlike CMS-IL, the objective of CMS-ML is to
produce web-application models in a way that is as simple
and efficient as possible. The CMS-ML language will likely
be inspired on already-existing languages such as WebML,
UWE, XIS2, and UML [28].

Of course, the CMS-ML language would be irrelevant if
there was no way to obtain CMS-IL models from CMS-ML
models. Thus, this work also intends to produce a model-to-
model transformation (not necessarily bidirectional, as such
a requirement would likely not be relevant in practice [29])
that translates CMS-ML models to CMS-IL models with no
information loss; we refer to this transformation as “ML2IL”.
Obviously, this presents the added requirement of CMS-IL
being at least as expressive as CMS-ML.

Figure 1 provides a basic overview of the proposed
approach, including the usage of the CMS-ML and CMS-IL
modeling languages.

The rationale for these two languages is largely derived
from our own previous experience in the development of the
XIS2 language [22], where we learned that web-oriented
modeling approaches (as well as modeling approaches in
other domains) tend to concentrate too many details of too
many abstraction levels in a single language, which makes
the language either very complex and able to model most
intended applications, or relatively simple and unable to
model the more complex, “real-world” applications. We be-
lieve that one of the major contributions of this work will be



Figure 1. The proposed MDE-oriented approach.

the demonstration that this “separation of concerns” between
two different languages can be of great help in defining a
model-driven approach that can be used in practice.

A metaphor for the relationship between CMS-ML, CMS-
IL, and the intended web-application itself, can be found in
the Microsoft .NET Framework: (1) programs are written
using a “high-level” source-code-based language such as
C#; (2) the language’s compiler converts the source-code to
an intermediate language called MSIL; and (3) at runtime,
the generated MSIL is converted into native binary code
that is afterward executed. Considering this metaphor, CMS-
ML would correspond to C#, CMS-IL would correspond to
MSIL, and the native code would correspond to the intended
web-application. It is important to note that this metaphor
expresses only the relationship between these languages, and
not their true level of abstraction (e.g., CMS-ML is not at
C#’s level of abstraction, as C# is a low-level language).
Another important item to highlight in this metaphor is
that MSIL is not supposed to be modified by the developer
(although it is possible to do it), while our approach does
consider that CMS-IL can be modified.

Finally, one could argue that, if the CMS-ML language is
sufficiently expressive, there will be no need for CMS-IL.
Although that would be true, it is important to reiterate that

CMS-IL’s main objective is to provide a “common ground”
for the specification of CMS-based web-applications; in turn,
this common ground will be important for the definition
of future CMS-oriented languages (which are not necessar-
ily based on CMS-ML). Considering the “Microsoft .NET
Framework” metaphor again, the importance of CMS-IL
would be equivalent to the importance of MSIL in relation
to languages such as C# or Visual Basic.NET.

IV. CURRENT WORK AND PRELIMINARY RESULTS

We are currently defining the CMS-IL and CMS-ML
languages. To this end, we are analyzing existing web-
application modeling languages (e.g., WebML, UWE) and
approaches, and determining what concepts and patterns are
relevant to our work. The generic CMS metamodel defined
in [10] also plays an important role in this process, as it is
the first step towards a language that is independent of any
specific CMS.

The CMS-IL language is to be defined first, as it is our
lowest-level language. This language is supposed to exhibit
a high degree of complexity, due to its main requirements:
(1) ensure CMS independence; and (2) address all aspects
necessary to specify a web-application of high complexity.

After the specification of CMS-IL is finalized, we can
concretely define the CMS-ML language, as it will be a
higher-level language (in the sense that it provides a set
of mnemonics that “hides” the low-level CMS-IL language)
with the objective of accelerating web-application develop-
ment (namely by providing patterns that can be found in
typical web-applications).

This work has already produced the following results: (1)
the WebComfort CMS [24] has been evolving to become a
practical web-application framework [11] (in fact, it is being
used in some projects of our research group), and (2) one
of our validation case-studies, WebC-Docs [27], has been
developed by means of a traditional development approach.

The WebComfort framework has been evolving to support
the deployment and execution of web-applications [11];
WebComfort is already being used for some medium-
complexity web-applications such as “Portal eArte” [30],
the WebSNARE project [31], and some instances of WebC-
Docs (all of these examples are currently being used by
“real” end-users). This is relevant to our work, because the
WebComfort framework will be the basis for some of our
validation case-studies.

Additionally, one of this work’s validation case-studies,
the WebC-Docs system [27], has been developed as a toolkit
for the WebComfort framework, by means of a traditional
development approach. WebC-Docs consists of a web-based
Document Management System, with a medium-to-high
degree of complexity, that provides flexible mechanisms for
typical document management activities, such as indexing
and search, metadata specification, and document storage. It
is important to note that this manual development effort was



important to: (1) gain some insight regarding the typical set
of patterns to be followed by CMS-based web-applications
(e.g., the specification of “external” configuration modules,
the definition of an API that can be used by third-party
components or web-applications); and (2) determine the set
of functionalities that are necessary to effectively support
such relatively complex web-applications (e.g., workflow
specification, user and role management).

V. WORK PLAN AND IMPLICATIONS

As we have mentioned in the previous section, we are
currently in the process of defining the CMS-IL and CMS-
ML modeling languages. The “ML2IL” model-to-model
transformation (that will be used to “compile” CMS-ML
to CMS-IL) will also be defined in conjunction with the
definition of the CMS-ML language itself, as this transfor-
mation will consist of translating a CMS-ML model to the
corresponding CMS-IL model.

After the CMS-IL and CMS-ML languages are defined,
we will model the WebC-Docs system (in its current state)
using those languages. This effort will be the first validation
of our work, and will be undertaken on a purely inter-
nal/personal scale. The objective of this effort will be to
determine: (1) whether a relatively complex web-application
such as WebC-Docs can be entirely specified using the CMS-
IL and CMS-ML languages; and (2) the correctness of the
ML2IL transformation (i.e., if the obtained CMS-IL model
correctly reflects the web-application that is specified in the
CMS-ML model).

We will also create a “CMS Model Interpreter” com-
ponent as a set of WebComfort modules to allow the
runtime interpretation of CMS-IL models. We believe that
this component will allow us to simplify considerably the
deployment of modeled web-applications, as this kind of
deployment will typically just require the upload of a CMS-
IL model to the target CMS instance.

After the first validation with the WebC-Docs system,
we will also validate the CMS-ML and CMS-IL languages
(and the development approach defined by this work) in
additional case-studies, namely in the context of some of
our research group’s MSc projects as well as other academic
projects (e.g., projects in curricular disciplines). At the same
time, we will evolve the WebC-Docs system (according to
business requirements that are identified in the meantime)
by altering the previously-obtained models; this effort will
be used to determine the validity of CMS-ML and CMS-
IL for the development of web-applications addressing re-
quirements other than those that were identified before these
languages were defined.

Evaluation of the approach will focus on practical as-
pects such as: (1) whether the intended web-application
can be specified entirely using the CMS-IL and CMS-ML
languages; (2) whether CMS-ML really accelerates the mod-
eling of a web-application; (3) which deployment alternative

presents the most advantages (a CMS Model Interpreter,
or the a-priori generation of CMS-specific artifacts), from
a practical perspective; and (4) whether the development
of web-applications really benefit from this approach, by
considering issues like reduced development time or how
many times a model needs to be changed to be able to
address a given set of requirements.

If the opportunity arises, we also hope to address practical
issues regarding the CMS Model Interpreter component,
such as the possible advantage of this component generating
(and compiling) CMS-specific artifacts when a CMS-IL
model is provided, instead of the (potentially slow) model
interpretation at runtime.

VI. CONCLUSION

The increasingly-popular MDE paradigm advocates the
use of models as first-class citizens in the software de-
velopment process, while artifacts such as documentation
and source-code can be automatically produced from those
models by means of model transformations. CMS systems
have the potential for becoming the next wave of web-
application frameworks; they can also benefit from the
advantages provided by this paradigm, as MDE approaches
can significantly accelerate the development and deployment
of these web-applications and features, and simplify their
maintenance.

This paper presented our proposal for a MDE-based
approach for the development of web-applications based
on CMS systems. This approach is based on two CMS-
oriented languages, CMS-ML and CMS-IL, that are situ-
ated at different levels of abstraction. CMS-ML addresses
modeling in a quick and simple fashion; on the other
hand, CMS-IL uses low-level concepts (but not specific
towards a particular CMS), but provides a common ground
for the building of higher-level languages (such as CMS-
ML). Developers can create web-applications using a high-
level language (CMS-ML), “compile it” to a lower-level
language (CMS-IL) by means of an automatic model-to-
model transformation (“ML2IL”), and finally, either generate
source-code or supply the created models as input to a “CMS
Model Interpreter” component (that will handle the runtime
execution of the modeled application).

REFERENCES

[1] J. Robertson, “So, what is a content management system?”
June 2003, Retrieved Tuesday 17th March, 2009 from http:
//www.steptwo.com.au/papers/kmc what/index.html.

[2] P. Suh, D. Addey, D. Thiemecke, and J. Ellis, Content Man-
agement Systems (Tools of the Trade). Glasshaus, October
2003.

[3] B. Boiko, Content Management Bible. Hoboken, New Jersey,
U.S.A.: John Wiley & Sons, December 2001.

[4] CMSMatrix, “The CMS Matrix,” Retrieved Tuesday 17th

March, 2009 from http://www.cmsmatrix.org, 2009.



[5] OpenSourceCMS, “OpenSourceCMS,” Retrieved Tuesday
17th March, 2009 from http://www.opensourcecms.com,
2009.

[6] U. Kampffmeyer, “ECM – Enterprise Content Management,”
2006, Retrieved Tuesday 17th March, 2009 from http://www.
project-consult.net/Files/ECM WhitePaper kff 2006.pdf.

[7] AIIM, “Association for Information and Image Management,”
Retrieved Tuesday 17th March, 2009 from http://www.aiim.
org, 2009.

[8] A. Rockley, Managing Enterprise Content: A Unified Content
Strategy (VOICES). New Riders Press, October 2002.

[9] T. Jenkins, Enterprise Content Management Technology:
What You Need to Know. Open Text Corporation, October
2004.

[10] J. L. V. d. Carmo, “Web Content Management Systems:
Experiences and Evaluations with the WebComfort Frame-
work,” Master’s thesis, Instituto Superior Técnico, Portugal,
December 2006.

[11] J. d. S. Saraiva and A. R. d. Silva, “The WebComfort
Framework: An Extensible Platform for the Development of
Web Applications,” in Proceedings of the 34th EUROMICRO
Conference on Software Engineering and Advanced Appli-
cations (EUROMICRO 2008), IEEE Computer Society, Ed.,
September 2008, pp. 19–26.

[12] D. C. Schmidt, “Guest Editor’s Introduction: Model-Driven
Engineering,” Computer, vol. 39, no. 2, pp. 25–31, February
2006, Retrieved Wednesday 1st April, 2009 from http://doi.
ieeecomputersociety.org/10.1109/MC.2006.58.

[13] Model transformation at Inria / Introduction to Model-Driven
Engineering, Retrieved Wednesday 1st April, 2009 from http:
//modelware.inria.fr/article65.html.

[14] G. Rossi, O. Pastor, D. Schwabe, and L. Olsina, Eds., Web
Engineering: Modelling and Implementing Web Applications.
Springer-Verlag, 2008.

[15] WebML.org, Retrieved Wednesday 18th March, 2009 from
http://www.webml.org.

[16] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai,
and M. Matera, Designing Data-Intensive Web Applications.
Morgan Kaufmann, 2003.

[17] N. Moreno, P. Fraternalli, and A. Vallecillo, “A UML 2.0
profile for WebML modeling,” in ICWE ’06: Workshop
proceedings of the sixth international conference on Web
engineering. New York, NY, USA: ACM, July 2006,
Retrieved Wednesday 18th March, 2009 from http://doi.acm.
org/10.1145/1149993.1149998.

[18] ——, “WebML modelling in UML,” IET Software, vol. 1,
no. 3, pp. 67–80, June 2007.

[19] UWE – UML-based Web Engineering, Retrieved Wednes-
day 18th March, 2009 from http://www.pst.ifi.lmu.de/projekte/
uwe.

[20] N. Koch and A. Kraus, “The Expressive Power of UML-
based Web Engineering,” in Proceedings of the Second In-
ternational Workshop on Web-Oriented Software Technol-
ogy (IWWOST’2002), June 2002, Retrieved Wednesday 18th

March, 2009 from http://www.pst.informatik.uni-muenchen.
de/personen/kochn/IWWOST02-koch-kraus.PDF.

[21] N. Koch, A. Kraus, and R. Hennicker, “The Authoring Pro-
cess of the UML-based Web Engineering Approach,” in Pro-
ceedings of the First International Workshop on Web-Oriented
Software Technology (IWWOST’2001), June 2001, Retrieved
Wednesday 18th March, 2009 from http://www.dsic.upv.es/
∼west/iwwost01/files/contributions/NoraKoch/Uwe.pdf.

[22] A. R. d. Silva, J. d. S. Saraiva, R. Silva, and C. Mar-
tins, “XIS – UML Profile for eXtreme Modeling Interac-
tive Systems,” in Fourth International Workshop on Model-
based Methodologies for Pervasive and Embedded Software
(MOMPES 2007). Los Alamitos, CA, USA: IEEE Com-
puter Society, March 2007, pp. 55–66, Retrieved Thursday
26th March, 2009 from http://doi.ieeecomputersociety.org/10.
1109/MOMPES.2007.19.

[23] Drupal CMS, Retrieved Wednesday 8th April, 2009 from http:
//drupal.org.

[24] WebComfortOrg, “WebComfort.org,” Retrieved Monday 8th

June, 2009 from http://www.webcomfort.org, 2009.

[25] L. Schou, “Creating a model-driven Web application
framework,” Master’s thesis, Technical University of
Denmark, Denmark, March 2008, Retrieved Wednesday
18th March, 2009 from http://www.imm.dtu.dk/English/
Research/Software Engineering/Publications.aspx?lg=
showcommon&id=213586.

[26] Limestone Solutions – Content Management, Retrieved Tues-
day 24th March, 2009 from http://www.limestoneweb.co.uk/
Solutions/ContentManagement.

[27] WebC-Docs, “WebComfort.org – WebC-Docs,” Retrieved
Wednesday 25th March, 2009 from http://www.webcomfort.
org/WebCDocs, 2009.

[28] OMG, “Object Management Group – UML,” Retrieved Mon-
day 13th April, 2009 from http://www.uml.org, 2009.

[29] T. Stahl and M. Voelter, Model-Driven Software Develop-
ment: Technology, Engineering, Management. Hoboken,
New Jersey, U.S.A.: John Wiley & Sons, May 2005.

[30] eArte - Portal de Arte e Cultura, Retrieved Thursday 16th

April, 2009 from http://www.portal-earte.com.

[31] WebSnare, Retrieved Thursday 16th April, 2009 from http:
//snare.inesc-id.pt.


