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Abstract

A compact formula for Logarithmic Curvature Graph(LCG) and its
gradient for planar curves has been shown which can be used as shape
interrogation tool. Using these entities, the mathematical definition for
a curve to be aesthetic has been introduced to overcome the ambigu-
ity that occurs in measuring the aesthetic value of a curve. Detailed
examples are shown how LCG and its gradient can be used to identify
curvature extrema and measure the aesthetic value of curves.
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1 Introduction

A potential customer judges the aesthetic appeal of a product before the physi-
cal performance [15]. This clearly indicates the importance of aesthetic shapes
for the success of an industrial product.
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In the curve design environment, a curve is characterized based on its
curvature profile. A curvature profile is a graph plotted with the values of pa-
rameter t representing x-axis against its corresponding signed curvature values
representing y-axis [14]. There are many studies indicating the importance of
the curvature profile to characterize planar curves (see [14, 1] and references
therein). Hence, curvature profile has been highlighted as a shape interroga-
tion tool to fair B-spline curves and surfaces [2]. The designer arrives to the
desired curve by interactively or automatically tweaking the control points and
concurrently inspecting the curvature plot.

A curve with monotone curvature of constant sign is defined as a spiral [8].
A number of curves are spiral by nature, namely clothoid, circle involute and
logarithmic spiral. A spline may comprise of a number of curves of monotone
increase or monotone decrease of the signed curvature. In some instances,
curvature extremum occurs when the designer wants it [2].

A different kind of approach has been proposed by Harada et. al to an-
alyze the characteristics of planar curves with monotonic curvature [9]. The
relationship between the length frequency of a segmented curve with regards
to its radius of curvature is plotted in log-log coordinate system and named as
Logarithmic Distribution Diagram of Curvature or LDDC. It is said that these
type of graphs can be used to identify the aesthetic value of a curve [10, 9].
Harada et. al first used LDDC as a tool to characterize the curves used for
automobile design. To note, the generation of LDDC is through quantitative
method.

The notion behind generating LDDC is to mathematically obtain the locus
of the interval of radius of curvature and its corresponding length frequency.
Thus, two curves with different length would generate distinct LDDC regard-
less of the similarities of the shape of curvature profile. For example, two
circular arcs with the same radius but different length would generate similar
curvature profile, nevertheless LDDC would generate different shapes [9].

However, LDDC is computationally expensive as it involves algorithm based
on quantitative method. For example, the segregation of radius of curvature
based on the formulated classes is troublesome. Furthermore, the formulation
of classes for segregation is based on the author’s experience from investigat-
ing the range of curves adopted from actual automobiles (see [9] for details).
Hence, it cannot be used to investigate arbitrary monotonic curves. To add,
the numerical errors are unavoidable as the calculation involves approximation
process.

In 2003, Kanaya et. al proposed the generation of Logarithmic curvature
Histogram, abbreviated LCH, to substitute LDDC [10]. LCH is an analytical
way of obtaining the relationship between the interval of radius of curvature
and its corresponding length frequency.

In 2005, Miura proposed a Log-Aesthetic (LA) curve which has LCH in a
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linear form [11]. Recently, Gobithaasan & Miura extended the family of LA
curves by expressing the gradient of LCH in a linear form and denoted the
resultant curve as a Generalized Log-Aesthetic Curve (GLAC) [4]. Readers
are referred to [12, 5, 13, 6, 7] for updates on recent advancement of these
curves for CAD applications.

In this paper, we rename LCH as Logarithmic curvature Graph (LCG) since
it is a graph instead of a histogram. We extend and complete the analysis of
LCG and its gradient for planar curves. The compact representation of LCG
and its gradient are discussed in detail; which leads to straightforward compu-
tation using symbolic software. Since there exist ambiguities of what makes a
curve aesthetic in the field of Computer Aided Design (CAD) and Computer
Aided Geometric Design (CAGD), for the first time, we introduce the usage
of the gradient of LCG as a tool which measures the aesthetic value of planar
curves. In the last section, five curves are studied to illustrate the application
of LCG and its gradient as a key indicator to identify the characteristics of
aesthetic curves. It is hoped that a detailed analysis of LCG of an arbitrary
curve may aid in joining the curve segments together to achieve at least G2

continuity. An example of a conventional task to achieve G2 continuity with
at the joins can be found in [3].

2 Logarithmic Curvature Histogram

Theorem 2.1 Let a planar curve be defined as C(t) = {x(t), y(t)} and its
radius of curvature and arc length function is defined as ρ(t) and s(t) respec-
tively. The LCG for C(t) can be obtained using:

LCG(t) =

{
log[ρ(t)], log

[
ρ(t)s′(t)

ρ′(t)

]}
(1)

Proof. An analytical model of LDDC can be derived when the number of
segments→ ∞ and the number of radius of curvature classes→ ∞ (as proposed
by Kanaya et. al):

LCG(t) = {log ρ(t), log

[
Δs(t)

Δ log ρ(t)

]
} (2)

The vertical value of equation (2) can further be simplified as:

Δs(t)

Δ log ρ(t)
=

ds(t)/dt

d(log[ρ(t)])/dt

=
ρ(t)s′(t)

ρ′(t)
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Corollary 2.2 Let LCG be defined as in equation (1). The LCG for a given
planar curve, C(t), can be written in a vector form as:

ρ(t) =
‖C ′(t)‖3

(C ′(t) ∧ C ′′(t))
(3)

ρ(t)s′(t)
ρ′(t)

=
(C ′(t) ∧ C ′′(t))‖C ′(t)‖3

3(C ′(t) • C ′′(t))(C ′(t) ∧ C ′′(t)) − ‖C ′(t)‖2(C ′(t) ∧ C ′′′(t))
(4)

where ‖C ′(t)‖ denotes the norm of C(t), ∧ and • denotes the cross and dot
product of vectors respectively.

Proof. The radius of curvature, ρ(t), is a well known equation, thus it is not
discussed. Upon algebraic simplification, the vertical term of equation (1) can
be written as ({x(t), y(t)} is written as {x, y} for typographical convenience):

ρ(t)s′(t)
ρ′(t)

=
(x′2 + y′2)3/2(x′y′′ − y′x′′)

3(x′x′′ + y′y′′)(x′y′′ − x′′y′) − (x′2 + y′2)(x′y′′′ − x′′′y′)
(5)

Equation (5) can further be represented in a vector form as stated in equa-
tion (4). The advantage of using vector form is LCG can be directly evaluated
using symbolic computation software, e.g. Mathematica r©.

3 The gradient of LCG

Theorem 3.1 Consider a planar curve given as C(t) and the first deriva-
tive of LCG for C(t) exists. Let s(t) and ρ(t) be its arc length and radius of
curvature function respectively, then the gradient of LCG can be defined as:

g(t) = 1 +
ρ(t)

ρ′(t)2

(
ρ′(t)s′′(t)

s′(t)
− ρ′′(t)

)
(6)

If the curve is arc length parametrized then we may further reduce to:

g(s) = 1 − ρ′(s)ρ′′(s)
ρ′(s)

(7)

Proof. The first derivative of LCG(t) is:

dLCG(t)

dt
= {d log[ρ(t)]

dt
,
d log[ ds(t)

d(log[ρ(t)])
]

dt
} (8)

hence, the gradient of LCG in Leibniz notation :

g(t) =

d log[ds(t)
d(log[ρ(t)])

]/dt

d log[ρ(t)]/dt
=

d log[ ds(t)
d(log[ρ(t)])

]

d log[ρ(t)]

= 1 +
ρ(t)

ρ′(t)2

(
ρ′(t)s′′(t)

s′(t)
− ρ′′(t)

)
Based on the gradient of LCG, the following definitions are constructed.
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Definition 3.2 A curve is said to be an aesthetic curve if the gradient of
LCG of the curve is constant. The aesthetic value of a curve increases when
the gradient of LCG approximates to a constant value.

Definition 3.3 The classification of three patterns of aesthetic curves are
made based on the gradient of LCG:

1. Convergent: the gradient of LCG is positive.

2. Divergent: the gradient of LCG is negative.

3. Neutral: the path of LCG is flat whereby the gradient is zero.

Definition 3.4 Suppose g is defined at tc. If, either g(tc) = 0 or g(tc) does
not exist then, the parameter tc is called a critical value of LCG and the point
of g(tc) is called the critical point. Note that if g(tc) is not defined, then tc
cannot be a critical value.

4 Examples

4.1 Planar Curves With Constant Gradient

Example 4.1 Clothoid is defined in terms of Fresnel integrals by:(
x(t)
y(t)

)
= πB

(
C(t)
S(t)

)
, (9)

where the scaling factor πB is positive, parameter t is non-negative and the
Fresnel integrals are defined as:

C(t) =

∫ t

0

cos
πu2

2
du, (10)

S(t) =

∫ t

0

sin
πu2

2
du. (11)

Since the radius of curvature of clothoid is given by ρ(t) = B/t, the linear
curvature profile will generate a straight line of LCG. Fig. 1 illustrates the
clothoid curve when B=1 and π

10
≤ t ≤ π.

Example 4.2 Circle involute defined in a plane as:

C(t) = {cos t + t sin t, sin t − t cos t} (12)

where parameter t represents the winding angle of a circle. Figure 2 illustrates
the curve, its curvature profile and LCG.
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Figure 1: Clothoid in π
10

≤ t ≤ π 1(a), its curvature profile 1(b) and LCG 1(c)
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Figure 2: Circle involute defined in π
10

≤ t ≤ 3π 2(a), curvature profile 2(b)
and its LCG 2(c)

Example 4.3 Logarithmic Spiral is defined in parametric form as:

C(t) =
{
aebt cos[t], aebt sin[t]

}
(13)

where θ is the angle from the x-axis, and a and b are arbitrary constants. Fig.
3(a) illustrates an example of Logarithmic spiral with its curvature profile and
LCG.

Table 1 summarizes the details of the curves that are aesthetic by nature.
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Figure 3: Logarithmic spiral defined in 0 ≤ t ≤ 5π with a=1 and b=0.2: 3(a),
its curvature profile: 3(b) and LCG: 3(c)

4.2 Planar Curves With Almost Constant Gradient

In this section, two types of planar curves are described namely parabola and
logarithmic curve. The general equation of LCG and its gradient are derived
and followed by a numerical example for each curve.

Example 4.4 Parabola is defined in parametric form as:

C(t) = {t, at2} (14)

where a is positive constant and parameter t is non-negative (for simplification
purpose, the first quadrant is analyzed as parabola is symmetrical). The LCG
for parabola is:

LCG(t)parabola =

{
log

[
(1 + 4a2t2)

3/2

2a

]
, log

[
(1 + 4a2t2)

3/2

12a2t

]}
(15)

and gradient for parabola is:

g(t)parabola =
2

3
− 1

12a2t2
(16)

C(t) LCG(t) g(t) Pattern

Clothoid
{
log

[
B
t

]
, log[Bπt]

}
-1 Divergent

Circle Involute {log[t], 2 log[t]} 2 Convergent

Logarithmic spiral
{

log
[
a
√

1 + b2ebt
]
, log

[
a
√

1+b2ebt

b

]}
1 Convergent

Table 1: Three types of natural aesthetic curves with constant gradient.
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Corollary 4.5 Let a parabola be defined as in equation (14). Depending
on the constant value of a, the critical points occur at tc = 1

2
√

2a
. The gradient

of parabola changes sign as follows:

Gradient positive : t > 1
2
√

2a

Gradient negative : 0 < t < 1
2
√

2a

Fig. 4 shows a numerical example of parabola with a = 1, its curvature profile
and LCG. The critical point is denoted with a black dot which divides the curve
into two distinctive region of signed gradient. Hence, parabola is a type of curve
which has divergent-convergent type of aesthetic curve.
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Figure 4: Parabola defined in 0 ≤ t ≤ 1 with a=1: 4(a), its curvature profile:
4(b) and LCG: 4(c) where the spike indicates curvature extrema.

The LCG gradient changes sign at tc = 1
2
√

2
. Parabola becomes an aesthetic

curve when t → ∞ whereby g(t) → (2/3).

Example 4.6 Logarithmic Curve defined as

C(t) = {t, a log[t]} (17)

where a, t > 0. The LCG and gradient of LCG for Logarithmic curve is stated
in equation (18) and (19) respectively:

LCGLogCurve =

{
log

[
t2(1 +

1

t2
)3/2

]
, log

[
(1 + t2)

3/2

−1 + 2t2

]}
(18)

g(t)LogCurve =
−7a2t2 + 2t4

(a2 − 2t2)2
(19)
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Corollary 4.7 Consider the Logarithmic curve stated in equation (17), the
gradient of LCG can be classified as:

Gradient positive : t > a
√

7
2

Gradient negative : 0 < t < a√
2
, a√

2
< t < a

√
7
2

Fig. 5 illustrates an example of logarithmic curve where a = 2, its curvature
profile and LCG. There are two critical points occurring at tc =

√
2 and tc =√

14. The gradient of LCG for the logarithmic curve increases as t → ∞, in
which g(t) → (1/2).
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Figure 5: Logarithmic curve defined in 0 ≤ t ≤ π/3 with a=1: 5(a), its
curvature profile: 5(b) and LCG: 5(c) where the spike indicates curvature
extrema.

5 Conclusion

Design involves the use of curves to shape models based on repetition, transfor-
mation and etc. Analogous to fingerprints, every design has an unique pattern.
The de facto standard to identify the characteristic of a curve is by investi-
gating the curvature profile, which is utilized in fairing process for aesthetic
curve design. In this paper, we propose a simple formula to obtain LCG and
its representation in vector form in order to identify aesthetic curves where
curvature extrema can be easily identified when spike occurs. Based on the
LCG gradient formula, we define aesthetic curve mathematically and classify
these curves into three groups. For numerical understanding, the analysis of
five types of planar curves has been carried out.
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