沙漠研究 19-1, 17-20 (2009) Journal of Arid Land Studies "Desert Technology IX " Refereed Paper

Temperature Stabilization and Value Addition in Solar Drying of Arid Area Horticulture Products with Phase Change Materials and High Heat Capacity Materials

Shilpa CHOUDHARY^{1,2}, Sridhar KUMAR^{1,2}, Sangeeta SINHA^{2,3}*, Sanjay KUMAR^{2,3}

Abstract: Arid and desert areas are home to priceless medicinal plants and horticulture produce. Scattered production, absence of preservation technology and specialized transportation facility has hindered economic exploitation of these produce. Family size solar dryer in the required temperature range is best suited for these regions. Decentralized mode of solar drying of horticulture produce and easy transportation has immense potential to contribute in the development of the region. In this paper, a typical solar dryer is designed and experimentally evaluated using a combination of High Heat Capacity Material (HHCM) and Phase Change Material (PCM). The result show that high storage density, with small temperature swing of PCM in the HHCM-PCM combine, allows the produce to dry in a single day without loss of vitamins and/or changes in taste and odor.

Keywords: Arid horticulture, Latent heat storage system, Phase change material, Solar drying

1. Introduction

Aid areas are worst hit by global climate changes. Options of sustainable development have shrieked at a faster pace than expected. Ecosystems are under stress and mass migration of local people has become common. Arid areas are also home to priceless medicinal and horticulture produces, rich in vitamins, essential minerals and medicinal values; and high solar insolation. Seasonal horticulture produces are either consumed locally in the season itself or sent to the bigger market immediately after harvest causing instant and short-lived slumps in prices. Transportation of these products is also difficult and a large part gets rotten before they reach market. Cost-effective preservation technology at local and small scale levels for these produces is hardly visible at local level due to their scattered production.

Solar drying at very small scale (family size) has many advantages (Choudhary *et al.*, 2005, 2006). Decentralized drying in hygienic manner (without any application of insecticide) and value addition is possible. Dried produces can be preserved and transported without fear of degradation. Single day drying is most suitable for these produces. However, most of the horticulture produces need to be dried in particular temperature range to preserve vitamins, color and taste. Controlling temperature variation by increasing thermal mass increases drying time and therefore loss during off sunshine hours. Latent heat storage in a Phase Change Material (PCM) is very attractive option to overcome this lacuna because of its high storage density with small temperature swing.

Phase Change Materials (PCM) is latent heat storage material. When the source temperature rises, the chemical bonds within the PCM break up as the material changes phase from solid to liquid (as is the case for solid-liquid PCMs which are of particular interest here). The phase change is a heat-seeking (endothermic) process. Upon storing heat in the storage material, the material begins to melt when the phase change temperature is reached. The temperature then stays constant until the melting process is finished. The heat stored during the phase change process (melting process) of the material is called latent heat. The effect of latent heat storage has two main advantages; (a) It is possible to store large amounts of heat with only small temperature changes and therefore to have a high storage density, (b) Because the change of phase at a constant temperature takes some time to complete, it becomes possible to smooth temperature variations. They store 5 to 14 times more heat per unit volume than sensible storage materials such as water, masonry, or rock.

Phase change materials themselves cannot be used as heat transfer medium. Latent heat energy storage

¹ University Department of Physics, B.R.Ambedkar Bihar University, Muzaffarpur, Bihar India

² Centre for Renewable Energy & Environmental Research, CREER, Muzaffarpur, India

³ Chandragupt Institute of Management, Patna - 800001, Bihar, India; Ph. - +91-9431239820,

^{*}Corresponding Author: E-mail: creer@sancharnet.in

system must, therefore, posses at least three properties: (1) a suitable PCM with its melting point in the desired temperature range; (2) a suitable heat exchange surface; and (3) a suitable container compatible with the PCM. The theoretical process of heat exchange in PCM is explained in the next section.

2. Energy Balance Equations: Thermal Analysis

Heat gain and loss from Phase Change Material (PCM) is a non-

linear and complex process. Let X=0 be the heat retrieval plane with $X = -L_1$ and $X = L_2$ as liquid and solid boundaries of the PCM respectively. Total heat exchange q is given by,

$$q = \dot{m}C(T_a - T_i);$$
 \dot{m} in kg/sec

Heat gain by the phase change material gives rise to temperature gain at different boundaries, governed by the following equation,

$$(\alpha \tau)_{eff} I(t) = -K_1 \left. \frac{\partial T_1}{\partial x} \right|_{x=-L_1} + U_t (T_{x=-L_1} - T_s)$$

and,

$$T_I(X = 0) = T_S(X = 0) = T_0$$

Where, $(\alpha \tau)_{\text{eff}}$ is effective gain of solar radiation I(t). U_t is heat loss coefficient from phase change material to the environment and,

$$-K \left. \frac{\partial T_1}{\partial x} \right|_{x=0} = -K_s \left. \frac{\partial T_s}{\partial x} \right|_{x=0} + q$$
$$-K \left. \frac{\partial T_s}{\partial x} \right|_{x=L} = h_2 \left(T_{S|x=L_2} - T_s \right)$$

The average temperature \overline{T}_{p} of the PCM can be obtained as,

$$\overline{T}_{P} = \frac{1}{(L_{1} + L_{2})} \left[\int_{-L_{1}}^{0} T_{1}(x) \, dx + \int_{0}^{L_{2}} T_{S}(t) \, dx \right]$$

The effective thermal property of the PCM can be given by,

$$C_{P} = C_{S} + \left(\frac{H_{O}}{\overline{T}_{P}} - T_{a}\right) \left(\frac{L_{1}}{L_{2}}\right)$$

 C_P is effective specific heat of the PCM, C_S is specific heat material in solid phase. Now energy balance for the cabinet solar dryer with phase change and high heat capacity material inside the system is given by,

$$(\alpha \tau)_{eff} I(t) A_b = (M_r C_r + M_p C_p) \frac{dT_{CSD}}{dt} + U_s (T_{CSD} - T_a) A_b$$

and,

$$M_f C_f \frac{dT_{CSD}}{dt} = M_r C_r \frac{dT_r}{dt} + M_P C_P \frac{d\overline{T_P}}{dt}$$

 A_b is area of the base of the solar dryer. M_r , M_P and M_f are the thermal mass of the high heat capacity material, phase change material and thermal load kept for drying, respectively. Similarly, C_r , C_P and C_f are the specific heat capacity of the high heat capacity material (HHCM), phase change material (PCM) and thermal load kept for drying, respectively. T_{CSD} and T_r are the transient temperatures of Cabinet Solar Dryer (CSD) and HHCM kept inside the CSD.

3. Materials and Methods

Family size passive solar dryer was designed by optimizing various parameters for remote areas and scattered rural population of North Bihar. The dryer achieved 90 degree Celsius during peak summer and dried even high water and sugar content horticulture products in a single day (12-14 Hrs). One of the main objectives was to make it simple for local production. Field experience showed that the design lacked at

Fig. 1. Phase Change

Material (°C) (kJ/Kg) (Kg/m ³) Inorganic PCM $SO_3(\gamma)$ 62.1 331 Paraffins PCM $SO_3(\gamma)$ 62.1 331 Paraffins PCM $SO_3(\gamma)$ 62.1 331 Paraffins PCM 763 n- Docosane 44 249 763 n- Tricosane 51 255 766 n- Pentacosane 56 257 770 n- Hexacosane 59 236 773 n- Nonacosane 61 255 765-910 n- Triacotane 65 252 765-910 n- Triacotane 65 230 851	Material	M.P.	L. heat	Density
Inorganic PCM $H_4P_2O_6$ 55 213 $SO_3(\gamma)$ 62.1 331 Paraffins PCM n- Docosane 44 249 763 n- Tricosane 47.6 234 769 n- Tetracosane 51 255 766 n- Pentacosane 54 238 769 n- Hexacosane 56 257 770 n- Heptacosane 59 236 773 n- Octacosane 61 255 765-910 n- Triacotane 65 252 765-910 n- Triacotane 65 252 765-910 Non - Paraffins PCM 2-Heptadecanone 48 218 2-Heptadecanone 48 218 238 842 9-Heptadecanone 51 213 - Methyl Behanate 52 234 - - Hypophosphoric acid 55 213 -		(°C)	(kJ/Kg)	(Kg/m ³)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Inorganic PCM			
SO ₃ (γ) 62.1 331 Paraffins PCM n- Docosane 44 249 763 n- Tricosane 47.6 234 769 n- Tetracosane 51 255 766 n- Pentacosane 54 238 769 n- Hexacosane 56 257 770 n- Heptacosane 59 236 773 n- Octacosane 61 255 765-910 n- Nonacosane 64 240 765-910 n- Triacotane 65 252 765-910 Non – Paraffins PCM	$H_4P_2O_6$	55	213	
Paraffins PCM n- Docosane 44 249 763 n- Tricosane 47.6 234 769 n- Tetracosane 51 255 766 n- Pentacosane 54 238 769 n- Hexacosane 56 257 770 n- Heptacosane 59 236 773 n- Octacosane 61 255 765-910 n- Nonacosane 64 240 765-910 n- Triacotane 65 252 765-910 n- Triacotane 65 252 765-910 Non – Paraffins PCM Non – Paraffins PCM Non – Paraffins PCM Methyl Eicosanate 45 230 851 3-Heptadecanone 48 218 - 2-Heptadecanone 48 218 - Camphene 50 238 842 9-Heptadecanone 51 213 - Trymyristin 33-57 201-213 862 Arachic acid <t< td=""><td>$SO_3(\gamma)$</td><td>62.1</td><td>331</td><td></td></t<>	$SO_3(\gamma)$	62.1	331	
n- Docosane 44 249 763 n- Tricosane 47.6 234 769 n- Tetracosane 51 255 766 n- Pentacosane 54 238 769 n- Hexacosane 56 257 770 n- Heptacosane 59 236 773 n- Octacosane 61 255 765-910 n- Nonacosane 64 240 765-910 n- Triacotane 65 252 765-910 Non – Paraffins PCM - - Methyl Eicosanate 45 230 851 3-Heptadecanone 48 218 - 2-Heptadecanone 48 218 - Camphene 50 238 842 9-Heptadecanone 51 213 - Myphosphoric acid 55 213 - Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 - Fatty Acid PCM - - - Myristic acid 69	Paraffins PCM			
n- Tricosane 47.6 234 769 n- Tetracosane 51 255 766 n- Pentacosane 54 238 769 n- Hexacosane 56 257 770 n- Heptacosane 59 236 773 n- Octacosane 61 255 765-910 n- Nonacosane 64 240 765-910 n- Triacotane 65 252 765-910 Non – Paraffins PCM - - Methyl Eicosanate 45 230 851 3-Heptadecanone 48 218 - 2-Heptadecanone 48 218 - Camphene 50 238 842 9-Heptadecanone 51 213 - Methyl Behanate 52 234 - Hypophosphoric acid 55 213 - Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 - Fatty Acid PCM - - - Myristic acid 69 <td>n- Docosane</td> <td>44</td> <td>249</td> <td>763</td>	n- Docosane	44	249	763
n- Tetracosane 51 255 766 n- Pentacosane 54 238 769 n- Hexacosane 56 257 770 n- Heptacosane 59 236 773 n- Octacosane 61 255 765-910 n- Nonacosane 64 240 765-910 n- Triacotane 65 252 765-910 Non – Paraffins PCM Methyl Eicosanate 45 230 851 3-Heptadecanone 48 218 - 2-Heptadecanone 48 218 - Camphene 50 238 842 9-Heptadecanone 51 213 - Methyl Behanate 52 234 - Hypophosphoric acid 55 213 - Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 Faty Acid PCM Myristic acid 69 202.5 848 Salt Hydrates E E Fe(NO ₃) ₂ .9H ₂ O	n- Tricosane	47.6	234	769
n- Pentacosane 54 238 769 n- Hexacosane 56 257 770 n- Heptacosane 59 236 773 n- Octacosane 61 255 765-910 n- Nonacosane 64 240 765-910 n- Triacotane 65 252 765-910 Non – Paraffins PCM Methyl Eicosanate 45 230 851 3-Heptadecanone 48 218 - 2-Heptadecanone 48 218 - Camphene 50 238 842 9-Heptadecanone 51 213 - Methyl Behanate 52 234 - Hypophosphoric acid 55 213 - Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 - Fatty Acid PCM - - - Myristic acid 69 202.5 848 Salt Hydrates - - - Fe(NO ₃) ₂ .9H ₂ O	n- Tetracosane	51	255	766
n- Hexacosane 56 257 770 n- Heptacosane 59 236 773 n- Octacosane 61 255 765-910 n- Nonacosane 64 240 765-910 n- Triacotane 65 252 765-910 Non – Paraffins PCM $ -$ Methyl Eicosanate 45 230 851 3-Heptadecanone 48 218 $-$ 2-Heptadecanone 48 218 $-$ Camphene 50 238 842 9-Heptadecanone 51 213 $-$ Methyl Behanate 52 234 $-$ Hypophosphoric acid 55 213 $-$ Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 Fatty Acid PCM Myristic acid 49-51 205 861 Palmitic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates F F 1600 <	n-Pentacosane	54	238	769
n- Heptacosane 59 236 773 n- Octacosane 61 255 765-910 n- Nonacosane 64 240 765-910 n- Triacotane 65 252 765-910 Non – Paraffins PCM - - Methyl Eicosanate 45 230 851 3-Heptadecanone 48 218 - 2-Heptadecanone 48 218 - Camphene 50 238 842 9-Heptadecanone 51 213 - Methyl Behanate 52 234 - Hypophosphoric acid 55 213 - Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 - Fatty Acid PCM - - - Myristic acid 49-51 205 861 Palmitic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates - - - Fe(NO ₃) ₂ .9H ₂ O 47	n- Hexacosane	56	257	770
n- Octacosane 61 255 765-910 n- Nonacosane 64 240 765-910 n- Triacotane 65 252 765-910 Non – Paraffins PCM - - - Methyl Eicosanate 45 230 851 3-Heptadecanone 48 218 2-Heptadecanone 48 218 Camphene 50 238 842 9-Heptadecanone 51 213 Methyl Behanate 52 234 Hypophosphoric acid 55 213 Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 Fatty Acid PCM Myristic acid 49-51 205 861 Palmitic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates Fe(NO ₃) ₂ .9H ₂ O 47 155-190 1684 <t< td=""><td>n-Heptacosane</td><td>59</td><td>236</td><td>773</td></t<>	n-Heptacosane	59	236	773
n- Nonacosane 64 240 $765-910$ n- Triacotane 65 252 $765-910$ Non – Paraffins PCM M M Methyl Eicosanate 45 230 851 3-Heptadecanone 48 218 $$ 2-Heptadecanone 48 218 $$ Camphene 50 238 842 9-Heptadecanone 51 213 $$ Methyl Behanate 52 234 $$ Hypophosphoric acid 55 213 $$ Trymyristin $33-57$ $201-213$ 862 Arachic acid 76.5 227 F Fatty Acid PCM M M 851 Myristic acid $49-51$ 205 861 Palmitic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates F $F(NO_3)_2.9H_2O$ 47 $155-190$ 1684 $Na_2S_0_3.5H_2O$ 48 209 1600 <	n- Octacosane	61	255	765-910
n- Triacotane 65 252 765-910 Non – Paraffins PCM $ -$ Methyl Eicosanate 45 230 851 3-Heptadecanone 48 218 $-$ 2-Heptadecanone 48 218 $-$ Camphene 50 238 842 9-Heptadecanone 51 213 $-$ Methyl Behanate 52 234 $-$ Hypophosphoric acid 55 213 $-$ Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 $-$ Fatty Acid PCM $ -$ Myristic acid 49-51 205 861 Palmitic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates $ -$ Fe(NO ₃) ₂ .9H ₂ O 47 155-190 1684 Na ₂ S ₂ O ₃ .5H ₂ O 48 209	n- Nonacosane	64	240	765-910
Non – Paraffins PCM Methyl Eicosanate 45 230 851 3-Heptadecanone 48 218 2-Heptadecanone 48 218 2-Heptadecanone 48 218 Camphene 50 238 842 9-Heptadecanone 51 213 Methyl Behanate 52 234 Hypophosphoric acid 55 213 Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 Fatty Acid PCM Myristic acid 49-51 205 861 Palmitic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates Fe(NO ₃) ₂ .9H ₂ O 47 155-190 1684 Na ₂ S ₂ O ₃ .5H ₂ O 48 209 1600 MgSO ₄ .7H ₂ O	n- Triacotane	65	252	765-910
Methyl Eicosanate 45 230 851 3-Heptadecanone 48 218 2-Heptadecanone 48 218 Camphene 50 238 842 9-Heptadecanone 51 213 Methyl Behanate 52 234 Hypophosphoric acid 55 213 Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 Fatty Acid PCM Myristic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates Fe(NO ₃) ₂ .9H ₂ O 47 155-190 1684 Na ₂ S ₂ O ₃ .5H ₂ O 48 209 1600 MgSO ₄ .7H ₂ O 48.4 202 168 CH ₃ COONa. 3H ₂ O 58 270-290 145 LiC ₂ H ₃ O ₂ .2H ₂ O 58 251-377	Non – Paraffins PCN	1		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Methyl Eicosanate	45	230	851
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3-Heptadecanone	48	218	
Camphene 50 238 842 9-Heptadecanone 51 213 Methyl Behanate 52 234 Hypophosphoric acid 55 213 Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 Fatty Acid PCM Myristic acid 49-51 205 861 Palmitic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates	2-Heptadecanone	48	218	
9-Heptadecanone 51 213 Methyl Behanate 52 234 Hypophosphoric acid 55 213 Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 Fatty Acid PCM Myristic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates Fe(NO ₃) ₂ .9H ₂ O 47 155-190 1684 Na ₂ S ₂ O ₃ .5H ₂ O 48 209 1600 MgSO ₄ .7H ₂ O 48.4 202 168 CH ₃ COONa. 3H ₂ O 58 270-290 145 LiC ₂ H ₃ O ₂ .2H ₂ O 58 251-377	Camphene	50	238	842
Methyl Behanate 52 234 Hypophosphoric acid 55 213 Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 Fatty Acid PCM 205 861 Palmitic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates 50 1684 Na ₂ S ₂ O ₃ .5H ₂ O 47 155-190 1684 Na ₂ S ₂ O ₃ .5H ₂ O 48 209 1600 MgSO ₄ .7H ₂ O 48.4 202 168 CH ₃ COONa. 3H ₂ O 58 270-290 145 LiC ₂ H ₃ O ₂ .2H ₂ O 58 251-377	9-Heptadecanone	51	213	
Hypophosphoric acid 55 213 Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 Fatty Acid PCM Myristic acid 49-51 205 861 Palmitic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates Fe(NO ₃) ₂ .9H ₂ O 47 155-190 1684 Na ₂ S ₂ O ₃ .5H ₂ O 48 209 1600 MgSO ₄ .7H ₂ O 48.4 202 168 CH ₃ COONa. 3H ₂ O 58 270-290 145 LiC ₂ H ₃ O ₂ .2H ₂ O 58 251-377	Methyl Behanate	52	234	
Trymyristin 33-57 201-213 862 Arachic acid 76.5 227 Fatty Acid PCM 205 861 Palmitic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates 50 51 100 1684 Na2SQ3.5H2O 47 155-190 1684 MgSQ4.7H2O 48.4 202 168 CH3COONa. 3H2O 58 270-290 145 LiC2H3Q2.2H2O 58 251-377 -	Hypophosphoric acid	55	213	
Arachic acid 76.5 227 Fatty Acid PCM 205 861 Myristic acid 49-51 205 861 Palmitic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates 5 5 5 Fe(NO3)2.9H2O 47 155-190 1684 Na2S2O3.5H2O 48 209 1600 MgSO4.7H2O 48.4 202 168 CH3COONa.3H2O 58 270-290 145 LiC2H3O2.2H2O 58 251-377 -	Trymyristin	33-57	201-213	862
Fatty Acid PCM Myristic acid 49-51 205 861 Palmitic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates 5 5 5 Fe(NO3)2.9H2O 47 155-190 1684 Na2S2O3.5H2O 48 209 1600 MgSO4.7H2O 48.4 202 168 CH3COONa.3H2O 58 270-290 145 LiC2H3O2.2H2O 58 251-377 -	Arachic acid	76.5	227	
Myristic acid 49-51 205 861 Palmitic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates Fe(NO ₃) ₂ .9H ₂ O 47 155-190 1684 Na ₂ S ₂ O ₃ .5H ₂ O 48 209 1600 MgSO ₄ .7H ₂ O 48.4 202 168 CH ₃ COONa. 3H ₂ O 58 270-290 145 LiC ₂ H ₃ O ₂ .2H ₂ O 58 251-377 -	Fatty Acid PCM			
Palmitic acid 64 185.4 850 Stearic acid 69 202.5 848 Salt Hydrates Fe(NO ₃) ₂ .9H ₂ O 47 155-190 1684 Na ₂ S ₂ O ₃ .5H ₂ O 48 209 1600 MgSO ₄ .7H ₂ O 48.4 202 168 CH ₃ COONa. 3H ₂ O 58 270-290 145 LiC ₂ H ₃ O ₂ .2H ₂ O 58 251-377 -	Myristic acid	49-51	205	861
Stearic acid 69 202.5 848 Salt Hydrates Fe(NO3)2.9H2O 47 155-190 1684 Na2S2O3.5H2O 48 209 1600 MgSO4.7H2O 48.4 202 168 CH3COONa. 3H2O 58 270-290 145 LiC2H3O2.2H2O 58 251-377 -	Palmitic acid	64	185.4	850
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Stearic acid	69	202.5	848
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Salt Hydrates			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Fe(NO_3)_2$.9H ₂ O	47	155-190	1684
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Na_2S_2O_3.5H_2O$	48	209	1600
CH ₃ COONa. 3H ₂ O 58 270-290 145 LiC ₂ H ₃ O ₂ .2H ₂ O 58 251-377 -	MgSO ₄ .7H ₂ O	48.4	202	168
LiC ₂ H ₃ O ₂ .2H ₂ O 58 251-377	CH ₃ COONa. 3H ₂ O	58	270-290	145
	LiC ₂ H ₃ O ₂ .2H ₂ O	58	251-377	
MgCl ₂ 4H ₂ O 58 178 –	MgCl ₂ 4H ₂ O	58	178	
NaOH.H ₂ O 58 272	NaOH.H ₂ O	58	272	
NaAl(SO ₄) ₂ ,12H ₂ O 61 181 -	NaAl(SO ₄) 2.12H ₂ O	61	181	
FeSO ₄ .7H ₂ O 64 200 1893	FeSO ₄ .7H ₂ O	64	200	1893
LiCH ₃ COO.2H ₂ O 70 150-251 -	LiCH ₃ COO.2H ₂ O	70	150-251	
Na ₂ P ₂ O ₇ .10H ₂ O 70 186-230	Na ₂ P ₂ O ₇ .10H ₂ O	70	186-230	
Ba(OH) ₂ .8H ₂ O 78 265-280 1937	Ba(OH)2.8H2O	78	265-280	1937

 Table 1. List of PCMs for drying application.

Fig. 2. Mango pulp drying in prototype solar dryer.

Fig. 3. Variation of solar intensity, ambient temperature and temperature inside the dryer.

three fronts, (1) temperature range control mechanism needed manual intervention with small PV operated fans and/or opening the vents, which was unpopular; (2) Variation in temperature (>5 degree C) more than required range for drying made products brittle, sticky and even changed their colour, taste, odour and food value; and (3) Operation after off-sunshine hours increased loss of thermal energy due to local construction. Strict control on heat loss cannot be possible by local construction. It also highlighted reduction in the amount of HHCM for early temperature gain, which increased further temperature variation. The situation worsened in partly cloudy sky.

Dryer with four compartments is designed (**Fig. 2**), which uses PCMs in combination with HHCMs for temperature control. PCMs allow temperature inside the dryer to rise faster in the early sunshine hours as compared to HHCMs. **Table 1** show the list of PCMs, which are nontoxic and are in middle temperature range (45-75 $^{\circ}$ C). Latent heat of fusion, Melting Point, Density and thermal conductivity are most important parameters in selection of PCMs (Sharma *et al.*, 2004; Grigoriov and Mulikhov, 1995).

Experiments on drying of mangoes, Litchi, Aonla, Jamun and plants were conducted with Sodium Hydroxide (NaOH.H₂O), Sodium Thiosulphate Penta Hydrate (Na₂S₂O₃.5H₂O), and Acetamide, which are easily available and have low price. Numerical analysis and a series of experiments were undertaken to stabilize temperature inside the dryer for different temperature ranges.

4. Results and discussion

It allows longer period of slow and continuous drying, suitable for bulky fruits. **Fig. 3** shows the variation of solar intensity, ambient temperature and temperature inside the dryer without any HHCM and PCM thermal mass. A large variation in temperature is found with maximum temperature rising to 90°C. This is not good for horticulture drying. **Fig. 4** shows a typical result of HHCM (boulders) and PCM (NaOH.H₂O) combine. Pick of the temperature curve is

curtailed and thermal energy is preserved for longer period of time with increase in PCM. At the same time, initial rise in temperature improves with PCM use. **Fig. 5** shows the variation in weight with time for *aegle marmelos*. It clearly shows that PCM application increases initial rate of drying and therefore, reduces thermal energy loss in off sun-shine hours.

Sodium Hydroxide is best suited for temperature stabilization at 58° C and good for medium size fruits. Na₂S₂O₃.5H₂O is found good for slow drying process of fish and fruit pulp. Fast drying changes color of the produce. Acetamide (stabilization at 81° C) is good for quick drying of small fruits. The whole drying process requires no chemicals or any pesticides for preservation up to six months. The system is simple to operate and convenient for rural people particularly in developing countries.

5. Conclusion

Appropriate solar drying designs with options of a combination of high heat capacity material and PCMs can be one of the main planks of rural development, economic prosperity in remote areas as well as support food security. Results indicate that a combination of high heat capacity material combined with PCMs can stabilize temperature in the desired range. The CSD design can be used for drying of horticulture products in (a) desired range of temperature and (b) single day optimized drying.

Acknowledgement

Authors are grateful to Nalanda Open University, Bihar and Department of Sc. & Technology, Govt. of India for financial support to carry out the research work.

References

Choudhary S., Pallavi B., Sinha S., Sanjay Kumar (2005): Trans-boundary Floods Induced by Global Climate Change: Development of Solar Fish Drying Technology to Combat Food Deficit in Seasonally Inundated Northern India. J. of Ag. Meteorology, **60(5)**: 481-484.

Choudhary S., Pallavi B., Sanjay Kumar, Sinha S., Kojima T. Kato S. (2006): Food Supplement and Protection in Deserts and Arid Areas by Solar Drying of Native Horticulture Products. *J. of Arid Land Studies*, **15**(4): 297-300.

Grigoriov I.S., E.Z.Mulikhov (1995): Handbook of Physical Quantities, CRC Press, London.

Sharma S.D., Kitano H., Sagara K. (2004): Phase Change Materials for Low Temperature Solar Thermal Applications. *Res. Rep. Fac. Eng. Mie Univ.*, **29**: 31-64.