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Abstract

We consider the generalized notions of Cartesian and tensor prod-
ucts on m-uniform hypergraphs. The adjacency tensor is analogous
to the adjacency matrix and two different notions of eigenvalues of the
adjacency tensor on the products of hypergraphs are studied. The eigen-
values and FE-eigenvalues of the adjacency tensor of the Cartesian and
tensor products of two hypergraphs in relation to the F-eigenvalues and
eigenvalues of the adjacency tensor of the factors are considered.
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1 Basic Definitions

We begin this paper with some basic definitions from higher order multi-
dimensional tensors. These are standard definitions used in [3, 4, 5, 7, 8, 9, 10]
to name just a few sources from the literature.

Let R be the real field; we consider an m-order n dimensional tensor A

consisting of n" entries in R:

A= (ail'-'im)v @y iy, € R, 1<,... %0, < n.
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To an n-vector x = (z1,--- ,x,), real or complex, we define a n-vector:

n

m—1,_ §
Ax = ( Aoy Lig * * Iim) .
1<i<n

12,...,im=1

Definition 1.1 Let A be a nonzero tensor. A pair (A\,xz) € C x (C™\ {0})
is called an E-eigenvalue and E-eigenvector (or simply E-eigenpair) of A if
they satisfy the equations

Azm b = )z
i+ 42 =1

We call (\,x) a Z-eigenpair if they are both real.

The E-eigenvalue problem for tensors involves finding nontrivial solutions of
inhomogeneous polynomial systems in several variables. It is possible for the
set of E-eigenvalues of a nonzero tensor to be infinite, see [2]. We note that
if (A, z) satisfies the first equation above, then via normalization, (Hx”%, ﬁ)

satisfies both equations, where ||z|| denotes the ¢;-norm of z.

Definition 1.2 Let A be a nonzero tensor. A pair (A, z) € Cx (C"\{0}) is
called an eigenvalue and eigenvector (or simply eigenpair) of A if they satisfy

the equations
Az = Al
[m=1] _  m—1

where x; = 2" . We note that (\,x) is an H-eigenpair if they are both

real.

The eigenvalue problem for tensors involves finding nontrivial solutions of
homogeneous polynomial systems in several variables. In contrast to the Z-
eigenvalues, the set of eigenvalues of any nonzero tensor is always finite.

We provide some definitions from the theory of hypergraphs. The interested
reader should refer to [1] for details.

Definition 1.3 Let V be a finite set. A hypergraph H is a pair (V, E), where
E CP(V), the power set of V. The elements of V' are called the vertices and
the elements of E are called the edges.

We note that in the above definition of hypergraph, we do not allow for
repeated vertices within an edge (often called a hyperloop).

Definition 1.4 A hypergraph H is said to be m-uniform for an integer
m > 2 if for all e € E, the cardinal number of the subset |e| = m. The term
m-graph is often used in place of m-uniform hypergraph.
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Definition 1.5 The adjacency tensor Ay for an m-graph H = (V, E) is the
symmetric tensor Ay = (ay. 4,) € R[m’”], where n is the number of vertices
and

1 1 ifi,... iy €E
@iy i, = YA .
(m—=1!10 otherwise.

From the above definitions, we see that for H = (V, E), an m-graph with
V ={1,... ,n}, the E-eigenvalues of the adjacency tensor are given by:

Z Ty Ty, = Ax; foralll <i<n
{405y Um—1}EE
2 2 _
ovt+...+z, = 1L

The eigenvalues of the adjacency tensor are given by:

Z Tilyy * Ty = )\x;”’l forall 1 <i<n.
{405y Um—1}EE

2 Cartesian Products

The following definition can be found in [6] and is a natural generalization of
the notion of Cartesian products on graphs.

Definition 2.1 Consider an m-graph Hy = (Vi, E1) on ny vertices and
an m-graph Hy = (Va, Ey) on ny vertices. The Cartesian product, denoted
H, O Ha, of Hi and Ho has the vertex set Vi x Va. The edges are given by
{{z} x elx € V1,e € Ex}U{e x {u}|e € Ey,u € Va}.

We notice H; [0 Hs is an m-graph on ny X ng vertices with |V;| x |Es| 4+
Vol x | By] edges.

Example 2.2 Let H; have the vertex set {1,2,3} with one edge {1,2,3}.
Then Hy; U Hy has the nine vertices given by:
{(17 1)7 (17 2)7 (17 3)7 (27 1)7 (27 2)7 (27 3)7 (37 1)7 (37 2)7 (37 3)})
and six edges given by:
{{(1,1),(1,2),(1,3)},{(2,1),(2,2),(2,3)},{(3,1),(3,2), (3,3)},{(1, 1), (2, 1),
3, 1)1 {(1,2),(2,2),(3,2)},{(1,3),(2,3),(3,3)}}.

In the following proofs, we consider a specific vector: for a € C™ and
B € C™, we define a® € C" " via (& ® B)uz = ufs-
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Theorem 2.3 Let H; be an m-graph on ny vertices and (A, «) an E-eigenpair
for its adjacency tensor; let Hy be an m-graph on ng vertices and (u, 3) an E-
eigenpair for its adjacency tensor. Let C be the adjacency tensor for the Carte-

sian product Hy O Hy. Then (C(a @ B)™ Mue = (@ u+ 81 A (@ ® Bua-

Proof: Let Hy = (Vi, E1), Ha = (Va, Es), and H; O Hy = (V, E). We then
compute:

(C(Od ® ﬂ)mil)u,m = Z (a ® ﬂ)vhyl e (Oé ® ﬁ)vm—lvym—l
{(v1,y1)se ,(Vm—1,ym—-1),(u,x) }EE
= Z @vlﬁw o '@vm—lﬁym—l

{(Ulvyl)v"' 7(vm—1vym—1)7(uvx)}€E

-1
= Q' By By

u=v1="=Um—1,{Y1,+ ,ym—1,2}EE2
m—1
+ § , 690 Ay =+ Qg
T=y1="=Ym—1,{V1,.. ,Um—1,u}EE1

Q™ B, + B Ay,
(@ 2+ B0 N (a® By, W

Corollary 2.4 Let Hy be a graph and (A, «) an eigenpair for its adjacency
matriz; let Hy be a graph and (w, 5) an eigenpair for its adjacency matrixz. Let
C be the adjacency matriz for the Cartesian product Hy 0 Ho. Then A+ p is
an eigenvalue with eigenvector ”3%2’2” for C.

Proof: Since m = 2, Theorem 2.3 implies a2 = "2 =1. A

Theorem 2.5 Let Hy be an m-graph on ny vertices and suppose

(A, (ﬁ, cee \/Ln_l)) 1s a Z-eigenpair for its adjacency tensor; let Hy be an m-

graph on no vertices and suppose (i, ( 18 a Z-eigenpair for its

1 1
ﬁ, o 7\/—,”*2))
adjacency tensor. Let C be the adjacency tensor for the Cartesian product

H, O Hy. Then on C, we have that (\/ﬁ, - ,\/ﬁ) is a Z-eigenvector

. B . 1% )\
with Z-eigenvalue N + Nk

1

Proof: This follows from Theorem 2.3 since «,, = \/% for all w and 5, = N

forallz. N

The following theorem is proven in [6] but is included here for completeness.

Theorem 2.6 Let Hy be an m-graph on ny vertices and (A, «) an eigen-
pair for its adjacency tensor; let Hy be an m-graph on ng vertices and (i, )
an eigenpair for its adjacency tensor. Let C be the adjacency tensor for the
Cartesian product Hy O Hy. Then (C(a® B)™ 1) = (A + p)(a® ﬁ)m_u.
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Proof: Let Hy = (V4, E1), Ha = (Va, E3), and Hy O Hy = (V, E)). We then
compute:

(C(a ® ﬁ)m_l)u,x = Z (a ® ﬁ)vhm U (a ® ﬁ)vmfl,qu
{(Ulvyl)v"' 7(vm*17ym*1)7(u1x)}eE
= Z C(UI/BZ/I e &vm—1ﬁym—1
{(Ulvyl)v"' 7(vm*17ym*1)7(u1x)}eE
= > @ By By
U=v1="=Um—1,{Y1,- yYm—1,T}EF2
+ Z ﬂ;nil&vl T Oy,

T=Y1=""Ym—1,{V1,... ,Um—1,u}EF
0B A
(i Na®p)s". o

Corollary 2.7 If Hy is an m-graph with Ay as an eigenvalue of its adja-
cency tensor and Hs is an m-graph with Ay as an eigenvalue of its adjacency
tensor, then \1 + Ay is an eigenvalue of the adjacency tensor of Hy U Hs.

3 Tensor Products

The following definition is a natural generalization of the notion of tensor
products on graphs.

Definition 3.1 Consider an m-graph Hy = (V1, E1) on ny vertices and an
m-graph Hy = (Va, Es) on ny vertices. The tensor product, denoted Hy ® Ha,
of Hi and Hy has the vertex set Vi x V. The edges are given by:

{(a1, 1), (am, Bw) {1, ... sam} € By and {B, ..., B} € Ea}.

We notice Hy ® Hy is an m-graph on ng X ng vertices with m! x |Ey| X | Fy|
edges.

Example 3.2 Let H; have the vertex set {1,2,3} with one edge {1,2,3}.
Then H; ® Hy has the nine vertices given by:
{(17 1)7 (17 2)7 (17 3)7 (27 1)7 (27 2)7 (27 3)7 (37 1)7 (37 2)7 (37 3)};
and siz edges given by:
{{(1,1),(2,2),(3,3)},{(2,1),(3,2),(1,3)},{(3,1), (1,2),(2,3)},{(2, 1), (1, 2),
(3,3)1,{(3,1),(2,2),(1,3)},{(1,1),(3,2),(2,3)}}.

Theorem 3.3 Let H; be an m-graph on ny vertices and (A, ) an E-eigenpair
for its adjacency tensor; let Hy be an m-graph on ng vertices and (u, 3) an E-
eigenpair for its adjacency tensor. Let C be the adjacency tensor for the tensor
product Hy @ Ha. Then (C(a® )" )y = (m — D)\u(a @ By
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Proof: Let Hy = (Vi, EY), Hao = (Va, Es), and Hy ® Hy = (V, E). We then

compute:

Cla® ﬁ)m_l)u,m = Z (@@ By (D B)oms yms
{(wrp1) ,(Vm—1,ym—1),(w,z) }EE
= Z O, By, -+ Oy By

{(Ulvyl)v"' 7(vm*17ym*1)7(u1x)}€E

- Z (m_l)'avl "‘O['Umfl/Byl ‘.‘ﬁymfl

{v1ee s Um—1,u}E€E
{Y1, Ym—1,2}EFE>

(m — 1)\, 18,
(m — 1) ® B)uz

Corollary 3.4 Let Hy be an m-graph and (A, «) an E-eigenpair for its
adjacency tensor; let Hy be an m-graph and (u, 3) an E-eigenpair for its ad-
jacency tensor. Let C be the adjacency tensor for the tensor product Hy ® Ha.

Then Ll)“g is an eigenvalue with eigenvector = for C.

[a®B[™ Te®sl ®ﬂ|l

Proof: This is immediate from Theorem 3.3 via a normalization. W

Theorem 3.5 Let Hy be an m-graph on ny vertices and (X, &) an eigenpair
for its adjacency tensor; let Hy be an m-graph on ng vertices and (u, ) an
eigenpair for its adjacency tensor. Let C be the adjacency tensor for the tensor
product Hy @ Hy. Then (Cla ® B)™1) = (m — 1) \u(a @ B)75

Proof: Let Hy = (Vi, EY), Hao = (Va, Es), and Hy ® Hy = (V, E). We then

compute:

(C(a ® ﬁ)m_l)u,x = Z (a ® ﬁ)vhm U (a ® ﬁ)vmfl,qu
{(Ulvyl)v"' 7(vm*17ym*1)7(u1x)}€E
= Z O, By, -+ Oy By
{(Ulvyl)v"' 7(vm*17ym*1)7(u1x)}€E
= Z C(Ulﬁzﬂ e &vm—1ﬁym—1

{(Ulvyl)v"' 7(vm*17ym*1)7(u1x)}€E

= Z (m_ 1)'0&01 ...Oévm—l/Byl .../Bym—l

{v1,... ,vm—1,u}EEL
{y1,-ym—1,2}€E2

= (m -1\ pugrt
= (m-D)plexp) . B
Corollary 3.6 If Hi is an m-graph with Ay as an eigenvalue of its adja-

cency tensor and Hs is an m-graph with Ay as an eigenvalue of its adjacency
tensor, then (m— 1)\ Ay is an eigenvalue of the adjacency tensor of Hy @ Ha.
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4 A Numerical Example

We refer to Example 2.2 and Example 3.2 where H; has the vertex set {1, 2, 3}
with one edge {1,2,3}. We consider the eigenstructures of the adjacency
tensor on H;. The E-eigenvalues and their corresponding FE-eigenpairs and
the eigenpairs of the adjacency tensor of H; are:

E-Figenvalue E-Figenvectors Eigenvalue Eigenvectors
0 (£1,0,0) 0 (0,¢,0)
(0,+£1,0) (0,0,1)
(0,0,i ) (¢,0,0)
5 CAENEQ ! )
(_L 1 L)
V3l V3T V3
(_L 1 L)
RGN
(73— %)
1 (_L 1 _L)
V3 V32 V3T 3
(_L 1 L)
V32 V32 V3
L T
V3 V3 V3
(57 —7)
V313 V3B

We note H; [0 H; is isomorphic to H; ®H; via the permutation (19687253).
Hence, we use the results of the previous sections to see what information we
can obtain about the F-eigenpairs as well as the eigenpairs under the two
different product structures.

We begin with the E-eigenstructure of H;[J H;. We note that —= has

Z-eigenvector (%, ,%3) and —% has Z-eigenvector (—\1[,... ,—%), SO

3
Corollary 2.5 may be employed. We see that (%, : ,%) is a Z-eigenvector
with Z-eigenvalue £ 2 and (-3 3 ,—%) is a Z-eigenvector with Z-eigenvalue
—%. It is worth notmg that both % and —% have other eigenvectors.

By Corollary 3.4, we have that 0, j:% are F-eigenvalues of H; ® H; and
some of the F-eigenvectors can be computed. In this case, the tensor product
gives more information than the Cartesian product about the E-eigenvectors

and FE-eigenvalues.

S

In this example, we compute that H; ® H; has E-eigenvalues of 0, j:%, +2.

The E-eigenvalues of 0, j:L3 each has infinitely many FE-eigenvectors and in-
finitely many of them are real.

By Corollary 2.7, we see that 0, 1,2 are all eigenvalues of H; [J H; and we
could demonstrate some of their eigenvectors. By Corollary 3.6, we see 0, 2
are eigenvalues of H; ® H; and can compute some of these eigenvectors. For
eigenvalues, this example demonstrates the Cartesian product capturing more
information than the tensor product.
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