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Abstract

We consider the generalized notions of Cartesian and tensor prod-
ucts on m-uniform hypergraphs. The adjacency tensor is analogous
to the adjacency matrix and two different notions of eigenvalues of the
adjacency tensor on the products of hypergraphs are studied. The eigen-
values and E-eigenvalues of the adjacency tensor of the Cartesian and
tensor products of two hypergraphs in relation to the E-eigenvalues and
eigenvalues of the adjacency tensor of the factors are considered.
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1 Basic Definitions

We begin this paper with some basic definitions from higher order multi-
dimensional tensors. These are standard definitions used in [3, 4, 5, 7, 8, 9, 10]
to name just a few sources from the literature.

Let R be the real field; we consider an m-order n dimensional tensor A
consisting of nm entries in R:

A = (ai1···im), ai1···im ∈ R, 1 ≤ i1, . . . , im ≤ n.
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To an n-vector x = (x1, · · · , xn), real or complex, we define a n-vector:

Axm−1 :=

( n∑
i2,... ,im=1

aii2···imxi2 · · ·xim

)
1≤i≤n

.

Definition 1.1 Let A be a nonzero tensor. A pair (λ, x) ∈ C × (Cn \ {0})
is called an E-eigenvalue and E-eigenvector (or simply E-eigenpair) of A if
they satisfy the equations

Axm−1 = λx

x2
1 + . . . + x2

n = 1

We call (λ, x) a Z-eigenpair if they are both real.

The E-eigenvalue problem for tensors involves finding nontrivial solutions of
inhomogeneous polynomial systems in several variables. It is possible for the
set of E-eigenvalues of a nonzero tensor to be infinite, see [2]. We note that
if (λ, x) satisfies the first equation above, then via normalization, ( λ

‖x‖m−2 ,
x

‖x‖)
satisfies both equations, where ‖x‖ denotes the �2-norm of x.

Definition 1.2 Let A be a nonzero tensor. A pair (λ, x) ∈ C×(Cn\{0}) is
called an eigenvalue and eigenvector (or simply eigenpair) of A if they satisfy
the equations

Axm−1 = λx[m−1]

where x
[m−1]
i = xm−1

i . We note that (λ, x) is an H-eigenpair if they are both
real.

The eigenvalue problem for tensors involves finding nontrivial solutions of
homogeneous polynomial systems in several variables. In contrast to the Z-
eigenvalues, the set of eigenvalues of any nonzero tensor is always finite.

We provide some definitions from the theory of hypergraphs. The interested
reader should refer to [1] for details.

Definition 1.3 Let V be a finite set. A hypergraph H is a pair (V, E), where
E ⊆ P(V ), the power set of V . The elements of V are called the vertices and
the elements of E are called the edges.

We note that in the above definition of hypergraph, we do not allow for
repeated vertices within an edge (often called a hyperloop).

Definition 1.4 A hypergraph H is said to be m-uniform for an integer
m ≥ 2 if for all e ∈ E, the cardinal number of the subset |e| = m. The term
m-graph is often used in place of m-uniform hypergraph.
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Definition 1.5 The adjacency tensor AH for an m-graph H = (V, E) is the
symmetric tensor AH = (ai1...im) ∈ R[m,n], where n is the number of vertices
and

ai1...im =
1

(m − 1)!

{
1 if i1, . . . , im ∈ E

0 otherwise.

From the above definitions, we see that for H = (V, E), an m-graph with
V = {1, . . . , n}, the E-eigenvalues of the adjacency tensor are given by:

∑
{i,vi,... ,vm−1}∈E

xixv1 · · ·xvm−1 = λxi for all 1 ≤ i ≤ n

x2
1 + . . . + x2

n = 1.

The eigenvalues of the adjacency tensor are given by:

∑
{i,vi,... ,vm−1}∈E

xixv1 · · ·xvm−1 = λxm−1
i for all 1 ≤ i ≤ n.

2 Cartesian Products

The following definition can be found in [6] and is a natural generalization of
the notion of Cartesian products on graphs.

Definition 2.1 Consider an m-graph H1 = (V1, E1) on n1 vertices and
an m-graph H2 = (V2, E2) on n2 vertices. The Cartesian product, denoted
H1 � H2, of H1 and H2 has the vertex set V1 × V2. The edges are given by
{{x} × e|x ∈ V1, e ∈ E2}∪̇{e × {u}|e ∈ E1, u ∈ V2}.

We notice H1 � H2 is an m-graph on n1 × n2 vertices with |V1| × |E2| +
|V2| × |E1| edges.

Example 2.2 Let H1 have the vertex set {1, 2, 3} with one edge {1, 2, 3}.
Then H1 � H1 has the nine vertices given by:
{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)},
and six edges given by:
{{(1, 1), (1, 2), (1, 3)}, {(2, 1), (2, 2), (2, 3)}, {(3, 1), (3, 2), (3, 3)}, {(1, 1), (2, 1),
(3, 1)}, {(1, 2), (2, 2), (3, 2)}, {(1, 3), (2, 3), (3, 3)}}.

In the following proofs, we consider a specific vector: for α ∈ Cn1 and
β ∈ Cn2, we define α ⊗ β ∈ Cn1×n2 via (α ⊗ β)u,x = αuβx.
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Theorem 2.3 Let H1 be an m-graph on n1 vertices and (λ, α) an E-eigenpair
for its adjacency tensor; let H2 be an m-graph on n2 vertices and (μ, β) an E-
eigenpair for its adjacency tensor. Let C be the adjacency tensor for the Carte-
sian product H1 � H2. Then (C(α⊗ β)m−1)u,x = (αm−2

u μ + βm−2
x λ)(α⊗ β)u,x.

Proof: Let H1 = (V1, E1), H2 = (V2, E2), and H1 � H2 = (V, E). We then
compute:

(C(α ⊗ β)m−1)u,x =
∑

{(v1,y1),... ,(vm−1,ym−1),(u,x)}∈E

(α ⊗ β)v1,y1 · · · (α ⊗ β)vm−1,ym−1

=
∑

{(v1,y1),... ,(vm−1,ym−1),(u,x)}∈E

αv1βy1 · · ·αvm−1βym−1

=
∑

u=v1=···=vm−1,{y1,... ,ym−1,x}∈E2

αm−1
u βy1 · · ·βym−1

+
∑

x=y1=···=ym−1,{v1,... ,vm−1,u}∈E1

βm−1
x αv1 · · ·αvm−1

= αm−1
u μβx + βm−1

x λαu

= (αm−2
u μ + βm−2

x λ)(α ⊗ β)u,x. �

Corollary 2.4 Let H1 be a graph and (λ, α) an eigenpair for its adjacency
matrix; let H2 be a graph and (μ, β) an eigenpair for its adjacency matrix. Let
C be the adjacency matrix for the Cartesian product H1 � H2. Then λ + μ is
an eigenvalue with eigenvector α⊗β

‖α⊗β‖ for C.

Proof: Since m = 2, Theorem 2.3 implies αm−2
u = βm−2

x = 1. �

Theorem 2.5 Let H1 be an m-graph on n1 vertices and suppose
(λ, ( 1√

n1
, . . . , 1√

n1
)) is a Z-eigenpair for its adjacency tensor; let H2 be an m-

graph on n2 vertices and suppose (μ, ( 1√
n2

, . . . , 1√
n2

)) is a Z-eigenpair for its

adjacency tensor. Let C be the adjacency tensor for the Cartesian product
H1 � H2. Then on C, we have that ( 1√

n1×n2
, . . . , 1√

n1×n2
) is a Z-eigenvector

with Z-eigenvalue μ√
n1

m−2 + λ√
n2

m−2 .

Proof: This follows from Theorem 2.3 since αu = 1√
n1

for all u and βx = 1√
n2

for all x. �
The following theorem is proven in [6] but is included here for completeness.

Theorem 2.6 Let H1 be an m-graph on n1 vertices and (λ, α) an eigen-
pair for its adjacency tensor; let H2 be an m-graph on n2 vertices and (μ, β)
an eigenpair for its adjacency tensor. Let C be the adjacency tensor for the
Cartesian product H1 � H2. Then (C(α ⊗ β)m−1) = (λ + μ)(α ⊗ β)

[m−1]
u,x .
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Proof: Let H1 = (V1, E1), H2 = (V2, E2), and H1 � H2 = (V, E). We then
compute:

(C(α ⊗ β)m−1)u,x =
∑

{(v1,y1),... ,(vm−1,ym−1),(u,x)}∈E

(α ⊗ β)v1,y1 · · · (α ⊗ β)vm−1,ym−1

=
∑

{(v1,y1),... ,(vm−1,ym−1),(u,x)}∈E

αv1βy1 · · ·αvm−1βym−1

=
∑

u=v1=···=vm−1,{y1,... ,ym−1,x}∈E2

αm−1
u βy1 · · ·βym−1

+
∑

x=y1=···ym−1,{v1,... ,vm−1,u}∈E1

βm−1
x αv1 · · ·αvm−1

= αm−1
u μβm−1

x + βm−1
x λαm−1

u

= (μ + λ)(α ⊗ β)m−1
u,x . �

Corollary 2.7 If H1 is an m-graph with λ1 as an eigenvalue of its adja-
cency tensor and H2 is an m-graph with λ2 as an eigenvalue of its adjacency
tensor, then λ1 + λ2 is an eigenvalue of the adjacency tensor of H1 � H2.

3 Tensor Products

The following definition is a natural generalization of the notion of tensor
products on graphs.

Definition 3.1 Consider an m-graph H1 = (V1, E1) on n1 vertices and an
m-graph H2 = (V2, E2) on n2 vertices. The tensor product, denoted H1 ⊗H2,
of H1 and H2 has the vertex set V1 × V2. The edges are given by:

{(α1, β1), . . . , (αm, βm)|{α1, . . . , αm} ∈ E1 and {β1, . . . , βm} ∈ E2}.
We notice H1 ⊗H2 is an m-graph on n1 ×n2 vertices with m!×|E1| × |E2|

edges.

Example 3.2 Let H1 have the vertex set {1, 2, 3} with one edge {1, 2, 3}.
Then H1 ⊗H1 has the nine vertices given by:
{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)},
and six edges given by:
{{(1, 1), (2, 2), (3, 3)}, {(2, 1), (3, 2), (1, 3)}, {(3, 1), (1, 2), (2, 3)}, {(2, 1), (1, 2),
(3, 3)}, {(3, 1), (2, 2), (1, 3)}, {(1, 1), (3, 2), (2, 3)}}.

Theorem 3.3 Let H1 be an m-graph on n1 vertices and (λ, α) an E-eigenpair
for its adjacency tensor; let H2 be an m-graph on n2 vertices and (μ, β) an E-
eigenpair for its adjacency tensor. Let C be the adjacency tensor for the tensor
product H1 ⊗H2. Then (C(α ⊗ β)m−1)u,x = (m − 1)!λμ(α ⊗ β)u,x.
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Proof: Let H1 = (V1, E1), H2 = (V2, E2), and H1 ⊗H2 = (V, E). We then
compute:

(C(α ⊗ β)m−1)u,x =
∑

{(v1,y1),... ,(vm−1,ym−1),(u,x)}∈E

(α ⊗ β)v1,y1 · · · (α ⊗ β)vm−1,ym−1

=
∑

{(v1,y1),... ,(vm−1,ym−1),(u,x)}∈E

αv1βy1 · · ·αvm−1βym−1

=
∑

{v1,... ,vm−1,u}∈E1

{y1,... ,ym−1,x}∈E2

(m − 1)!αv1 · · ·αvm−1βy1 · · ·βym−1

= (m − 1)!λαuμβx

= (m − 1)!λμ(α ⊗ β)u,x. �

Corollary 3.4 Let H1 be an m-graph and (λ, α) an E-eigenpair for its
adjacency tensor; let H2 be an m-graph and (μ, β) an E-eigenpair for its ad-
jacency tensor. Let C be the adjacency tensor for the tensor product H1 ⊗H2.
Then (m−1)!λμ

‖α⊗β‖m−2 is an eigenvalue with eigenvector α⊗β
‖α⊗β‖ for C.

Proof: This is immediate from Theorem 3.3 via a normalization. �

Theorem 3.5 Let H1 be an m-graph on n1 vertices and (λ, α) an eigenpair
for its adjacency tensor; let H2 be an m-graph on n2 vertices and (μ, β) an
eigenpair for its adjacency tensor. Let C be the adjacency tensor for the tensor
product H1 ⊗H2. Then (C(α ⊗ β)m−1) = (m − 1)!λμ(α ⊗ β)

[m−1]
u,x .

Proof: Let H1 = (V1, E1), H2 = (V2, E2), and H1 ⊗H2 = (V, E). We then
compute:

(C(α ⊗ β)m−1)u,x =
∑

{(v1,y1),... ,(vm−1,ym−1),(u,x)}∈E

(α ⊗ β)v1,y1 · · · (α ⊗ β)vm−1,ym−1

=
∑

{(v1,y1),... ,(vm−1,ym−1),(u,x)}∈E

αv1βy1 · · ·αvm−1βym−1

=
∑

{(v1,y1),... ,(vm−1,ym−1),(u,x)}∈E

αv1βy1 · · ·αvm−1βym−1

=
∑

{v1,... ,vm−1,u}∈E1

{y1,... ,ym−1,x}∈E2

(m − 1)!αv1 · · ·αvm−1βy1 · · ·βym−1

= (m − 1)!λαm−1
u μβm−1

x

= (m − 1)!λμ(α ⊗ β)[m−1]
u,x . �

Corollary 3.6 If H1 is an m-graph with λ1 as an eigenvalue of its adja-
cency tensor and H2 is an m-graph with λ2 as an eigenvalue of its adjacency
tensor, then (m−1)!λ1λ2 is an eigenvalue of the adjacency tensor of H1⊗H2.
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4 A Numerical Example

We refer to Example 2.2 and Example 3.2 where H1 has the vertex set {1, 2, 3}
with one edge {1, 2, 3}. We consider the eigenstructures of the adjacency
tensor on H1. The E-eigenvalues and their corresponding E-eigenpairs and
the eigenpairs of the adjacency tensor of H1 are:

E-Eigenvalue E-Eigenvectors Eigenvalue Eigenvectors
0 (±1, 0, 0) 0 (0, t, 0)

(0,±1, 0) (0, 0, t)
(0, 0,±1) (t, 0, 0)

1√
3

( 1√
3
, 1√

3
, 1√

3
) 1 (t, t, t)

(− 1√
3
,− 1√

3
, 1√

3
)

(− 1√
3
, 1√

3
,− 1√

3
)

( 1√
3
,− 1√

3
,− 1√

3
)

− 1√
3

(− 1√
3
,− 1√

3
,− 1√

3
)

(− 1√
3
, 1√

3
, 1√

3
)

( 1√
3
,− 1√

3
, 1√

3
)

( 1√
3
, 1√

3
,− 1√

3
)

We note H1 � H1 is isomorphic to H1⊗H1 via the permutation (19687253).
Hence, we use the results of the previous sections to see what information we
can obtain about the E-eigenpairs as well as the eigenpairs under the two
different product structures.

We begin with the E-eigenstructure of H1� H1. We note that 1√
3

has

Z-eigenvector ( 1√
3
, . . . , 1√

3
) and − 1√

3
has Z-eigenvector (− 1√

3
, . . . ,− 1√

3
), so

Corollary 2.5 may be employed. We see that (1
3
, . . . , 1

3
) is a Z-eigenvector

with Z-eigenvalue 2
3

and (−1
3
, . . . ,−1

3
) is a Z-eigenvector with Z-eigenvalue

−2
3
. It is worth noting that both 2

3
and −2

3
have other eigenvectors.

By Corollary 3.4, we have that 0,±2
3

are E-eigenvalues of H1 ⊗ H1 and
some of the E-eigenvectors can be computed. In this case, the tensor product
gives more information than the Cartesian product about the E-eigenvectors
and E-eigenvalues.

In this example, we compute that H1⊗H1 has E-eigenvalues of 0,± 1√
3
,±2

3
.

The E-eigenvalues of 0,± 1√
3

each has infinitely many E-eigenvectors and in-
finitely many of them are real.

By Corollary 2.7, we see that 0, 1, 2 are all eigenvalues of H1 � H1 and we
could demonstrate some of their eigenvectors. By Corollary 3.6, we see 0, 2
are eigenvalues of H1 ⊗H1 and can compute some of these eigenvectors. For
eigenvalues, this example demonstrates the Cartesian product capturing more
information than the tensor product.
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