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Small genome of Candidatus Blochmannia, the
bacterial endosymbiont of Camponotus,
implies irreversible specialization to an
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Blochmannia (Candidatus Blochmannia gen. nov.) is the primary bacterial
endosymbiont of the ant genus Camponotus. Like other obligate
endosymbionts of insects, Blochmannia occurs exclusively within eukaryotic
cells and has experienced long-term vertical transmission through host
lineages. In this study, PFGE was used to estimate the genome size of
Blochmannia as approximately 800 kb, which is significantly smaller than its
free-living relatives in the enterobacteria. This small genome implies that
Blochmannia has deleted most of the genetic machinery of related free-living
bacteria. Due to restricted gene exchange in obligate endosymbionts, the
substantial gene loss in Blochmannia and other insect mutualists may reflect
irreversible specialization to a host cellular environment.
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INTRODUCTION

Obligate bacterial mutualists are critical to the re-
production and success of over 10% of insect species
(Douglas, 1989). In contrast to some facultative bacterial
associates, these primary endosymbionts are typically
required for host growth and reproduction, occur within
specialized host cells called bacteriocytes, and experi-
ence stable, maternal transmission through host lineages
(Buchner, 1965; Hinde, 1971). Insect endosymbionts are
widespread phylogenetically, but several lineages group
with the γ-3 subdivision of the Proteobacteria and are
closely related to Escherichia coli and other enterobac-
teria. Molecular evidence shows that γ-3-subdivision
endosymbionts include Buchnera aphidicola associated
with aphids, Wigglesworthia glossinidia associated with
tsetse flies, Carsonella ruddii of psyllids, and Bloch-
mannia of Camponotus, among other insect associates
(Charles et al., 2001). Although their functional signifi-
cance is often unknown, these symbionts are generally
thought to play nutritional roles such as providing
essential amino acids, vitamins or other nutrients that
are lacking in the hosts ’ diet (Buchner, 1965; Baumann
et al., 1995; Douglas, 1989). For example, Buchnera, the
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The GenBank accession number for the sequence reported in this paper is
AF495758.

best-characterized insect mutualist, provides essential
amino acids that are deficient in the aphid’s diet of plant
sap (Douglas, 1998; Baumann et al., 1998).

Like most intracellular pathogens, bacterial endosym-
bionts of insects have undergone severe genome re-
duction in the context of their obligate associations with
hosts. The small genomes of Buchnera (630–650 kb;
Charles & Ishikawa, 1999; Wernegreen et al., 2000) and
Wigglesworthia (705–730 kb; Akman & Aksoy, 2001)
approach the smallest known bacterial genome size
(Mycoplasma genitalium, 580 kb; Fraser et al., 1995)
and are very reduced compared to the 4±5–5±5 Mb
genome size range for E. coli (Bergthorsson & Ochman,
1995, 1998). Since most bacterial genomes contain
primarily coding DNA, genome reduction in endosym-
bionts must involve the loss of metabolic functions and
physiological capacities, with important phenotypic
implications (Andersson & Kurland, 1998; Moran &
Wernegreen, 2000; Ochman & Moran, 2001). Indeed,
full genome sequence data for Buchnera (Shigenobu et
al., 2000) and microarray analysis of gene content in
Wigglesworthia (Akman & Aksoy, 2001) demonstrate
the deletion of several loci for metabolic functions that
are not essential within the host cellular environment.
The loss of these biochemical capabilities may account
for the inability to culture insect endosymbionts without
the host.
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Blochmannia, first discovered in 1887 (Blochmann,
1887) and recently assigned to the new genus ‘Candi-
datus Blochmannia gen. nov.’ (Sauer et al., 2000) is the
primary endosymbiont of the ant genus Camponotus,
the largest genus in the family Formicidae (ants) that
includes 931 species in every biogeographical region
(Bolton, 1995). Like most intracellular bacteria, Bloch-
mannia shows accelerated evolutionary rates (unpub-
lished data) and an extremely low G­C content
(23 mol%; Dasch, 1975; Dasch et al., 1984). Bloch-
mannia occurs exclusively within ant ovaries and within
bacteriocytes, specialized host cells that are intercalated
among enterocytes of the ant midgut. Blochmannia is
widely distributed across most species of Camponotus,
and congruence of host and symbiont phylogenies
(Schroder et al., 1996; Sameshima et al., 1999; Sauer et
al., 2000) suggests the association is evolutionarily stable
and as old as the host genus (20 million years ; Wilson,
1985), if not older. In this study, we used PFGE to
estimate the genome size of Blochmannia. In the course
of this analysis, we further developed methods for
isolating genomic DNA of unculturable endosymbionts
in sufficient quantity and at sufficient purity for PFGE.

METHODS

Collection and maintenance of Camponotus host species. We
selected Blochmannia associated with Camponotus pennsyl-
vanicus because of the local abundance of this carpenter ant.
C. pennsylvanicus colonies were collected from two sites in
Falmouth, MA, USA, less than 1±5 miles (C2±4 km) apart.
Colonies were maintained for 4–6 months in the laboratory on
a modified Bhatkar diet and live or frozen insects (Ho$ lldobler
& Wilson, 1990).

Endosymbiont preparation. Blochmannia was isolated from
ant hosts, using a Percoll density-gradient protocol previously
described by Charles & Ishikawa (1999) for the isolation of
Buchnera cells from aphid hosts. For Blochmannia isolations,
we modified the protocol as follows: buffer A was sup-
plemented with 100 mM and 250 mM EDTA, pH 8, and
MgCl

#
was omitted, to reduce the activity of nucleases. The

endosymbiont preparation was performed in buffer A with
250 mM EDTA, except for steps involving Percoll, for which
we used buffer A with 100 mM EDTA. Filtration through 5
and 3 µM filters was omitted.

Endosymbiont cells were resuspended in buffer A with
100 mM EDTA and embedded in plugs of InCert agarose
(BioWhittaker Molecular Applications) to preserve the struc-
tural integrity of chromosomal molecules. DNA preparations
were performed in plugs as previously described (Charles &
Ishikawa, 1999). DNA sequence data support a low genomic
G­C content Blochmannia (e.g. Schroder et al., 1996, and our
unpublished results). Therefore, we digested the genomic
DNA within plugs using G­C-rich (rare-cutting) restriction
enzymes, including ApaI, NotI, SmaI and AscI. Before
digestion, plugs were washed twice in the appropriate
restriction buffer (30 min per wash). Digestions were per-
formed with an excess of enzyme (40 U per 150 µl reaction)
and incubated for 8 h at the appropriate temperature.

PFGE. PFGE was performed in a contour-clamped homo-
geneous electric field system (CHEF-XA Mapper; Bio-Rad) at
14 °C using 0±5¬ TBE, pH 8, and gels of 1% pulsed field

gel-grade agarose (Bio-Rad). All gels were run at 6 V cm–
", a

120° angle, and a constant ramp time. Switch times and total
run times were programmed using the CHEF XA Mapper
automated algorithm to span a wide range of fragment sizes
(5–950 kb; see legend of Fig. 1 ; Ausubel et al., 1987). Standard
size ladders included high-molecular-mass DNA markers
(8±3–48±5 kb; Life Technologies), the Midrange II PFG ladder
(24–267 kb; New England BioLabs), the Lambda Ladder PFG
marker (48±5–1018 kb; NEB) and the Yeast Chromosome
PFG marker (225–1900 kb; NEB). Digested fragments were
sized by comparison with standard ladders, using the software
package GelPro 2.0 (Image Processing Solutions). Sizes were
determined based on the standard ladder closest to the lane of
interest. In cases where experimental lanes were equidistant
between two standard ladders, fragment sizes based on each
ladder were averaged. Sizes of fragments generated by each
enzyme were summed to estimate the genome size of Bloch-
mannia.

DNA sequence analysis of Blochmannia 16S rRNA. We
prepared DNA from a portion of an agarose plug used in
PFGE by digesting the agarose with Beta-Agarase (New
England BioLabs) and precipitating the DNA by following the
manufacturer’s instructions. This DNA was used as template
in a PCR with universal eubacterial primers to the 16S rRNA
gene (primers SL and SR; Schroder et al., 1996). The single
resulting PCR product was the expected size of 1±6 kb. This
PCR product was cleaned with a column purification kit
(Qiagen) and sequenced directly on an ABI 3700 automated
sequencer using SL, SR and two internal sequencing primers
(primer sequences available upon request). TheDNA sequence
was edited and assembled using the }}
software package (version 10.0 for UNIX). The assembled
sequence was assigned GenBank accession number AF495758.

RESULTS AND DISCUSSION

One hallmark of bacterial genomes is their potential to
undergo radical changes in size and organization
through gene duplication, gene loss, and rearrangements
of large portions of the chromosome, as well as to
acquire genes via viruses, plasmids and transposable
elements. Since most bacterial genomes contain over
85% coding DNA (Bergthorsson & Ochman, 1998) the
acquisition or loss of a large portion of DNA may define
the biochemical capabilities and range of environments
available to particular bacterial lineages. Across bac-
teria, the most rapid and severe changes in genome sizes
are coupled with transitions to an intracellular lifestyle
(Moran & Wernegreen, 2000). Obligate endosymbionts
that are sequestered within specialized host cells may
lack opportunities for recombination with genetically
distinct strains (e.g. Funk et al., 2000). Therefore, severe
gene loss in endosymbionts may represent an irreversible
evolutionary trajectory that constrains existence outside
a eukaryotic cell, and limits transitions in symbiotic
lifestyles (e.g. parasitic versus mutualistic associations
with hosts) (Moran & Wernegreen, 2000; Tamas et al.,
2001).

In this study, we demonstrate that the Blochmannia
genome is severely reduced compared to closely related
free-living bacteria such as E. coli. We estimated the size
of the Blochmannia genome by summing the sizes of
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Fig. 1. PFGE of endonuclease-digested DNA of Blochmannia associated with C. pennsylvanicus. Sizes of standard ladders are marked in kb. Blochmannia DNA samples are
labelled with the restriction enzyme used. Estimated sizes of Blochmannia DNA fragments were generally consistent across reactions and across gels (see Table 1). General
running conditions are described in the text. Specific run conditions were programmed as follows: (a) 300–950 kb [initial switch time (IST) 35±43 s, final switch time (FST)
1 min 28±73 s, run time (RT) 34 h 8 min], 1% gel; (b) 200–1000 kb (IST 24±03 s, FST 1 min 33±69 s, RT 29 h 57 min), 1% gel; (c) 30–500 kb (IST 2±17 s, FST 44±76 s, RT 26 h
40 min), 1% gel; (d) 60–650 kb (IST 7±93 s, FST 59±04 s, RT 27 h 47 min); (e) 5–100 kb (IST 0±23 s, FST 8±55 s, RT 15 h 16 min), 1% gel.
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Table 1. Fragment sizes resulting from digestion of Blochmannia DNA with four
endonucleases
.....................................................................................................................................................................................................................................

Fragment sizes were estimated using GelPro 2.0, as described in the text. Restriction fragment sizes
were summed for each enzyme to estimate genome size. Fragment sizes are labelled with the gel
(Fig. 1, a–e) from which that estimate was derived. Sizes in bold are considered the most reliable,
due to their close proximity to a standard size ladder and}or their location within a highly resolved
region of the gel.

Restriction

enzyme

Enzyme fragment sizes (kb)

Sum of

fragments (kb)

AscI 809 (a) 810 (b) 809

NotI 332 (c) 334 (d) 808

325 (c) 325 (d)

151 (c) 153 (d) 147±5 (e)

SmaI 267 (c) 264 (d) 790*

178 (c) 175 (d)

101 (c) 96 (e)

84 (c) 81 (e)

78 (c) 80 (e)

44 (c) 40 (e)

38 (c) 34 (e)

ApaI 234 (c) 227 (d) 813

156 (c) 153 (d) 154 (e)

132 (c) 128 (e)

77 (c) 80 (e)

64 63 (e)

61 (c) 61 (e)

53 (c) 54 (e)

36 (c) 32 (e)

*The slightly lower genome size estimate based on SmaI digestions may result from the presence of
faint, low-molecular-mass restriction fragments that were not scored (see text).

linear DNA fragments resolved by PFGE (Fig. 1, Table
1). Based on digestions with four different endonu-
cleases, we determined that the genome size of Bloch-
mannia associated with C. pennsylvanicus ranges be-
tween approximately 790 and 813 kb, the strongest
support being for a genome size of C809 kb. This
estimate is based on several independent digestion
reactions and pulsed field gels, examples of which are
shown in Fig. 1.

Furthermore, we confirmed that the agarose plugs used
in PFGE are pure samples of Blochmannia–C. pennsyl-
vanicus by amplifying and sequencing the 16S rRNA
gene of the embedded bacterial DNA. Results of 
(http :}}www.ncbi.nlm.nih.gov) show that the resulting
sequence (assigned GenBank accession no. AF495758) is
most similar to published Blochmannia 16S rRNA
sequences. Phylogenetic analysis of this and other 16S
rRNA genes (data not shown) demonstrated that our
samples are most closely related to the published
C. pennsylvanicus endosymbiont 16S rRNA gene
(AJ245598; Schroder et al., 1996). These sequence data
confirm that the agarose plugs used for genome size

analysis contained pure samples of Blochmannia–C.
pennsylvanicus DNA.

PFGE analysis of obligate endosymbionts such as
Blochmannia poses distinct experimental challenges.
First, the inability to culture Blochmannia outside the
host required that we isolate Blochmannia cells from C.
pennsylvanicus workers prior to DNA preparation
within agarose plugs. This direct isolation from hosts
necessarily limited the sample size (e.g. the number of
independent restriction enzyme digestions) that we
could attain compared to PFGE analyses of culturable
bacteria. Furthermore, difficulty in preparing highly
concentrated Blochmannia DNA resulted in a low
intensity of small chromosomal fragments (less than
C15 kb). The SmaI digestion may include faint, small
fragments that are difficult to size accurately (Fig. 1e). If
so, these small fragments would account for the slightly
smaller genome size estimate based on this enzyme
(790 kb). Despite these inherent limitations of PFGE
analysis of obligately intracellular bacteria, independent
restriction digestions gave remarkably similar estimates
of Blochmannia genome size in this study. Our results
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clearly demonstrate that the Blochmannia genome is
severely reduced, and totals less than one-fifth the
genome size of E. coli.

Genome reduction in Blochmannia and other obligately
intracellular bacteria is consistent with a shift in the
selection–mutation balance in these species. The per-
sistence of a gene within a bacterial lineage depends on
the selection coefficient for its maintenance, the efficacy
of this selection, as determined by effective population
size (N

e
), and mutation rates (Lawrence, 1999). Each of

these three factors may shift in obligate endosymbionts.
First, selective coefficients for the maintenance of genes
for metabolic diversity may be reduced in an intra-
cellular environment, resulting in the loss of genes for
the biosynthesis of compounds they can acquire from
the host cytoplasm. For example, the full genome
sequence of Buchnera sp. APS (Shigenobu et al., 2000)
demonstrates that the exchange of gene products be-
tween the symbiont and host is complementary and
mutually dependent. Buchnera provides the host with
essential amino acids and, as expected, possesses a
complete set of genes for the biosynthesis of essential
amino acids. However, Buchnera lacks genes for the
biosynthesis of non-essential amino acids that it must
import from the host cytoplasm. In addition, the
pantothenate!pyruvate!CoA pathway illustrates the
mutual dependency between host and symbiont
genomes. Buchnera performs the pantothenate!pyru-
vate reaction while the host converts pyruvate to CoA.

Second, endosymbionts may have small N
e
due to severe

bottlenecks upon transmission to host offspring, and
few, if any, opportunities for recombination with
genetically distinct strains. According to the nearly
neutral theory (Ohta, 1973), reduced N

e
is expected to

increase the effect of genetic drift and to reduce the
efficacy of selection. Previous studies show elevated
rates of fixation of slightly deleterious mutations at
particular genes of endosymbionts, consistent with a
strong effect of genetic drift (Moran, 1996). On a
genome-wide level, genetic drift may have a cumulative
effect of reducing genome size if it increases the selective
coefficient required to maintain a given gene (Lawrence,
1999; Lawrence & Roth, 1999).

Third, small genomes of intracellular bacteria may
reflect stronger effects of mutational biases due to the
loss of several DNA-repair genes (Moran &
Wernegreen, 2000). Mutational bias toward deletions
may account for shorter lengths of endosymbiont genes
(Charles et al., 1999), and recent work suggests that
deletion biases in bacteria may have greater effects on
endosymbiont genomes, in which more sites are effec-
tively neutral (Mira et al., 2001).

Further genomic studies of Blochmannia may inform
our understanding of the functional significance of this
endosymbiont, which is currently unknown. The prox-
imity of Blochmannia to the ant midgut, and the ability
to cure Camponotus of Blochmannia if the host is fed a
very complex diet (Boursaux-Eude & Gross, 2000) both
suggest that Blochmannia may provide the host with

essential nutrients (Dasch et al., 1984). However, the
insect and plant diet of Camponotus (Ho$ lldobler &
Wilson, 1990) is more complex than the unbalanced
diets of other insects with bacteriocyte-associated sym-
bionts (e.g. the phloem diet of aphids and other sap-
sucking insects, and the blood diet of tsetse flies). Given
the relative complexity of the Camponotus diet, it is
quite possible that Blochmannia provides alternative,
non-nutritional functions for the host. Notably, we
found that the Blochmannia genome is slightly larger
than those of the closely related insect endosymbionts
Buchnera and Wigglesworthia. Genes that are present in
Blochmannia but absent from related symbionts will
provide promising candidates for loci with functional
significance for this particular host association.
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