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Abstract
This paper summarizes an approach to extensible mutual recursion
using what the author calls, “open modules.” An open module
effectively parameterizes its content so that it can be used both
for the current module and future, extending modules. This paper
discusses some of the issues with extensible mutual recursion,
describes an open module construct and gives encodings and typing
rules for open modules.1

1. Problem with extensible mutual recursion
An issue arises when extending mutually recursive classes: the
mutual recursion stays with the base classes. The Subject/Observer
example is a typical example.

1.1 Base Subject/Observer classes
In the Subject/Observer pattern, a “subject” is an object that trans-
mits messages about changes to its state, while an “observer” is
an object that receives such messages. These can be in a many-to-
many relationship in that a subject may have many observers and
an observer may be monitoring several subjects. For the purposes
of this paper, let us assume that the following module definition
provides the core functionality of the subject/observer pattern:

module core { (1.1)
type Event = { val msg: String }
class Subject (val id: String) {
val observers = new Set[Observer];
func addObserver (observer: Observer): Void

= observers += observer;
func notifyObservers (ev: Event) =
for (observer <- observers)

{ observer.notify(self, ev) }
}
partial class Observer {
abstract func notify (subj: Subject, ev: Event): Void

}
class Logger (val log: Stream) extends Observer {
impl func notify (subj: Subject, ev: Event) =

log.printf("event from %s: %s\n", subj.id, ev.msg)
}

}

This code is expressed in P3, a research programming language
similar to C++ [6], Java [4] and Scala [5]. A technical report on P3
is in progress but not currently available, although related technical
reports are on the author’s website [8]. Instead, P3 will be explained
as needed. In particular, assume that a module construct provides a
named scope for the elements within. A module is also recursive, so
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it permits Subject to refer to Observer before the latter is defined.
A type definition creates an alias for the type expression to the
right of the equals sign. A class definition for C creates (1) a type
C, (2) a constructor “new C(...)” that creates instances of the class
and (3) certain (unspecified) mechanisms for extension. If a class
is marked partial, it has no new operator. Variable “self” is the
special name used within a class to refer to the future object (like
“this” in C++, Java or Scala). References to siblings within a class
body are via self, although syntactic sugar allows it to be implicit
(as shown here).

Module definition (1.1) creates an object named “core” such
that core.Event is a type and core.Subject, core.Observer and
core.Logger are classes. The core.Subject class defines a field con-
taining a mutable set of observers, a way to add to that set and
a method, notifyObservers, that loops through the set of observers
and calls each one’s notify method (passing itself as the first param-
eter). The core.Observer class defines a single abstract method, no-
tify. The core.Logger class extends core.Observer and implements
the notify method. The core.Subject and core.Observer classes are
meant to be extended.

Since the contents of object core include types and classes, core
is what P3 calls a hybrid, as it is a cross between a regular record
and a type group. Type groups are record-like structures containing
type definitions; they are similar to Bruce’s type groups [1].

1.2 Extensions of the base classes
Now consider the following module that extends the core classes to
implement a model/view/controller pattern:

module mvc { (1.2)
class Subject (id: String) extends core.Subject(id)

{ func modelSize(): Int = ...; ... }
partial class Observer extends core.Observer { ... }
class Logger (log:Stream)

extends core.Logger(log) with Observer
{
override func notify (subj: Subject, ev: Event) =

log.printf("event from %s: %s (size=%d)\n",
subj.id, ev.msg, subj.modelSize()) /* error */

}
}

The ellipses stand for enhancements to these classes that are not
relevant to the example. Note that the Subject class has a new
method, modelSize, and that the Logger class has overridden its
notify method to take advantage of the new method.

1.3 Failure of type safety
However, (1.2) would fail to type because Logger inherits its
declaration of notify from mvc.Observer, which inherits it from
core.Observer and, so, notify’s fully qualified declaration is as
follows:

func notify (subj: core.Subject, ev: core.Event): Void (1.3)
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In particular, the subj parameter of has static type core.Subject
which does not have a modelSize method, and so the expression
subj.modelSize() would fail to type. An attempt to change the type
of subj would fail since it is a contravariant parameter.

The real problem is that (1.2) is not safe. Consider the following
code fragment:

val logger = new mvc.Logger(...); (1.4)
val subject = new core.Subject;
subject.addObserver(logger);
subject.notifyObservers(...)

Because mvc.Logger indirectly extends core.Observer, subclass
polymorphism allows the logger object to be passed to sub-
ject.addObserver(). The call of the last line fails because subject
calls logger.notify(subject,...), which calls subject.modelSize(),
which does not exist.

Thus the failure of typing correctly disallows the implementa-
tion of notify in (1.2) exactly because it is unsafe. However this
means that mvc objects cannot use the mvc enhancements, which
is contrary to the point of extension. What is needed is a mecha-
nism that allows parallel extension like (1.2), but in a safe way. The
next section presents one such mechanism.

2. A solution in P3: Open modules
In P3, the simplest mechanism for achieving extensible mutual
recursion is the open module. In contrast to the closed modules
of (1.1) and (1.2), open modules are designed to be extended in
a way that maintains relationships. In particular, open modules use
inheritance and dynamic dispatch so that references to siblings vary
with extension.

2.1 Subject/Observer as open modules
Let us reconsider the Subject/Observer example using open mod-
ules. The following module definition is an open version of the core
definition of (1.1):

open module core { (2.1)
virtual type +Event = { val msg: String}
virtual class +Subject (val id: String)

{ /* body of Subject in (1.1) */ }
virtual partial class +Observer

{ /* body of Observer in (1.1) */ }
virtual class +Logger (val log:Stream) extends +Observer

{ /* body of Logger in (1.1) */ }
}

Similarly, the following module definition is an open version of the
mvc definition of (1.2):

open module mvc extends core { (2.2)
refine class +Subject (id: String)

extends msuper.Subject(id)
{ /* body of Subject in (1.2) */ }

refine partial class +Observer
extends msuper.Observer

{ /* body of Observer in (1.2) */ }
refine class +Logger (log: Stream)

extends msuper.Logger(log) with +Observer
{ /* body of Logger in (1.2) */ }

}

The bodies of the classes are the same as the corresponding ones
in (1.1) and (1.2), so to save space, they are elided. The error
indication is not carried forward. Technically, the Logger class
must be marked fragile, as will be discussed in §4.5, but let us
ignore that issue for simplicity.

2.1.1 Explanation
The keyword open at the start of a module, instead of nothing or
closed, signals the use of the open variant. The virtual keyword
at the start of a field descriptor indicates that it has an implemen-
tation which may be overridden. The “+” before a type or class
name indicates that its overrides must be a subtype or subclass (as
appropriate); this and “with +” will be described further in §2.2.3.

The “extends core” clause on mvc’s definition indicates that
it will inherit from core. The keyword refine at the start of a field
indicates that it is an override (thus replacing a field that would
otherwise be inherited) and has a refined future type. The use of
msuper in a class’s extends clause will be discussed in §2.2.5. The
Event type of mvc inherits from core since it is not overridden.

To avoid confusion with containment, P3 uses the terms “parent
module” and “child module” instead of “super-module” and “sub-
module.” Also an “ancestor module” is either the module itself or
the parent of an ancestor; similarly for “descendant” and the adjec-
tive “proper” can be used to mean “but not itself.” Finally, the term
“sibling” is used to refer to a peer entity.

2.1.2 Semantics and typing
Semantically, the core and mvc objects created by (2.1) and (2.2)
are functionally equivalent to those created by (1.1) and (1.2) in
that they have the same runtime code.

However, while (1.2) as written fails type checking (for good
reasons as discussed in §1.3), (2.2) passes type checking. The dif-
ference is that, with open modules, mvc.Logger does not extend
core.Observer, but rather a shadowed class with the same imple-
mentation but with mvc types. In particular, the inherited declara-
tion of notify (which is what failed typing in (1.2)) is as follows:

func notify (subj: mvc.Subject, ev: mvc.Event): Void (2.3)

Thus subj has the modelSize() method and, so, type checking goes
through.

Actually, the situation is more general than as just described:
with open modules, the typing of module bodies is done in a pa-
rameterized context. In particular, references to siblings are quali-
fied by a special variable called “mself” (instead of being qualified
by “core” or “mvc”). In this case, the inherited declaration of notify
is as follows, in contrast to (1.3) and (2.3):

func notify (subj: mself.Subject, (2.4)
ev: mself.Event): Void

The type of mself is derived from programmer-supplied anno-
tations. In (2.2), these annotations are the plus symbols before the
type and class names, which gives mself the following declaration:

val mself: { (2.5)
type Event <: { val msg: String }
type Subject <: {
val id: String;
val observers: Set[mself.Observer];
func addObserver (mself.Observer): Void;
func notifyObservers (mself.Event): Void;
func modelSize(): Int

}
type Observer <: {
func notify (mself.Subject, mself.Event): Void

}
type Logger <: {
val log: Stream;
func notify (mself.Subject, mself.Event): Void

}
}
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Not shown are the enhancements elided in (1.2). Variable mself
ranges over hybrid objects and is constrained by the hybrid type to
the right of the colon. It is a dependent typing since mself appears
in its own type. Variable mself will be discussed further in §2.2.5
and its type will be introduced in §2.2.4 and defined in §3.3.5.
Declaration (2.5) will be justified in §3.3.7.

When mvc is typed, the notify methods, including those inher-
ited from the core classes, all have the declaration given by (2.4).
The implementation of notify in mvc.Logger (see (1.2)) is well
typed because variable subj has type mself.Subject which is a sub-
type of a type that has appropriate id and modelSize fields. This
will be shown more formally in §3.3.7.

When core is typed, mself would have the same type as in (2.5)
except without the modelSize declaration nor the elided enhance-
ments. Thus the type of mself in (2.5) is a subtype of the type of
mself when typing core. This is a requirement on extension and is
what allows core’s implementations to inherit correctly into mvc.
This will be discussed further in §3.4.

2.1.3 Observations
Note that in (2.5), mself.Subject and mself.Observer are con-
strained in a mutually-recursive manner. This means that all fu-
ture modules will have the mutual recursion desired: each module’s
Subject class will refer to its Observer class and vice versa.

An open module, in addition to parameterizing its content, also
“ties the knot” in that it yields a module-specific implementation,
one with mself↔m (for module with name m). This is why the
declaration of notify in core is given by (1.3), while it has declara-
tion in mvc is given by (2.3).

Safety is ensured because the mvc classes are not subclasses of
their core counterparts, nor are their types in a subtype relation.
This means that objects from different modules cannot be mixed,
which avoids the unsafe situation discussed in §1.3. Thus an ex-
tending module gets to use its enhanced functionality.

2.2 Key mechanisms
Now let us consider some of the key mechanisms of P3’s open
modules.

2.2.1 Multi-functionality of open modules
An open module definition for name m is “multi-functional” in the
sense that it creates multiple entities:

• The module object itself, m.
• A type, {{?<<m}}, whose instances are extensions of the cur-

rent module (including itself). This type is discussed in §2.2.4.
It is the type of mself as introduced in §2.1.2.

• Entities that support extension and inheritance. These entities
are not directly visible to the programmer, except that they sup-
port the extends mechanism. Implementations of these entities
will be given in the sections on encoding, 3.2.1 and 3.3.5.

In contrast, a closed module definition creates only m.

2.2.2 Field descriptors
The body of an open module has field descriptor definitions rather
than plain definitions as appearing in a closed module. Field de-
scriptor definitions are similar to those phrases found in Java or
C++ that start with keywords like virtual, abstract or final. For
this paper, all field descriptors are of virtual fields, which means
that they have implementations and can be overridden.

2.2.3 Current and future aspects
Because open modules allow fields to be overridden, there needs
to be a way to restrict how entities can be overridden in a child

module. In P3 this is called the future aspect of a field, in contrast
to the current aspect which describes the implementation of a field.
The field definitions of a closed module have only current aspects,
as those fields cannot be overridden.

For data entities, the future type is the same as the current one.
For type definitions, the future aspect is typically some bound on
the type’s future value, or no bound at all. For classes, the future
aspect is typically a constraint on the type defined by the class, but
other specifications are possible (for example see §4.4).

The future types create an invariant over future modules. They
allow implementations to be constructed that remain well typed
when inherited into future modules. Future types should be restric-
tive enough to permit such implementations, but not so restrictive
as to disallow useful extensions.

In P3, one can write field descriptor definitions using either
an explicit current/future form or certain higher-level forms. The
explicit descriptor is of the form “current Jc; future Lf” where
Jc is a typed definition specifying the implementation and Lf is a
declaration constraining future overrides.

Among the higher-level forms are the following three for type
definitions with their equivalent current/future forms:

virtual type +X = T ≈ current type X = T ; (2.6)
future type X <: mdef.X

virtual type X: Z = T ≈ current type X = T ;
future type X: Z

virtual type X = T ≈ current type X = T ;
future type X

All specify that the current value of type X is T . The first specifies
that any future value must be a subtype of the current value (mdef
will be described in §2.2.5) while the second has an explicit type
type (Z) and the third has no constraint.

The following are two higher-level forms for classes with their
equivalents:

virtual class +C ... ≈ (2.7)
current class C selftype mself.C ...;
future type C <: mdef.C

virtual class +C extends +D ... ≈
current class C extends mdef.D selftype mself.C ...;
future type C <: mdef.C ∩ mself.D

Recall that class C defines a type C, so “future type C<:C′”
requires that any future module has a class C whose type is a
subtype of the type of C′, i.e. C extends C′. Note that C’s other
aspects, like its constructor, are unconstrained and cannot be relied
on; this will be discussed further in §4.4.

The first equivalence of (2.7) specifies that a class with a plus
before its name is equivalent to one whose current aspect is the
part without the plus and whose future value must be a class that
extends the current class. The second specifies a class, C, that is
in “diamond inheritance” with its sibling class D: the current class
extends the current D and its future class must extend both the
current C and the future D. Both current classes have a selftype
specification which narrows the type of self. Special variables mself
and mdef are described in §2.2.5.

2.2.4 The “extends” operator
P3 defines an operator “<<” called “extends,” such that p<<m
if-and-only-if the fields of module p satisfy the future types of
open module m. Informally, we say that “p is an extension of m.”
Extends is required to be reflexive, so m<<m, and transitive.

One of the entities created by a definition of open module m is
a type with the special P3 syntax “{{?<<m}}” whose instances are
those modules in the extends relation with m. Thus p:{{?<<m}}
is equivalent to p<<m.
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For example, definition (2.1) creates the type {{?<<core}}
which is such that core<<core and mvc<<core. Module defi-
nition (2.2) creates the type {{?<<mvc}} such that mvc<<mvc
(but not core<<mvc). Note that type {{?<<mvc}} is a subtype of
{{?<<core}} by transitivity of <<.

2.2.5 Special variables
Another key mechanism of open modules are the special variables
“mself,” “msuper” and “mdef” which may appear in the bodies of
modules. They are similar to self (or this) and super for classes and
start with “m” to make nesting classes within modules easier.

mself: Variable “mself” may appear in implementations and
types and provides the main way for entities in a module’s body
to reference one another in a way that preserves mutual recursion.
In particular, unqualified references to entities within a module are
syntactic sugar for references qualified by mself. For example, in
(2.1) and (2.2), the references to Observer in the subject class are
really to mself.Observer and references to Subject in observer are
to mself.Subject. In fact, for the purposes of this paper, entities in
the body of module m may not reference “m” directly.

Variable mself ranges over future modules which, for modulem,
are those modules whose fields satisfy m’s future declarations, so
mself<<m. Because the implementations of module m are typed
with respect to mself<<m, m’s implementations can be inherited
into any future module. This will be made concrete in the encodings
of §3.2.1 and §3.3.5.

Within the module object m created by a open module defini-
tion, mself refers to m. For example, in the core object created by
(2.1), mself refers to core and notify has the declaration given by
(1.3). Similarly, within the mvc object created by (2.2), mself refers
to mvc and notify has the declaration given by (2.3), even though
it was inherited from core. This gives the desired extensible mutual
recursion for modules as discussed in §2.1.3.

msuper: For extending modules, there is also a special variable
“msuper” that refers to the implementations from the parent mod-
ule. It may appear in implementations and current types, but not
future types. Notice that, in (2.2), the Subject class extends msu-
per.Subject, not core.Subject, and the other classes are similar.

Variable msuper refers to mself-parameterized implementa-
tions, in contrast to direct references to the parent module, so
implementations inherit appropriately. The encodings of §3.3.1
and §3.3.5 will give concrete definitions of msuper and §3.4 will
provide further discussion.

mdef: There is a third special variable, “mdef,” that refers to the
current implementations of a module. It may appear in implemen-
tations and types. It too refers to mself-parameterized implementa-
tions, in contrast to direct references to the current module. In fact
a module’s mdef is the same as an extending module’s msuper.

A key use of mdef is in extends clauses to refer to the current
implementation of a sibling class, not some future, unknown im-
plementation as denoted by mself. For instance, in core, the Log-
ger class extends mdef.Observer, not mself.Observer, because it
extends the Observer class defined in core, not all possible future
implementations of core’s Observer. Similarly, while the mvc Log-
ger class extends msuper.Logger, it also extends mdef.Observer.

Variable mdef is also used in future types to refer to the current
implementation. For example, as described in §2.2.3, the “+X”
and “+C” forms of field descriptors have future types that are
subtypes of mdef.X or mdef.C, respectively.

2.3 The example in canonical form
Let us revisit the example and see how it would be expressed
in canonical form. First, consider the canonical form of the core
module, as defined by (2.1):

open module core { (2.8)
current {
type Event = { val msg: String};
class Subject (val id: String) selftype mself.Subject {
val observers = new Set[mself.Observer];
func addObserver (observer: mself.Observer): Void

= observers += observer;
func notifyObservers (ev: mself.Event) =
for (observer <- observers)

{ observer.notify(self, ev) }
}
partial class Observer selftype mself.Observer {
abstract func notify (mself.Subject, mself.Event);

}
class Logger (val log: Stream)

extends mdef.Observer selftype mself.Logger {
impl func notify

(subj: mself.Subject, ev: mself.Event) =
log.printf("event from %s: %s\n", subj.id, ev.msg)

}
}
future {
type Event <: mdef.Event;
type Subject <: mdef.Subject;
type Observer <: mdef.Observer;
type Logger <: mdef.Logger ∩ mself.Observer

}
}

Notice that free sibling references have been explicitly qualified
to mself (see §2.2.5) and that field descriptors have been split into
current/future form (see §2.2.3). Also note that the current Logger
class extends mdef.Observer (which is the current Observer class
as defined immediately above Logger), while the future Logger
type extends mself.Observer (the future Observer).

The mvc module, as defined by (2.2), is similar:

open module mvc extends core { (2.9)
current {
class Subject (id: String) extends msuper.Subject(id)

selftype mself.Subject
{ func modelSize(): Int = ...; ... }

partial class Observer extends msuper.Observer
selftype mself.Subject { ... }

class Logger (log: Stream)
extends msuper.Logger(log) with mdef.Observer
selftype mself.Logger {

override func notify
(subj: mself.Subject, ev: mself.Event) =

log.printf("event from %s: %s (size=%d)\n",
subj.id, ev.msg, subj.modelSize())

}
}
future {
type Subject <: mdef.Subject;
type Observer <: mdef.Observer;
type Logger <: mdef.Logger ∩ mself.Observer

}
}

Note that the current classes extend their parent classes via msuper.

3. Encoding and typing modules
This section discusses the encoding and typing of module defini-
tions. The encoding of a module is how it can be represented in
lower-level terms. The typing of a module is a logic rule that ex-
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presses when the module is well-formed and what can be inferred
after its definition.

Handling the general case of open modules is difficult, so let
us proceed in stages: first closed modules, then open top-level
modules and finally open modules in general.

3.1 Encoding and typing closed modules
To set the stage, let us first consider the encoding and typing of
closed modules. This will also introduce some of the key concepts
and notations of P3.

3.1.1 Encoding closed modules
A closed module can be encoded as a recursive object:

[closed] module m { J̄ } 7−→ (3.1)
let
x̄ = namesDefinedBy( J̄ )
J̄ ′ = J̄〈x̄7→m.x̄〉

in
val m = µ(m) { J̄ ′ }

The encoding arrow, 7−→, indicates that definitions matching the
pattern to its left can be encoded by instantiating the pattern to its
right. Pattern variable m ranges over identifiers, variables J̄ and
J̄ ′ range over lists of typed definitions and variable x̄ ranges over
identifier lists. The (blue) square brackets indicate that closed is op-
tional. An over-bar indicates a list and, in this case, J̄ , J̄ ′ and x̄ are
all parallel. The let clause binds a couple of pattern variables for
use in the in part. The meta-function namesDefinedBy extracts the
names defined by the list of definitions given as its argument. Op-
erator µ creates recursion and a curly-bracket-enclosed definition
list creates a record; a P3 object is a recursive record with closures.
Object m is in general a hybrid (as discussed in §1.1) as it may
have both data and type fields. Each J i of J̄ can be any form of
definition, including those starting with val, func, type or class.

In general, the phrase “e〈v̄ 7→d̄〉” denotes a substitution that
yields expression ewith all occurrences of free variables v̄ replaced
by corresponding expressions from d̄. In this case, “J i〈x̄ 7→m.x̄〉”
denotes the substitution such that each free variable, xj∈x̄, in
definition J i is replaced by the corresponding expression, m.xj .
Thus J̄ ′ is the list of definitions in the body of m where all free
references to sibling entities are explicitly qualified to m. Thus,
if encoding (3.1) were applied to (1.1), this substitution arranges
that the references to “Subject” in the Observer class would be
qualified to “core.Subject” and vice versa.

Explanation: Basically (3.1) says that the definition of the first
line can be encoded as a definition of a recursive object, m, which
contains the definitions from the body with sibling references qual-
ified to m.

3.1.2 Typing closed modules
The following is a simplified typing rule for closed modules:

MOD-CLOSED:

x̄
4
= namesDefinedBy( J̄ )

Γ; val m: { L̄ } ` J̄〈x̄ 7→m.x̄〉 :=⇒ L̄

Γ ` [closed] module m { J̄ } :=⇒ val m: τ [m] { L̄ }

Logic variable m ranges over identifiers, J̄ over lists of typed
definitions, L̄ over lists of declarations (parallel to J̄) and x̄ over
identifier lists (also parallel to J̄). The term “{L̄}” is a record
type. The phrase “Γ`J :=⇒L” is a P3 judgement that states that
definition J , when executed in a context satisfying environment
Γ, results in a binding satisfying declaration L. The operator τ
is P3’s mechanism for dependent types and is such that p:τ [x]T
implies p:T 〈x7→p〉 (for path p). This rule is simplified in that it

ignores kinds and the associated premises that ensure that L̄ are
well-formed declarations.

Note that logic variable L̄ does not appear in the module defi-
nition to the left of :=⇒ in the conclusion. For the purposes of this
paper, assume that it can be determined from annotations appearing
in J̄ or by inference (not involving the recursion variable m).

Explanation: The rule says that, if the two premises are true, then
after the execution of “modulem {J̄},” a new variablem has been
bound with a value satisfying the type τ [m]{L̄}. The first premise
simply defines x̄ to be the list of variables defined in the body of the
module. The second premise requires that each definition, J i, in the
body of the module yields a binding satisfying the corresponding
declaration Li.

Justification: This rule can be justified by replacing the module
definition to the left of :=⇒ in the conclusion with its encoding and
showing that the premises lead to the (new) conclusion. Given the
encoding for closed modules, (3.1), this comes down to showing
that the recursion, µ(m){J̄ ′}, has type τ [m]{L̄}, which follows
directly from the second premise.

3.2 Encoding and typing open top-level modules
The previous section described typing and encoding of closed mod-
ules. Now let us consider open top-level module definitions. These
are “top level” in the sense that they do not extend another mod-
ule. The encoding and typing of these are nice in that they can be
expressed in terms of the components of the module, without the
need for auxiliary type definitions.

3.2.1 Encoding open top-level module definitions
The following encoding applies to open module definitions:

open module m { J̄ } 7−→ (3.2)
let
x̄ = namesDefinedBy( J̄ )
J̄ 〈x̄7→mself.x̄〉 ≈ current J̄c; future L̄f

in
type oper {{?<<m}} = τ [mself] { L̄f }
func m_c (mself<<m) = µ(mdef) { J̄c }
val m = µ(m) m_c(m)

Pattern variable m ranges over identifiers, J̄ ranges over field de-
scriptor definition lists, x̄ ranges over identifier lists, J̄c ranges over
definition lists and L̄f ranges over declaration lists. As mentioned
above, the field descriptors, J̄ , may have only virtual fields. Mod-
ule name m may not appear free in J̄ (except through an outer
recursion, which will not be discussed further). The substitution is
as described in §3.1.1, except that mself is used in place of m. The
rewrite to current/future form is as given in §2.2.3 and instantiates
pattern variables J̄c and L̄f .

This encoding requires that mdef does not appear free in L̄f .
This restriction is contrary to the example and will be lifted in §3.3.
This encoding is also simplified in that it does not deal with kinds
nor does it have sufficient type annotations.

Explanation: Encoding (3.2) maps a top-level open module def-
inition to a series of three definitions. The first defines the type
{{?<<m}} (see §2.2.4) to be a record type, dependent over mself,
of the future declarations, L̄f .

The second entity is a “module constructor” function,m_c, that
abstracts over mself and yields a record formed from the current
definitions, J̄c. It is recursive in mdef to tie the sibling implemen-
tations together as specified. It is parameterized by mself<<m to
allow the implementations to be inherited.

This module constructor, m_c, will be needed for extension: a
module, f , extending this one (so f<<m) will be constructed by
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calling m_c(f) (perhaps indirectly) in order to create the entities
needed for inheritance. This will become more clear when we
consider non-top-level modules in §3.3.

The final entity created by encoding (3.2) is the actual module
object, m, which is the object formed by recursively connecting
mself to m in the body of the function. Note that m_c provides a
parameterized implementation and the last line “ties the knot.”

3.2.2 Typing open top-level module definitions
The following rule handles open top-level module definitions:

MOD-OPEN-TL:

x̄
4
= namesDefinedBy( J̄ )

J̄ 〈x̄ 7→mself.x̄〉 ≈ current J̄c; future L̄f

Γ; val mself: {L̄f}; val mdef: {L̄c} ` J̄c :=⇒ L̄c

Γ; val mself: {L̄f}; val mdef: {L̄c} ` L̄c /: L̄f

/* define Γc as given in (3.3) */
Γ ` open module m { J̄ } :=⇒ Γc

The pattern variables of (3.2) are logic variables of this rule, with
the addition of L̄c which ranges over declaration lists. The rewrite
to current/future form is as given in §2.2.3 and instantiates logic
variables J̄c and L̄f from J̄ . It must be that L̄c can be determined
from annotations appearing in J̄c or by inference (not involving the
recursion variables mself nor mdef). Lists J̄c, L̄c and L̄f are all
parallel, which is enabled by the condition that all fields are virtual
(and so have both implementation and future type). A judgement
“L1/:L2” indicates that declaration L1 implies L2; it is like a
subtype relation, except on declarations. The logic variable Γc is
defined as follows:

Γc
4
= (3.3)
type oper {{?<<m}} ↔ τ [mself] {L̄f}
func m_c (*mself<<m) : τ [mdef] {L̄c}
val m : τ [m] { L̄c〈mself,mdef7→m,m〉 }

The first declaration gives the value of the “extends” operator form
(see §2.2.4). The second gives the type of the module constructor
function m_c; it is a dependent type (as signaled by “*”) as mself
may appear in L̄c. The third gives the type of the module object.

Explanation: This rule says that to check that an open, top-level
module is well typed, follow these steps:

• Instantiate m to the name of the module and J̄ to its body.
Extract the names of entities in J̄ and qualify free references to
them to mself. Split the resulting body into current/future form,
instantiating J̄c and L̄f .

• Determine L̄c from the annotations on J̄c. It is a type error if
the annotations are insufficient.

• Show that the implementations are type correct: show that def-
inition J i

c (of J̄c) satisfies its corresponding declaration, Li
c.

Show this is an environment where mself is constrained by the
future declarations and mdef by the current declarations (which
may have mself free). The constraint mself:{L̄f} is equivalent
to mself<<m and ensures that implementations will continue
to work in all descendant modules of m.

• Show that each current declaration Li
c, of L̄c, implies the cor-

responding future declaration, Li
f . Show this in the same envi-

ronment discussed above.
• Conclude that the module definition yields entities satisfying

the declarations given by Γc as defined by (3.3).

Justification: As in §3.1.2, this rule is justified by replacing the
module definition in the conclusion with its encoding and show-
ing that the premises lead to the (new) conclusion. In this case,

the encoding is given by (3.2). The let-clause of the encoding cor-
responds to the first two premises of the rule and the in-clause
yields three definitions corresponding to Γc as defined by (3.3).
The first definition trivially implies its corresponding declara-
tion (except for kind checks which are not discussed here). The
third premise, ending with J̄c:=⇒L̄c, implies that the definition
of m_c in the encoding has the declaration given by Γc. The
fourth premise, ending with L̄c/:L̄f , ensures that m<<m, which
is needed for µ(m)m_c(m) to be well-typed. The type of this
last expression is τ [mself]τ [mdef]{L̄c}, which is equivalent to
τ [m]{L̄c〈mself,mdef7→m,m〉} as appearing in the final declara-
tion of Γc.

Terminology: “exact” and “general” types: Note that modulem
has two types: the one to the right of the colon in the last line
of (3.3) and the one defined on the first line. P3 refers to these
as the “exact” and “general” types of m, respectively. The exact
type is based on the current declarations and applies only to this
module, not its descendants. The general type is based on the future
declarations and applies to this module and its descendants. The
exact type is related to Bruce’s exact types (those with @) [1, 3],
while the general type is related to Bruce’s hash types [2].

3.2.3 Encoding and typing module core

Let us consider the encoding and typing of the core module defini-
tion using the rules of this section. Technically neither applies since
the future declarations of core reference mdef, but let us proceed
anyway and point out where things fail.

Encoding: First consider applying encoding (3.2) to the core
module definition (2.1). In this case, pattern variable m is instanti-
ated to “core,” J̄ to the body of core and x̄ to the names defined by
core as follows:

x̄core 4= Event,Subject,Observer,Logger (3.4)

The body of core is rewritten to qualify all free sibling names with
respect to mself and the equivalences of §2.2.3 are used to get it
into current/future form, resulting in (2.8). Logic variables J̄c and
L̄f are instantiated to the current and future aspects of core:

J̄core
c

4
= /* the part of (2.8) within current{} */ (3.5)

L̄core
f

4
= /* the part of (2.8) within future{} */ (3.6)

Then the body of the encoding is instantiated, yielding the follow-
ing definitions as being equivalent to core’s definition, (2.1):

type oper {{?<<core}} = τ [mself] { L̄core
f } (3.7)

func core_c (mself<<core) = µ(mdef) { J̄core
c }

val core = µ(core) core_c(core)

The first defines {{?<<core}} in terms of the future declarations of
core, the second defines the module constructor core_c in terms of
core’s current definitions and the last defines the module core. The
first definition is actually not well formed because L̄core

f contains
free references to mdef in contradiction to the restriction on (3.2);
this will be addressed in §3.3.7.

Typing: Now let us consider the typing of core, as defined by
(2.1), by applying the typing rule, MOD-OPEN-TL, for open top-
level modules as defined in §3.2.2. This instantiates logic variable
m to “core” and J̄ to the body of core. The first two premises of
the rule instantiate x̄, J̄c and L̄f as defined by (3.4), (3.5) and (3.6).
The list of current declarations, L̄c, is extracted from J̄c:

L̄core
c

4
= (3.8)

type Event ↔ { val msg: String };
class Subject (String) selftype mself.Subject {
val id: String;
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val observers: Set[mself.Observer];
func addObserver (mself.Observer): Void;
func notifyObservers (mself.Event): Void

}
partial class Observer selftype mself.Observer {
abstract func notify (mself.Subject, mself.Event): Void

}
class Logger (Stream) selftype mself.Logger

extends mdef.Observer { val log: Stream }

For convenience, let us also define Γcore
v to capture the declarations

of mself and mdef:

Γcore
v

4
= val mself: { L̄core

f }; (3.9)
val mdef: { L̄core

c }

Note that these are mutually dependent declarations as both mself
and mdef may appear in both L̄core

f and L̄core
c .

The third premise, which ends J̄c:=⇒L̄c, ensures that field
implementations (those in the current part of (2.8)) satisfy their
declarations (as in (3.8)). For Event, this is trivial. For the classes,
showing this is straightforward, except for a couple of places:

• The notifyObserver implementation of class Subject must sat-
isfy its declaration:

Γ; Γcore
v ; val self: mself.Subject `
func notifyObservers (ev: mself.Event) =
for (observer <- self.observers)

{ observer.notify(self, ev) }
:=⇒ func notifyObservers (mself.Event): Void

Sibling references within the method have been explicitly
qualified to self. Variable self has type mself.Subject instead
of the usual mdef.Subject because of the selftype specifica-
tion. However self can be widened to mdef.Subject because
mself:{L̄core

f } implies mself.Subject<:mdef.Subject. Thus
self.observers has type Set[mself.Observer] (by mdef:{L̄core

c }),
so loop variable observer has type mself.Observer, which is a
subtype of mdef.Observer, which has a notify method as de-
clared by (2.4). Thus the call of observer.notify(self,ev) is well
typed. Note that this typing depends on the selftype qualifica-
tion on Subject.

• Class Logger’s implementation of notify is similarly type cor-
rect because mself.Subject and mself.Event can be widened by
the future type to their mdef counterparts which have the appro-
priate fields by the current type.

The fourth premise, which ends L̄core
c /:L̄core

f , ensures that the
current declarations (see (3.8)) imply the future ones (those in the
future part of (2.8)). For Event, the premise is the following:

(type Event ↔ { val msg: String }) /: (3.10)
(type Event <: mdef.Event)

The first line is also the declaration of mdef.Event, so (3.10) comes
down to showing that “{val msg:String}” is a subtype of itself,
which is trivial. While Subject, Observer and Logger have class
declarations, they imply type declarations analogous to the first line
of (3.10) and, too, come down to showing that a type is a subtype
of itself. Actually, the condition doesn’t hold for Logger, which is
why it should really be marked fragile as discussed in §4.5.

The last premise defines Γcore
c :

Γcore
c

4
= (3.11)

type oper {{?<<core}} ↔ τ [mself] { L̄core
f }

func core_c (mself<<core) : τ [mdef]{ L̄core
c }

val core : τ [core] { L̄core
c 〈mself,mdef7→core,core〉 }

These declarations are yielded by the definitions of (3.7) and rep-
resent the net effect of module definition (2.1). In the type of core
given by the last line, the selftype qualifications appearing in the
class declarations drop out because each self-type is the same as
the corresponding class type.

Thus rule MOD-OPEN-TL of §3.2.2 establishes that the defini-
tion of open module core, as given by(2.1), results in bindings sat-
isfying Γcore

c as defined by (3.11).

3.3 Encoding and typing open modules in general
Now let us consider the encoding and typing of open modules in
general, not just top level. These are considerably more compli-
cated, because they need to deal with inherited fields and a more
complex internal structure, so let us take it in steps. The first sub-
section discusses the basic form of the encoding and the next three
discuss the internal structure of modules and module types. The
next two subsections define an encoding and typing rule for open
modules, and the following subsection applies them to the mvc ex-
ample. We end with a discussion about why open modules work for
the example, while straight inheritance does not.

3.3.1 Core of the encoding
A key feature of P3 open modules is that they parameterize their
content over future modules. In particular, within a module, refer-
ences to future (or “late-bound”) sibling fields are qualified to the
special variable mself and the module’s body is abstracted with re-
spect to it, so that it can be instantiated to each future module.

For module m extending module n, this abstraction is realized
by the “module constructor” function m_c, whose general form is
as follows:

func m_c (mself<<m) = µ(mdef) (3.12)
let val msuper = n_c(mself)
in msuper with { J̄c }

The parent module, n, must have been encoded similarly and, so,
has constructor function n_c. The operator with applied to two
record values unions the fields of the values with those of the right
value overriding those of the left. Similarly with applied to two
record types unions the declarations with those of the right type
overriding. J̄c denotes the current definitions of m with sibling
references qualified to mself as discussed above. For a top-level
module, (3.12) simplifies to m_c of (3.2).

Current (or “early-bound”) sibling references are qualified to
mdef and recursion over it is used to make this linkage. Within this
recursion, the parent module’s constructor, n_c, is called to cre-
ate n’s part of the module, which is bound to the special variable
msuper, which is used both to provide inheritance for any field not
overridden and to satisfy references to it within the implementa-
tions, J̄c.

Constructor function m_c is used in two ways. First, it is used
to construct module m:

val m = µ(m) m_c(m) (3.13)

This builds an object bound to m such that mself refers to m.
Second, the constructor function m_c is used to provide in-

heritance to any child module. In particular, it is used in any child
module’s constructor, just as n_c was used in it. Similarly, that
child’s constructor will be used in its child’s constructor and so on.

3.3.2 Internal module structure
The structure described above can lead to a series of nested calls to
module constructors up the chain of ancestors, resulting in a series
of “slices.” In particular, say there are modules m0 to mk where
m0 is top level and each mi>0 extends mi−1. Then the following
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definition is equivalent to (3.13) and k versions of (3.12), where the
nested let-expressions have been flattened into one:

val mk = µ(mk) let* (3.14)
val s0 = µ(s0) { J̄0

c 〈mself,mdef7→mk,s0〉 }
val s1 = µ(si) s0 with { J̄1

c 〈mvars7→mk,s1,s0〉 }
...
val sk = µ(sk) si−1 with { J̄k

c 〈mvars7→mk,sk,sk−1〉 }
in sk

To save space, mvars stands for “mself,mdef,msuper.” Each J̄ i
c

denotes the list of module mi’s current definitions.
The let*-clause defines a series of k “slice” objects, s0 to sk,

and the in-clause yields the last one, sk. Slice s0 is as if created
by m0

_c(mk) and slices s0 to si are as if created by mi
_c(mk).

Within each slice, si, mself refers to mk, mdef refers to itself, si,
and, except for i=0, msuper refers to the “parent” slice, si−1.

Note that slice objects s0 to sk−1 contain shadowed entities
from modules m0 to mk−1. These need to exist because they
may be referred to via msuper. For example, in module mvc of
(2.2), there will be a shadowed slice that contains the entities
defined by module core of (2.1) and each class of mvc will inherit
implementations from the corresponding class in the shadowed
slice. Also notice that these slice objects exist but are not directly
accessible via mk (which is sk).

3.3.3 Exact type of a module given its structure
Given that a module has an internal structure as shown by (3.14),
what is its type? Recall that it actually has two types, exact and
general, as discussed in §3.2.2; let us start with m’s exact type.

Note that the exact type of a module can depend on its entire se-
ries of slices, because those slices may contain type definitions (ei-
ther directly or via class definitions) and slices both inherit and can
be referred to by msuper. For example, the type of mvc.Subject
depends on the Subject class definitions from both core and mvc.

In general, the exact type of module mk of (3.14) can be given
by the following declaration:

val mk: τ [mk] (3.15)
∪[ s0: {L̄0

c〈mself,mdef7→mk,s0〉} ]
∪[ s1: {x̄0↔s0.x̄0} with {L̄1

c〈mvars7→mk,s1,s0〉} ]
...
∪[ sk: {x̄k−1↔sk−1.x̄k−1}

with {L̄k
c 〈mvars7→mk,sk,sk−1〉} ]

{{?↔sk}}
Again mvars=“mself,mdef,msuper.” The “∪” operator denotes
union and yields a non-discriminated existential type. Here the
unions capture the notion that the slices exist and their values
are relevant to their own type and the types of later slices. Type
{{?↔sk}} is the type of things identical to sk, which, in this case,
means that module mk is slice sk.

Declarations L̄i
c are those capturing the result of the level-i

current definitions, J̄ i
c . The part before with is a type expressing

that all fields inherit from the previous slice (which are overridden
by corresponding fields after with).

Thus (3.15) declares that object mk is identical to slice sk of
a collection of slices, s0 to sk, where the type of slice si follows
from its implementation as shown in (3.14).

3.3.4 General type of a module given its structure
The general type of a module is based on its future declarations.
Since non-refined fields inherit their future declarations, the general
type is a function of the future declarations of all the slices. Since
each future declaration may have mdef referring to its slice, the
general type must incorporate the exact types of the slices. Thus
the following is effectively the definition of the general type:

type oper {{?<<mk}} ↔ τ [mself] (3.16)
∪[ s0: {L̄0

c〈mdef7→s0〉} ]
∪[ s1: {x̄0↔s0.x̄0} with {L̄1

c〈mdef,msuper7→s1,s0〉} ]
...
∪[ sk: {x̄k−1↔sk−1.x̄k−1}

with {L̄k
c 〈mdef,msuper 7→sk,sk−1〉} ]

( {L̄0
f 〈mdef7→s0〉} with ... with {L̄k

f 〈mdef7→sk〉} )

Basically this says that for a module, f , to extend mk, (1) it
must have at least k slices, s0 to sk, satisfying the correspond-
ing part of (3.15) except with mself bound to f ; and (2) each
of f ’s members must satisfy L̄k

f 〈mself,mdef7→f ,sk〉 or the latest
L̄i

f 〈mself,mdef7→f ,si〉 if the future type is inherited.

3.3.5 Encoding open module definitions in general
The encoding of this section defines type constructors and types
that relate to the exact and general types defined by (3.15) and
(3.16). The encoding then uses these types to annotate the module
constructor definition (3.12) and the module definition (3.13). This
encoding also removes the restriction that future types may not
reference mdef. The encoding is as follows:

open module m extends n { J̄ } 7−→ (3.17)
let
x̄ = namesDefinedBy( J̄ )
J̄ 〈x̄7→mself.x̄〉 ≈ current J̄c; future L̄f

L̄c = declarationsOf (J̄c)
in

/* type definitions (3.18) and (3.19) */
func m_c (mself<<m): m_eTc[mself] = µ(mdef)
let val msuper: n_eTc[mself] = n_c(mself)
in msuper with { val _super = msuper; J̄c }

val m: m_eT = µ(m) m_c(m)

The pattern variables of (3.2) apply here, with the addition of n
which ranges over identifiers and must refer to a previously defined
module that has been encoded by this encoding or by the variant for
top-level modules given later. The declarationsOf meta-function
extracts a declaration from a typed definition.

The first part of the encoding defines four type constructors and
two types, to be given by definitions (3.18) and (3.19) below. The
remainder is the same as (3.12) and (3.13), except type annotations
are added and a field _super is defined.

This additional field, “_super,” is defined to refer to the slice
of its parent and so _super._super refers to its grandparent and so
on. This use of _super will avoid the need for some of the unions
appearing in (3.15) and (3.16).

The first part of the encoding contains types related to the exact
type of the module:

type m_eTccc [mself, mdef, msuper] = (3.18)
{ val x̄n ↔ msuper.x̄n } with { L̄c }

type m_eTcc [mself, mdef] =
{ val _super: n_eTcc[mself,mdef._super] }
with m_eTccc[mself,mdef,mdef._super]

type m_eTc [mself] = τ [mdef] m_eTcc[mself,mdef]
type m_eT = τ [mself] m_eTc[mself]

The names of these types are built from m (the module name), an
underscore, e (for “exact,” see §3.3.3), T (for “type”) and a number
of c’s indicating the number of parameters. A definition of the form
“type X[Ȳ ]=T ” creates a binding from variable X to the type
function λ[Ȳ ]T . The type functions defined above are from type
groups to hybrid types. When a hybrid is used in a context where
a type is expected (as in “m_eTc[mself]” in (3.17)), only its type-
group projection matters.
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The types of (3.17) are such that mi_eTccc[mk,si,si−1] is the
type of slice si in (3.15) and mi

_eTcc[mk,si] and mi
_eTc[mk]

are both types of slice si with the additional _super field (which
gives access to si−1 to s0). Type mk

_eT is the exact type of mod-
ule object mk. Note that, because sk↔mk and si−1↔si._super,
there is no need for the explicit unions of (3.15).

The following two types define the “extends” operator for m:

type m_gTcc[mself, mdef] = (3.19)
n_gTcc[mself,mdef._super] with { L̄f }

type oper {{?<<m}} = τ [mself]
∪[mdef: m_eTcc[mself,mdef]] m_gTcc[mself,mdef]

The g is for “general” (see §3.3.4). These two definitions, together
with m_eTcc from (3.18), represent (3.16) where sk is referred
to by mdef and si−1 by si._super, so the only explicit union
remaining is the bottom one.

Explanation: The essential part of encoding (3.17) is to map an
open module definition for m to a function m_c over mself and a
module objectm, just as discussed in §3.3.1. The constructor func-
tion m_c is crafted so that m’s implementations, J̄c, are executed
with mdef and msuper bound to appropriate, mself-parameterized
entities. Variable mdef provides access to sibling entities, while
msuper gives access to those entities defined by the parent module.
The module object, m, is basically the fixed point of m_c and, so,
“ties the knot” so that mself refers to m. The encoding also defines
a bunch of type constructors and types, which are used to give pre-
cise type annotations to m_c, m and other entities as described in
the next section.

Top-level variant: For an encoding of a top-level module (where
there is no “extends n” clause), everything is the same except there
is no m_eTccc and m_eTcc and m_gTcc are as follows:

type m_eTcc [mself, mdef] = { L̄c }
type m_gTcc [mself, mdef] = { L̄f }

Also the constructor has no let clause nor use of _super:

func m_c (mself<<m) : m_eTc [mself] = µ(mdef) { J̄c }

Note that in this case, (3.17) is equivalent to a typed version of the
top-level encoding, (3.2).

3.3.6 Typing open module definitions in general
A typing rule for open modules that extend others requires consid-
erably more formalism than does typing closed or top-level open
modules. It can be based on encoding (3.17):

MOD-OPEN:

x̄
4
= namesDefinedBy( J̄ )

J̄ 〈x̄ 7→mself.x̄〉 ≈ current J̄c; future L̄f

Γt
4
= /* declarations of (3.18) and (3.19) */

/* definitions of Γv from (3.20) and Γc from (3.21) */
Γ; Γt; Γv ` J̄c :=⇒ L̄c Γ; Γt; Γv ` L̄c /: L̄f

Γ; Γt; Γv ` mself: n_gTcc[mself,msuper]
Γ ` open module m extends n { J̄ } :=⇒ Γt; Γc

The pattern variables of (3.17) are logic variables of this rule, with
the addition of L̄c, Γt, Γv and Γc. L̄c ranges over declaration
lists and is determined from annotations appearing in J̄c or by
inference (not involving mself nor mdef). Logic variable Γt is
instantiated to the list of declarations formed by substituting “↔”
for “=” in (3.18) and (3.19). Lists J̄c, L̄c and L̄f are all parallel,
which is enabled by the condition that all fields are virtual or
refinements (and so have both implementation and future type). The
last premise is tentative and may change in future research.

Logic variable Γv is defined to have the declarations for mself,
mdef and msuper used in the main typing clauses:

Γv
4
= (3.20)

val mself: m_gTcc[mself,mdef];
val mdef: m_eTccc[mself,mdef,msuper];
val msuper: n_eTcc[mself,msuper]

Note that these declarations are mutually dependent.
Logic variable Γc is defined to have the declarations for the

module constructor function, m_c, and the module itself, m:

Γc
4
= (3.21)
func m_c (*mself<<m): m_eTc[mself];
val m: m_eT

Explanation: This rule says that to check that a open, non-top-
level module is well typed, follow these steps:

• Instantiate m to the name of the module, n to the name of
parent module and J̄ to its body. Also extract the names of
entities in J̄ , qualify sibling references to mself and split the
resulting body into current/future form, instantiating J̄c and L̄f .
Determine L̄c from the annotations on J̄c, as before.

• Show that the implementations are well typed: that J̄c satisfy
their corresponding declarations, L̄c. Show this is an environ-
ment containing Γt (which contains the declarations of (3.18)
and (3.19)) and Γv (defined by (3.20)). Γv gives the types of
mself, mdef and msuper using the types declared by Γt.

• Show that the current declarations imply the future ones:
L̄c/:L̄f . Show this in the same environment discussed above.

• Show mself:n_gTcc[mself,msuper] which comes down to
showing that any overridden future declaration must imply (be
a refinement of) the one it overrides. Show this in the environ-
ment discussed above.

• Conclude that the module definition yields entities satisfying
the declarations given by Γt (from (3.18) and (3.19)) and Γc as
defined by (3.3).

Note that the implementations, J̄c, are typed with mself free
but bounded by mself<<m. This means the implementations are
type correct for m and for any future module correctly extending
m. Also note that any entities referenced via mdef or msuper are
also parameterized by mself, so, for instance, a class C extending
msuper.C will inherit appropriately mself-parameterized fields.
Thus subclass relationships hold in that subclasses yield subtypes
and inheritance is sound.

Justification: To justify rule MOD-OPEN, replace the module
definition in the conclusion by its encoding as given by (3.17) and
show that the premises lead to the conclusion. The let-clause of the
encoding corresponds to the first two premises of the rule and to
the instantiation of L̄c. The conclusion of the rule asserts that the
module definition results in Γt;Γc. The declarations of Γt follow
directly from the first line of the encoding’s in-clause (except for
kind checks which are beyond the scope of this paper), and those
of Γc follow directly from the annotations on m_c and m.

What remains is to show that the last three premises of MOD-
OPEN imply that the implementations of m_c and m satisfy their
annotations. Note that Γv (as defined by (3.20)) gives the types of
mself, mdef and msuper in the body of m_c.

The last premise ensures that mself<<n (using msuper as the
witness for the union), which ensures that mself is an appropriate
argument to n_c. Thus n_c(mself) (in the let-clause ofm_c) has
type n_eTc[mself] since n was encoded by this same encoding.

The premise ending with J̄c:=⇒L̄c together with the defi-
nition of m_eTcc (and with a little juggling of _super), en-
sures that the whole let-expression in the body of m_c has type
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m_eTcc[mself,mdef], which means that the recursion over mdef
has type m_eTc[mself], which is the result type of m_c.

The premise ending L̄c/:L̄f maintains the following encoding
invariant:

∀[Γv] mdef : m_gTcc[mself, mdef]

Its proof uses msuper:n_gTcc[mself,msuper], which follows
from the invariant of the parent module, n, and from the defi-
nition of m_gTcc. This ensures m<<m, which is needed for
µ(m)m_c(m) to be well-typed.

3.3.7 Encoding and typing module mvc

Now let us consider encoding and typing the mvc module defini-
tion (2.2) using the encoding and type rules of this section. The
restriction that future declarations may not reference mdef is lifted.

Revised encoding of core: Because encoding (3.17) requires that
its parent module be encoded by it, let us first reconsider the encod-
ing of core as defined by (2.1). As in §3.2.3, pattern variable m is
instantiated to “core” and J̄ to the body of core. The instantiations
of x̄, J̄c, L̄f and L̄c are as defined by (3.4), (3.5), (3.6) and (3.8),
respectively. Thus the following is the revised encoding of core:

type core_eTcc [mself, mdef] = { Lcore
c } (3.22)

type core_eTc [mself] = τ [mdef] core_eTcc[mself,mdef]
type core_eT = τ [mself] core_eTc[mself]
type core_gTcc [mself, mdef] = { Lcore

f }
type oper {{?<<core}} = τ [mself]
∪[mdef: core_eTcc[mself,mdef]] core_gTcc[mself,mdef]

func core_c (*mself<<core): core_eTc[mself]
= µ(mdef) { Jcore

c }
val core: core_eT = µ(core) core_c(core)

Recall that J core
c is the part of (2.8) within current{}, Lcore

f is the
part of (2.8) within future{} and Lcore

c are the declarations extracted
from J core

c and given by (3.8).
Note that the definitions of core_c and core are the same as in

the previous encoding, (3.7), except with annotations. The defini-
tion of {{?<<core}} comes down to the following:

type oper {{?<<core}} = τ [mself] ∪[mdef: {Lcore
c }] {Lcore

f }

This would be equivalent to the definition given in (3.7) if Lcore
f

did not refer to mdef, but this definition properly handles such
references (at the cost of having a union).

Encoding of mvc: Now consider applying encoding (3.17) to the
mvc module definition (2.2). In this case, pattern variable m is
instantiated to “mvc,” n to “core,” J̄ to the body of mvc and x̄
to the names defined by mvc as follows:

x̄mvc 4= Event,Subject,Observer,Logger (3.23)

The body of mvc is rewritten to qualify x̄mvc to mself.x̄mvc and
rewritten into current/future form, resulting in (2.9). Thus logic
variables J̄mvc

c and L̄mvc
f are instantiated to the current and future

aspects of mvc, respectively:

J̄mvc
c

4
= /* the part of (2.9) within current{} */ (3.24)

L̄mvc
f

4
= /* the part of (2.9) within future{} */ (3.25)

Pattern variable L̄mvc
c is defined to be declarationsOf(J̄mvc

c ):

L̄mvc
c

4
= (3.26)

class Subject (String) extends msuper.Subject
selftype mself.Subject { func modelSize(): Int; ... }

partial class Observer extends msuper.Observer
selftype mself.Observer { ... }

class Logger (Stream) extends msuper.Logger
with mdef.Observer selftype mself.Logger {}

Then the body of encoding (3.17) is instantiated, yielding the fol-
lowing definitions as being equivalent to mvc’s definition, (2.2):

type mvc_eTccc [mself, mdef, msuper] = (3.27)
{ val x̄core ↔ msuper.x̄core } with { L̄mvc

c }
type mvc_eTcc [mself, mdef] =

{ val _super: core_eTcc[mself,mdef._super] }
with mvc_eTccc[mself,mdef,mdef._super]

type mvc_eTc [mself] = τ [mdef] mvc_eTcc[mself,mdef]
type mvc_eT = τ [mself] mvc_eTc[mself]
type mvc_gTcc [mself, mdef] =

core_gTcc[mself,mdef._super] with { L̄mvc
f }

type oper {{?<<mvc}} = τ [mself]
∪[mdef: mvc_eTcc[mself,mdef]] mvc_gTcc[mself,mdef]

func mvc_c (mself<<mvc): mvc_eTc[mself] = µ(mdef)
let val msuper: core_eTc[mself] = core_c(mself)
in msuper with { val _super = msuper; J̄mvc

c }
val mvc: mvc_eT = µ(mvc) mvc_c(mvc)

Typing: Finally, let us consider the typing of the example mod-
ules given the typing rule MOD-OPEN of §3.3.6. The typing of
module core goes through as described previously in §3.2.3, ex-
cept that declarations for all the entities defined by (3.22) would be
in the conclusion.

Applying rule MOD-OPEN to the definition of module mvc,
as defined by (2.2), instantiates logic variable m to “mvc,” n to
“core” and J̄ to the body of mvc. The first two premises of the rule
instantiate x̄, J̄c and L̄f as defined by (3.23), (3.24) and (3.25).
The list of current declarations, L̄c, is extracted from J̄c, yielding
(3.26). Logic variables Γt and Γc are instantiated as follows:

Γmvc
t

4
= /* declarations of the type fields of (3.27) */ (3.28)

Γmvc
c

4
= (3.29)

func mvc_c (*mself<<mvc): mvc_eTc[mself]
val mvc: mvc_eT

The instantiation of Γv comes down to the following:

Γmvc
v

4
= (3.30)

val mself: {
type Event <: msuper.Event;
type Subject <: mdef.Subject;
type Observer <: mdef.Observer;
type Logger <: mdef.Logger ∩ mself.Observer

}
val mdef: {
type Event ↔ msuper.Event;
L̄mvc

c /* see (3.26) */
}
val msuper: { Lcore

c 〈mdef7→msuper〉 } /* see (3.8) */

Because Event was not defined by mvc, its future declaration
is inherited and its current declaration states that it is equal to
its value from core. Note that class mdef.Logger extends both
msuper.Logger and mdef.Observer, both of which extend msu-
per.Observer.

The premise of MOD-OPEN ending J̄c:=⇒L̄c, comes down to
showing that the definitions in the current part of (2.9) satisfy
the corresponding declarations in (3.26). Since most of the new
implementation of mvc was elided, there is little to check. One
requirement is that the self-type of each subclass is a subtype of its
superclass’s self-type, which is trivial as they are identical. Another
requirement is that the overridden implementation of the Logger
class satisfies its declaration, which is established below.

Establishing the premise ending L̄c/:L̄f is similar to that of
§3.2.3 for core, except that there is no check for Event since it was
not overridden.
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The final premise comes down to ensuring, for each refinement,
that its declaration in Lmvc

f (see (3.26)) implies its declaration in
Lcore

f 〈mdef 7→msuper〉 (see (3.8)). For the Subject field, this comes
down to

Γ; Γt; Γv ` (type Subject <: mdef.Subject) /:
(type Subject <: msuper.Subject)

This follows from the declaration of mdef.Subject which specifies
that it extends msuper.Subject (see (3.30) and (3.26)). The other
fields are similar.

Thus rule MOD-OPEN of §3.3.6 establishes that the definition of
open module mvc, as given by(2.2), results in bindings satisfying
Γmvc
t and Γmvc

c as defined by (3.28) and (3.29).

Typing notify’s implementation: As discussed above, the premise
of MOD-OPEN ending J̄c:=⇒L̄c requires that the overridden im-
plementation of class Logger (in J̄mvc

c which is the current aspect
of (2.9)) must satisfy its declaration (in L̄mvc

c as defined by (3.26)).
This comes down to showing that the overridden implementation
of method notify in mvc’s Logger class satisfies its inherited dec-
laration.

Recall that notify was the problematic method in the original
example. Its implementation was unsound with closed modules, as
discussed in §1.3, but sound with open modules as discussed in
§2.1.2. Let us delve deeper into the typing of notify’s implementa-
tion and justify the discussion of §2.1.2.

The implementation of mvc.Logger’s notify method was first
given in (1.2) and repeated in canonical form in (2.9):

func notify (subj: mself.Subject, ev: mself.Event) (3.31)
= log.printf("event from %s: %s (size=%d)\n",

subj.id, ev.msg, subj.modelSize())

Its declaration is inherited from msuper.Observer (through dia-
mond inheritance from mdef.Logger, see (3.26), (3.30) and (3.8)):

func notify (subj: mself.Subject, (3.32)
ev: mself.Event): Void

To show that (3.31) yields (3.32), the following judgement must be
established:

Γ; Γmvc
t ; Γmvc

v ; (3.33)
val self: mself.Logger;
val subj: mself.Subject;
val ev: mself.Event
` self.log.printf("event from %s: %s (size=%d)\n",

subj.id, ev.msg, subj.modelSize()) : Void

Recall that “self” is the special variable for a class’s future object
and that self.log is the explicit form of sibling reference. Type
mself.Logger is a subtype of mdef.Logger which is a subtype of
msuper.Logger which has log:Stream; let us assume that Stream
has an appropriate printf method, so self.log.printf(fmt, args) has
a Void return if args have types matching fmt.

Variable subj has type mself.Subject, which is a subtype of
mdef.Subject, which has appropriate id and modelSize fields
(where id:String comes from msuper.Subject). Similarly, vari-
able ev has type mself.Event, which is a subtype of mdef.Event,
which equals msuper.Event, which has msg:String.

Thus it is established that the overridden notify method satisfies
its declaration, which means that the Logger class satisfies its
declaration, which means that the premise ending J̄c:=⇒L̄c is
established.

With respect to the discussion of §2.1.2, the declaration of
mself given by (2.5) follows from the declarations of Γmvc

v (given
by (3.30)) by extracting the type declarations from (3.26) and
(3.8) (and dropping the non-type entities), replacing the mdef and

msuper references with their values and simplifying the with type
expressions. Declaration (2.4) is the same as (3.32).

3.4 Observations
Let us end the main part of this paper with a few observations about
the example: why it failed before and why it works with open mod-
ules. The problem with the implementation of section 1 was that the
overridden implementation of notify in (1.2) was unsafe because
the mvc classes extended the corresponding core ones. As illus-
trated by (1.4), because it was possible to mix objects from different
modules, a core subject could call an mvc.Logger’s notify method,
which would call back on the subject’s modelSize method, which
did not exist. Type checking caught this unsoundness because the
inherited type of parameter subj was core.Subject, which did not
have a modelSize method. An attempt to refine the method failed
because the parameter is contravariant. Thus, to be safe, type check-
ing disallows the enhanced functionality of the mvc extensions.

The open module implementation of section 2 allows use of
the mvc enhancements by disallowing core and mvc objects to be
mixed. In particular, the expression subject.addObserver(logger)
in (1.4) fails to type because subject has type core.Subject, but
logger has type mvc.Logger, which is not a subtype of the required
type, core.Observer. The override of notify is well typed because
the inherited type of parameter subj is mvc.Subject, which has the
needed modelSize method. Let us look at this in more detail:

• There are two levels of inheritance in the mvc module: (1) the
core entities inherit into mvc as mvc._super; and (2) the en-
tities within each class of mvc._super inherit into the corre-
sponding class of mvc.

• Note that each mvc class, mvc.C, extends mvc._super.C, not
core.C. Classes core.C and mvc._super.C are each instantia-
tions of core_c(mself).C, with mself equal to core and mvc,
respectively. Thus these two classes have the same implemen-
tations, but different types. Both classes are well-typed because
core_c is typed with mself<<core and both core<<core and
mvc<<core.

• Since class mvc.C does not extend core.C, type mvc.C is not
necessarily a subtype of core.C. In fact, since the mvc classes
have mutual references in contravariant positions, they are not
subtypes of their core counterparts. This is why core and mvc
objects may not mix.

• The unsafe situation of §1.3 can not be recreated by replac-
ing “new core.Subject” in the second line of (1.4) with the
functionally equivalent “new mvc._super.Subject” because
the mvc._super classes have self-type specifications that are
not satisfied and, so, can not be instantiated. Recall that the
self-type specification on Subject is needed to allow the call
of observer.notify(self,ev) to type check.

• The situation is actually more general than as described above.
Within the body of mvc, special variable msuper refers to the
entities inherited from core, while mdef refers to the entities de-
fined by mvc. Variable mself ranges over future modules, which
must be such that mself<<mvc. Within object mvc, mself and
mdef refer to mvc and msuper becomes mvc._super.

• For each class C, msuper.C inherits into mdef.C. The imple-
mentations of msuper are well-typed because mself<<mvc im-
plies mself<<core.

• The overridden notify method is in class mdef.Logger, which
extends msuper.Observer (through diamond inheritance). Both
classes are mself-parameterized and, in particular, the inherited
type of the subj parameter is mself.Subject, which has the
needed modelSize method by mself<<mvc.
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The key is that, in going from core to mvc, the type of parameter
subj remains the same (mself.Subject), so no refinement is needed.
Instead the type of mself has narrowed, which means that the core
implementations remain well typed, while the mvc implementa-
tions get to use the new functionality.

4. Other issues and future work
For this final section, let us examine some of the shortcomings
of the mechanisms of this paper and discuss how they might be
handled.

4.1 Kinds
P3 uses kinds to track the structure of type-level values. Since
hybrids can act as type groups, they too have kinds. To be complete,
the encodings of this paper should have kind annotations on all
type-level definitions (such as those of (3.18) and (3.19)), as well
as on all path-starting hybrids including mself, mdef, msuper and
m. Also the type rules should ensure that all type definitions are
consistent with their kind annotations and that all type paths are
well-kinded.

4.2 Other field descriptor modes
The modules of this paper were only allowed fields with descriptor
modes virtual and refine. However, the current/future framework
described in §2.2.3 is designed to handle other modes. In particular,
an override would be equivalent to just a current aspect, with
an inherited future aspect. A final field would be equivalent to a
current aspect with a future aspect that says that the future value
equals the current one (or has the same type as the current one).

It is also possible to permit abstract fields and partial modules.
An abstract field would have just a future aspect, but no current
one. An impl field would have just a current aspect and inherit the
future aspect. A partial module would not yield a module object,
but it could be extended. Only partial modules would be allowed to
have unimplemented abstract fields.

A problem with handling the features above is that the current
and future aspects become no longer parallel and, so, notations like
L̄c/:L̄f no longer make sense. An appropriate notation needs to be
developed.

4.3 Module polymorphism
Given that objects from different modules cannot mix, it would be
nice to have some way of writing software that can operate over
different modules. This notion of abstracting over collections of en-
tities is often called “family polymorphism.” In P3, the “extends”
type, {{?<<m}}, coupled with facilities from the underlying lan-
guage, permits a form of family polymorphism.

For example, the following function takes a subject/observer
module, som, and a subject from that module and sets up a logger
specific to that subject:

func addLogger (*som<<core, subj: som.Subject) { (4.1)
val logStream = new PrintWriter("log-" + subj.id)
val logger = new som.Logger(logStream)
subj.addObserver(logger)

}

Because this code is not correct as will be discussed in §4.4,
let us assume declaration (4.3) and its implication (4.4). The
“*” before parameter som indicates that som can be the start
of a path-dependent type. In particular, the type of the second
parameter, som.Subject, depends on som and, so, has as in-
stances the Subject objects from the som module. Within the
body of the function, som.Logger denotes the Logger class that
is the sibling of som.Subject. Thus “addLogger(core,s)” takes a

core.Subject instance and hooks it up to a core.Logger instance,
while “addLogger(mvc,s)” takes an mvc.Subject and hooks it up
to an mvc.Logger.

Given final fields as discussed in §4.2, the Subject and Ob-
server classes of (2.1) could be modified to each have a field that
refers to the containing module:

final val outer = mself

In this case, (4.1) could be written with one parameter:

func addLogger (subj: {{?<<core}}.Subject) { (4.2)
val logStream = new PrintWriter("log-" + subj.id)
val logger = new subj.outer.Logger(logStream)
subj.addObserver(logger)

}

The P3 type “{{?<<core}}.Subject” is a wildcard type whose in-
stances are the union of instances of m.Subject for all m<<core.
Thus this function works for any subject from any module extend-
ing core (including core). It gets the appropriate Logger class via
subj.outer.Logger.

4.4 “Hazy” classes
In §2.2.3, the future declaration of a class was given as a type
declaration. For example, the future declaration of the Logger class
in core was:

future type Logger <: mdef.Logger ∩ mself.Observer

However, this specification is somewhat unintuitive. But more im-
portantly, it leaves out key functionality. For example, the code of
(4.1) needs the Logger class to be concrete and able to be instanti-
ated by calling “newm.Logger(s)” with a stream s, for any module
m<<core. For this purpose, P3 has an experimental kind of class
qualifier called “hazy,” so called because not much is known about
such classes as compared to regular classes. For the Logger exam-
ple, consider the following future declaration:

future hazy class Logger (Stream) (4.3)
extends mdef.Logger with mself.Observer

This would imply the subtype relation above, plus the following
declaration of the new operator:

future operator new Logger (Stream): mself.Logger (4.4)

This would allow (4.1) to be type correct.
Currently a hazy class can not be extended except by another

hazy class. Future research might allow this restriction to be lifted
in controlled ways.

4.5 Field descriptor “fragile”
There are cases where a module’s field’s implementation is unsafe
when inherited into some future extensions. For example, the Log-
ger classes of (2.1) and (2.2) would be unsafe if a future Observer
class had additional abstract methods which the current Logger
classes did not implement. This situation manifests itself in the typ-
ing rules when the current declaration of a field does not imply its
future declaration. In the case of Logger, this comes down to the
following:

Show: mdef.Logger <: mdef.Logger ∩ mself.Observer
given mdef.Logger ↔ (mdef.Observer with {})
and mself.Observer <: mdef.Observer

This fails because mdef.Observer<:mself.Observer can not be
established from the assumptions.

This is an area of future research but tentatively P3 labels such
fields with fragile (instead of virtual) and arranges to type them
with mself↔m (or maybe mself↔mdef), instead of mself<<m.
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Such fields must be overridden in an extension of the containing
module.

4.6 Module declarations
The usual style in P3 is that each form of definition has a corre-
sponding form of declaration. For instance, for each type, class,
val or func definition in J core

c (see the current part of (2.8)), there
is a corresponding type, class, val or func declaration in Lcore

c (see
(3.8)). The “yields” operator, :=⇒, provides the logical relation
between each pair. However, this paper does not present a form
of declaration for module, but instead has :=⇒ go to a series of
lower-level declarations. It is future research to define a module
declaration construct, give its encoding and provide typing rules
that yield module declarations. It is also future research to define
field descriptors (see §2.2.2) for modules and their mapping to cur-
rent/future form (which would enable nested modules).
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