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Abstract

A theta graph is the union of three internally disjoint paths that have the same two distinct
end vertices. We show that every graph of order n > 9 and size at least {@j contains two
disjoint theta graphs. We also show that every 2-edge-connected graph of order n > 6 and size
at least 3n — 5 contains two disjoint cycles, such that any specified vertex with degree at least

three belongs to one of them. The lower bound on size in both are sharp in general.
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1 Introduction

All graphs considered are finite, simple and undirected and we use Bondy and Murty [2] for termi-
nology and notation not defined here. For a graph GG, we denote its vertex set, edge set, minimum
degree by V(G), E(G) and §(G), respectively. The order and size of a graph G, is defined by
|V (G)| and |E(G)|, respectively. A set of subgraphs is said to be vertex-disjoint or independent
if no two of them have any common vertex in (G, and we use disjoint to stand for vertex-disjoint
throughout this paper. If  is a vertex of G and H is either a subgraph of G or a subset of V(G),
we define Ny (u) to be the set of neighbors of u contained in H, and dy(u) = |Ny(u)|. If H'
is also a subgraph of G with V/(H) NV (H') = 0, we define N(H', H) = Uzev(uyNu(z). For
a subset U of V(G), G[U] denotes the subgraph of G induced by U. In particularly, if the con-
text is clear, we may also use [U] for G[U]. If S is a set of subgraphs of G, we write G O 5, it
means that .S is isomorphic to a subgraph of G, in particular, we use m.S to represent a set of m
vertex-disjoint copies of .S. For a subgraph or subset H of G, G — H = [V(G) — V(H)]. For two
disjoint subsets or subgraphs S and 7" of GG, we let E(S,T’) denote the set of edges of GG joining
a vertex in S and a vertex in 7. When S = {x1,xo,...,2;}, we may also use [z1, Za, ..., 2] tO
denote [{z1,z,...,2:}]. When one of S and T" contains a single vertex, say S = {z}, we write
E(z,T) for E(S,T). Let n be a positive integer, let K, denote the complete graph of order n and
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K, denote the graph obtained by removing exactly one edge from /4. Throughout this paper, we
consider that any cycle has a fixed orientation. Let C' be a cycle of G. For z,y € V(C'), we denote

by E’)[:p, y] a path from x to y on C'. The reverse sequence of C'[z,y] is denoted by g[y, z]. We
write Clz,y] — {z,y}, Clz,y] — {z}, Clz,y] — {y} by C(x,y), C(z,y] and C[z, y), respectively.

The research for the existence of subgraphs of a graph has been considered in many context.
Perhaps the most investigated structures are cycle, forest and chorded cycle, for example see [14].
Given a cycle C' of graph G, a chord of C is an edge of G — E(C') which joins two vertices of
C'. A chorded cycle is a cycle which contains at least one chord, and we use 7(C') to denote the
number of chords in C. Pdsa [12] posed the question for chorded cycles and he proved that any
graph G with §(G) > 3 contains a chorded cycle. In view of this, Bialostocki et al. [1] proposed
the following natural common generalization problem, and proved by Chiba et al. [4].

Theorem 1.1 [4] Let r, s be two nonnegative integers and let G be a graph with |V (G)| > 3r+4s.
Suppose for any pair of nonadjacent w and v in G, dg(u) + dg(v) > 4r+6s — 1. Then G contains
r + s disjoint cycles, such that s of them are chorded cycles.

A theta graph is a the union of three internally disjoint paths that have the same two distinct
end vertices. A chorded cycle is a simple example of a theta graph but, in general a theta graph
needs not be a chorded cycle. It is obvious that K is the theta graph with minimum order. In
particular, every theta graph contains an even cycle, and the idea of theta graphs has been studied
in a wide variety of situations (see [3, 6,9, 11]).

Our research is motivated by a classic extremal result, which obtained by Posa and mentioned
by Erdds in [7]. Note that it is also a basic fact that every graph G with order n > 3 and size at
least n contains a cycle.

Theorem 1.2 [7] Every graph of order n > 6 and size at least 3n — 5 contains two disjoint cycles.

Similarly, we are interested in the existence of disjoint theta graphs, since if a graph G contains
specified number of disjoint theta graphs, then GG also contains the same number of disjoint even
cycles. For a graph F' of order k and an integer n > k, the extremal number ex(n; F) of F
is the maximum number of edges in a graph of order n that does not contain ' as a subgraph.
Given a cycle of even length, say Cy; (here k is a positive integer), Erd6s [8] conjectured that
ex(n; Cor) = @(nH%) and this problem is considered to be one of the key problems in extremal
graph theory. Although the efforts of many leading researchers had been made, the general proof
of this conjecture is still open and we refer the reader [13] for further progression. However, for
two disjoint cycles of even length but without specified length, we obtain the following result.

Theorem 1.3 Every graph of order n > 8 and size at least f(n) contains two disjoint theta graphs,
if

_J 23 ifn=2_8
f(n) = { L?n;lSJ ifn>9

When n = 8§, to see that the bound 23 presented in Theorem 1.3 is sharp, we construct the graph
from K7 and adding exactly one pendant edge, which has order 8 and size 22, but contains at most
one theta graph. When n > 9, we construct the following examples: Let n; and n, be two integers

ny

with ny > 9 and ny > 9 such that n; is odd and n, is even, and let [; = =% and [, = %22, Let
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F=K3, H =l Kyand Hy = [,Ky U K1, and let G; = F + H, for each i € {1,2}. It is obvious
that the graph G; has order n; for each i € {1,2}, |[E(Gy)| =3+ 7l = T8 = |Tm=d3|
and |E(Gy)| = 64 Tly = T30 = | 72213 | _ 1. Furthermore, it follows from the construction of
G and G, that every theta graph in G; contains at least two vertices in F. Since |V (F)| = 3, G}

does not contain two disjoint theta graphs for each ¢ € {1, 2}.

Corollary 1.4 Every graph of order n > 8 and size at least f(n) contains two disjoint cycles of
even length, if

23 ifn=2_8
Our another motivation is Theorem 1.5 obtained by Bialostocki et al. [1], which determine
the extremal number for the existence of two disjoint chorded cycles: Let g(n) be the smallest

number of edges in a graph of n vertices that ensures the existence of two disjoint chorded cycles,
Bialostocki et al. [1] obtained the following two theorems.

Theorem 1.5 [1] Every graph of order n > 8 and size at least g(n) contains two disjoint chorded

cycles, if
23 ifn=28
25 ifn=9
gln) =< 28 ifn =10
32 ifn=11

5n—24 ifn> 12

Theorem 1.6 [1] Let G be a graph of order at least 8 and 6(G) > 6, then G contains two disjoint
chorded cycles.

As a chorded cycle is a simple example of a theta graph, we can deduce the lower bound
of edge condition in Theorem 1.5 to ensure the existence of disjoint theta graphs. Note that
Kawarabayashi [10] considered the minimum degree to ensure the existence of disjoint copies
of K in a general graph (G, which can be seen the specified version of disjoint chorded cycles.

Theorem 1.7 [10] Let k be a positive integer and G be a graph with order n > 4k. If §(G) > ”T“"
then G contains k disjoint copies of K .

Finally, we are also interested in the following problem: Given a graph G and let u € V (G) be
any vertex in V' (G), determine the extremal number for the existence of two disjoint cycles in G,
such that u belongs to one of these two cycles.

Theorem 1.8 Let G be a 2-edge-connected graph of order n > 6 and size at least 3n — 5. Then
for each uw € V(G) with degree at least three in G, G contains two disjoint cycles, such that u
belongs to one of them.

The size bound of Theorem 1.8 is tight, which can been seen by the graph K 1,3, this
graph does not contains two disjoint cycles and its size is 3n — 6. We show that 2-edge-connected
condition is also necessary by following example: Let n = 3l + 1 with [ > 7. Let G; = K|
for each i € {1,2,3}. Then G* is obtained by attach a vertex u to G1, Gy and G5, such that
|E(u, V(Gy))| = 1 for each i € {1,2,3}. It is obvious that | E(G*)| = 221040~ 97 — 2 but G*
does not contain two disjoint cycles such that the vertex of degree three belongs to one of these
two cycles.



2 Proof of Theorem 1.3

If n = 8,9, then Theorem 1.5 gives us the required conclusion. Hence, it is sufficient to prove
that every graph of order n > 10 and size at least L@j contains two disjoint theta graphs. We
employ induction on n.

Assume that for all integers k£ with 9 < k < n, every graph of order k and size at least |
contains two disjoint theta graphs. In the following proof, we always let G be any graph of order

n and size at least L@j . By way of contradiction, we suppose that

7k;13J

GG does not contain two disjoint theta graphs. (H)

Claim 2.1 4 < §(G) < 5.

Proof By Theorem 1.6 and (1), §(G)) < 5. Suppose that 6(G) < 3 and let u € V(G) such that
de(u) = 6(G). The graph G —w s of order n—1 and size | 522 | —dg(u) > M5 3 = Tn=1213,
by induction hypothesis, G — u contains two disjoint theta graphs, and so does GG. This contradicts

(1). Therefore, 6(G) > 4. O

Let vy be a vertex in G such that dg(vg) = 6(G). In what following, we always assume that
Neg(vg) = {v1,...,u} and H = [vq,vg,...,v], where | = dg(vp). By Claim 2.1, 4 <[ < 5. If
[ =4, thenleteg; = 1;if [ = 5, then let 5; = 2. Note that [ = 3 + ¢;.

Claim 2.2 Foreach1 <i <[, dg(v;) > 1 —¢.

Proof Suppose that there exists 1 < ¢ < [ such that dy(v;) <l —¢ — 1= (I — 1) — g. Without
loss of generality, we may assume that 7 = [/, and we may also assume that v;u; ¢ E(G) for each
1 < j < g (Otherwise, we can relabel the index of V(H)). Define the edge set X = {v,v; :
1 < j < g} and construct the graph G’ = (G — vg) + X, which is a graph with order n — 1 and
IB(G")| = |58 — 14 > 121 4o = 121078 'hecause of | = 3 + ;. By induction
hypothesis, G’ contains two disjoint theta graphs, say 77 and T5. Clearly, at least one of T} and 75,
say T}, does not contain vertex v;, and of course, £(77) N X = (). Then by (1), E(Ty) N X # ().

Suppose that |E(7T) N X| = 1. We may assume that £(75) N X = {vyv;}. Then T} =
(Ty —{viv}) +{v1v0, vivo } is a theta graph in G, and T; and T are disjoint in G, which contradicts
(1). Therefore, it remains the case E(T) N X = {v1v;, v9v;} as g, < 2. Let

T — (1> — vi) + {vov1, vova}, if dr,(v) =2
2 (T2 - {Ulvla U2Ul}) + {Uovl, Vo, vovg}, if dT2 (Ul) = 3.

Then it is obvious that 7} and 77 are two disjoint theta graphs in G, which contradicts (1). O
By Claim 2.2 and the definition of ¢;, we have

for each subset S of V(H) with |S| >3, [{v} US| 2 K, (2)

in particular,

If | = 4, then [{vo} UV (H)] = K. 3)

Now let G* = G—(V(H)U{vo}), and let F be the set of components of G*. Since [V (H)U{vo}| 2
K, by (2), it follows from (1) that every graph in F contains no theta graph.
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Claim 2.3 |V (F)| < 2 foreach F € F.

Proof Otherwise, suppose that /' € F and |V(F)| > 3. Since F' is a component of G* and F’
contains no theta graph, each block of F' is either a K or a cycle. Let C' denote the set of cut
vertices of F'.

We show that each block of F'is K,. Otherwise, suppose that there exists a block B of F',
such that B is a cycle. Assume for the moment that B is an end block of /. Let u; and uy be two
distinct vertices in V(B) — C. If F' = B, then let ug € V(F') — {uy, us}; otherwise, F' contains at
least two end blocks, let uz € V(F') such that uz ¢ C' and u3 belongs to some end block which is
different from B. As dp(u;) < 2 foreach i with1 < i <3, [E(u;,V(H))| > 0(G) —2=1-2
for each ¢+ with 1 < ¢ < 3. Since 4 < [ < 5 by Claim 2.1, there exist ¢z, 7 with 1 < ¢,7 < 3 and
i # j and a vertex v € V(H), such that w;v, u;uv € E(G). Since B is a cycle, it is easy to see
that [V (F') U {v}] contains a theta graph, and by applying (2), [{vo} U V(H) — {v}] contains a
theta graph, that is, G contains two disjoint theta graphs, which contradicts (1). Thus, B is not a
end block, and in particular, we see that every end block of F'is isomorphic to /5. Therefore, we
can take two distinct vertices u; and us, such that u;, us ¢ C and u; and uy belong to different
end blocks of F', and there exists a path from u; to uy passing through at least two vertices in
V(B)NC. Since dp(u;) = 1 foreach 1 < i < 2, it follows that |E(u;, V(H))| > | — 1 for each
i with 1 < i < 2. Hence, there exists a vertex v € V(H) such that u,v,usv € E(G). Since B
is a cycle, it is easy to see that [V (F') U {v}] contains a theta graph, as [{vo} UV (H) — {v}] also
contains a theta graph by (2), GG contains two disjoint theta graphs, which contradicts (1). Thus, F’
is a tree.

If there exists three distinct leaves in V' (F), say uq, us and ug, then likewise the proof as above,
we obtain that |E(u;, V(H))| > [ — 1 foreach 1 < i < 3, this implies that there exists a vertex
v € V(H), such that w;v € E(G) for each ¢ with 1 < ¢ < 3. Combining with (2), G contains two
disjoint theta graphs, which contradicts (1). Therefore, ' is exactly a path of order at least 3.

Let u; and uy be two endvertices in F' and let us € V(F') — {uy, us}. Suppose that there exists
v € V(H) such that u;v € E(G) for each i with 1 < ¢ < 3, then by the similar arguments as above,
G contains two disjoint theta graphs, a contradiction. Therefore, since |E(u;, V(H))| > | — 1 for
each i with 1 < i < 2 and |E(us, V(H))| > | — 2, we have | = 4. Without loss of generality, we
may assume that Ny (uy) = {v1,v2,v3}, Ny(ug) = {ve,vs,v4} and Ny (us) = {v1,v4}. Then by
(3), [vo, v1,v4,u3] 2 K, and [vg, v3, u1, us] 2 K, thatis, G O 2K, , which contradicts (1), this
completes the proof of Claim 2.3. O

Since n > 10 and 4 < |V(H)| < 5, it follows from Claim 2.3 that | F| > 2.

Claim 2.4 For each graph F' € F such that |V (F)| = 2, there exists S C V(H) with |S| = 2 and
V(F)US] 2 K.

Proof Let F' € F such that |V (F)| = 2, 1abel V(F') = {uy,us}. Since |E(u;, V(H))| > 1 —1 for
each i with 1 < i < 2, it follows from the pigeonhole principle that there exists a subset S C V' (H)

Claim 2.5 |E(u,{vo} UV (H))| = |E(u,V(H))| <1 —1forallu € V(G").



Proof Suppose that there exists u € V/(G*) such that |E(u, V/(H))| > . Assume for the moment
that there exists a graph F' € F such that u ¢ V(F') and |V (F')| = 2. By Claim 2.4, there exists
S C V(H) such that |[S| = 2 and [V(F)US] O K, . Since V(H) C Ng(u), it follows from (2)
and (3) that [{vo, u} U(V(H)—.S)] 2 K, , which contradicts (1). Hence, it follows from Claim 2.3
that |V (F)| = 1 for each graph F' € F such that u ¢ V(F'), in particular, by Claim 2.3, there
exists at least two components F; and F; of G*, such that u ¢ V(F;) for each i € {1,2}. Write
V(F;) = {u;} for each i with i € {1,2}. Then both u; and u, are adjacent to all vertices in V (H ).
Hence by (2) and (3), we see that [{vg, u, uy,us} UV (H)] D 2K, , which contradicts (1). O

By Claims 2.3 and 2.5, |V/(F)| = 2forall F € Fand ) |E(F)| = 2==L. If | = 4, then it
follows from Claim 2.5 that |E(u, V(H))| < 3 for all u € V(G*). Then we have

E@)] = |E({vo} UVH))| + [E(V(G"),{vo} UV (H))| + Y |E(F)|
< 104 3[V(G)+ Y |EWF)

s

2

= 10+3(n—5)+
m —15
2 Y
this is a obvious contradiction. Hence, [ = 5. Then for each u € V(G*), |E(u, V(H))| = 4 by

Claim 2.5 and the fact that dg(u) > [, by combining (2) and Claim 2.4, we obtain that G contains
two disjoint theta graphs, which contradicts (1). This completes the proof of Theorem 1.3.

3 Proof of Theorem 1.8

If n = 6, it is obvious that Theorem 1.8 is true. Hence, n > 7. We employ induction on n. Assume
that for all integers £ with 6 < k < n, every 2-edge-connected graph of order £ and size at least
3k — 5 contains two disjoint cycles, such that u belongs to one of them, where u is any specified
vertex with degree at least three.

Let GG be a 2-edge-connected graph and with size at least 3n — 5, let u € V(G) denote any
vertex with degree at least three in GG and fix it in this section. By way of contradiction, we may
assume that G does not contain two disjoint cycles, such that u belongs to one of them.

Claim 3.1 dg(z) > 3 for each x € V(G — u).

Proof By contradiction. Suppose that there exists x € V(G — u) such that dg(x) < 2. As G is
bridgeless and connected, thus, GG is 2-edge-connected and then dg(z) = 2. Let uy, uy € Ng(x).
Define G* = (G — z) + {uqus} if ujuy ¢ E(G); Otherwise, define G* = G — x.

We show that G* is a 2-edge-connected graph. Otherwise, ujuy € F(G) and xujusx forms
a block of G. If xujusx is not an end block of GG, then it is obvious that G contains two disjoint
cycles, such that u belongs to one of them, a contradiction. Thus, we may assume that xu;usx 1S
an end block of . Without loss of generality, we may assume that u; is a cut vertex of V (G).
Suppose that u # ug, then n > 8, otherwise, n = 7 and 16 < |E(G)| < 1+ dg(u1) + % <13, a
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contradiction. If u = wy, then remove the triangle zu;usx, the order of the graph G — {x, uy, us}
isn—3anditssize atleast3n —5— (n—1+1) = 2n—5 > n— 3, thus, G — {z, uy, us } contains a
cycle, that is, GG contains two desired disjoint cycles, a contradiction. Hence, u # u;. Now consider
G — x — us, which is a bridgeless graph of order n — 2 and size 3n — 8, by induction hypothesis,
(G — x —us contains two disjoint cycles, such that u belongs to one of them, a contradiction. Hence,
this forces u = us and dg(u) = 2, a contradiction. This shows that G* is a 2-edge-connected graph
indeed.

Now consider the above defined graph G*, which is a 2-edge-connected graph with order n — 1
and size is at least 3n — 7 = 3(n — 1) — 4, by induction hypothesis, G* contains two disjoint cycles,
say (1 and )y, such that u € V(Q1). It is obvious that the edge u;us belongs to one of (1 and
(22, since if not, then G — z contains two desired cycles and so does (7, a contradiction. Without
loss of generality, say ujuy € E(Q1), by replacing ujus in Q1 by ujxus, we obtain a new cycle

|, which disjoints ()2, a contradiction. This proves Claim 3.1. O

Let B denote the set of blocks of GG.

Claim 3.2 |B| = 1.

Proof Otherwise, suppose that || > 2 and let By, B, are two blocks in GG. Since G is a bridgeless
graph, each block of G is 2-connected. Without loss of generality, say u € V(B;) and V(B;) N
V(Bz) # (. Let C; be the cycle in B; such that u € V(C;). We may assume that B, is an end
block of (&, otherwise, let Bz denote another end block which is different from B; (Note that G
contains at least two end blocks). It is obvious that Bs contains a cycle, which disjoints from (1,
a contradiction. Therefore, for any z € V(B;) — V(B1) N V(By), dp,—v(By)nv(B,) (%) > 2 and
|V (B2) — V(By) N V(By)| > 3 by applying Claim 3.1, therefore, [V (Bs) — V(B;) N V(Bsy)]
contains a cycle, say Cs, which disjoints from C, then, C'; and C5 are two disjoint cycles in G, a
contradiction. This completes the proof of Claim 3.2. O

By Claim 3.2, (¢ is a 2-connected graph. Therefore, there exists a cycle in G, say (), such that
u € V(Q). Subject to this requirement, we choose () such that

7((Q)) is maximalized. 4)

Claim 3.3 7(Q) > 1.

Proof By way of contradiction, we may assume that 7(@)) = 0. If @) is a hamiltonian cycle in G, it
follows from Claim 3.1 that 7(Q)) > 1, a contradiction. Hence, we may assume that V(G — Q) # ()
and let S” denote any one component of G — V(Q). If |[V(S')| = 1, say V(S') = {w}, then
|E(w, V(Q))| > 3 by applying Claim 3.1, this implies that [V'(@Q)) U {w}] contains a chorded cycle
containing u, by applying our choice (4), 7(Q)) > 1, a contradiction. Hence, |V (S”)| > 2. Since G
does not contains two disjoint cycles, such that u belongs to one of them, S’ is a tree and contains
at least two leaves, say u; and us. Clearly, there exists a path in S’ connecting u; and uo, say P.
By Claim 3.1, |E(u1, V(Q))| > 2 and |E(ug, V(Q))| > 2. Then [V (Q U P)] contains a chorded
cycle containing u, by applying our choice (4), 7(Q)) > 1, a contradiction once again. O

Claim 3.4 There exists no triangle containing u, such that dg(u) = 3.
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Proof Otherwise, we assume that 7' = up;pou is a triangle in G, such that dg(u) = 3. Now,
remove this triangle from G, we consider the graph G — T', which is a graph with order n — 3 and
size at least 3n — 5 — (2n — 2) = n — 3, this implies that G — T contains a cycle, and so GG contains
two desired cycles, a contradiction. O

Claim 3.5 Q) is not a hamiltonian cycle in G.

Proof Otherwise, suppose that () is a hamiltonian cycle in GG and label () = uv,vs ... v,_ju such
ﬁ

that u = vy and () is consistent with the increasing order of the indices of v; (0 < ¢ < n — 1).
As dg(u) > 3, there exists 2 < t < n — 2, such that uv; € E(G). Then by our assumption, both

[6[2}1, v;)] and [6(%, v,—1]] are acyclic. Since |E(G)| > 3n — 5, there exists y € V(Q), such that
do(y) > 5. Otherwise, the degree sum formula gives us

6n —10 < 2/E(G)| = ) de(x) < 4n,
zeV(G)

which contradicts n > 7. Therefore, it is natural to consider the following three cases.
Casel y =u = v

Suppose that there exist two integers 2 < a < t < b < n—1, such that uv,, uv, € E(G). Then both
of [5[1}1, vp)] and [Zj(va, v,—1]] are acyclic. By the same reason, \E(Zj[vl, Val, 5(1};,, vn—1))] <1
and |E(Q[v1,va), O [vp, vn_1])| < 1. This implies that [E(Q [v1,va], @ [vp, va_i])| < 3. If
the equality holds, then by Claim 3.1 and our assumption, n = 6, a contradiction. Hence,
|E(6[U1, Val, 5[%, Un-1])| < 2. Consequently,

— —
3n—5<[E(G)] = n+dg(u)+ |E(Q[v1,vd], Q[vy, vn-1])|
< n4+n—1+2
= 2n+41,

(&)

which contradicts the fact that n > 7. Therefore, by symmetry, we may assume that there exist
two integers 2 < a < b < t, such that uv,, uv, € E(G). Suppose that viv; € E(G), then by our
assumption and Claim 3.1, v,v,,_1 € F(G), this forces n = 6, otherwise, by Claim 3.1, G contains
two desired cycles in each case, a contradiction. But this contradicts the fact that n > 7. Hence,
vivy ¢ E(G). By Claim 3.1 again, we may assume that there exists ¢t < ¢ < n — 1, such that

v1ve € E(G). If ¢ # n — 1, then by our assumption and Claim 3.1, E(v,,_1, Zj[vl, v,]) # 0, say
Up_1Vm € E(G), where 1 < m < a. However, vlcj[vl,vm]vn_la[vn_l,vc]vl and uvba[vb,vt}u
are two disjoint cycles, a contradiction. Hence, ¢ = n — 1. Now, by the above arguments and
Claim 3.1, n = 6, otherwise, GG contains two desired cycles, a contradiction. But this contradicts

the fact that n > 7. This completes the proof of Case 1.

Case2 y = ;.



In this case, our proof is similar with the proof of Case 1. Suppose that there exist two integers
1 <a<t<b<n-—1,suchthat vv,, 00, € E(G). Thena # ¢t — 1 and b # ¢t + 1. Now
replace the segments [C—Q)[vl,vb)] and [Zj(va,vn_l]] in Case 1 by [Zj(va,vt_l]] and [6[vt+1,vb)],
respectively, by the same arguments, we can obtain a contradiction. Therefore, by symmetry, we
may assume that there exist two integers 1 < a < b < t, such that v,v,, v,vy € E(G). Suppose
that v, v, € E(G), then uvy_; € E(G) by our assumption and Claim 3.1, but this forces n = 6, a
contradiction. Hence, v:1v, ¢ F(G) and we may assume that there exists b < ¢ < t — 1, such that
Verrve € E(G). If ¢ # t — 1, then by Claim 3.1, E(vi_1, Q [vi11,u)) # 0, say v_1vm € E(G),
where t +1 < m < n — 1. However, vcc_j[vc, vt_l]vma[vm, V1. and vtua[u, Vg Uy are two
disjoint cycles, a contradiction. Hence, ¢ = t—1. Now, by Claim 3.1, n = 6, otherwise, G contains
two desired cycles, a contradiction. But this contradicts the fact that n > 7. This completes the
proof of Case 2.

Case 3 y # uand y # v,

—

By Case 2, we have dg(v;) < 4. By symmetry, it suffices to consider the case y € V(Q [v1, v¢)).
Firstly, we prove | E(y, 6(@, u))| > 2. Otherwise, it forces that yu, yv; € E(G), |E(y, 6(%, w))| >
1,y # vy and y # vy, as dg(y) > 5. As dg(v1) > 3 by Claim 3.1, this forces v;v, € E(G), other-
wise, G contains two desired cycles. However, we see that dg(v;) > 5, a contradiction. Secondly,
we prove that ]E(y,a(vt,u))] = 2. Otherwise, there exist t < a < b < ¢ < n — 1 such that
YUa, YUy, yv. € E(G), see Figure 1 (a). If y # vy, then by our assumption, (v, a(va,u)) =
and v1v; ¢ E(G). This implies that there exists v,, € V(Cj(vt, va)), such that v1v,, € E(G). How-
ever, uvta[vt, U] Q [v1, u] and yvba[vb, ve]y are two disjoint cycles, a contradiction. Hence,
y = v; and y = v;_1 by symmetry. This implies that uyv,u forms a triangle. By Claim 3.4,
do(u) > 4. See Figure 1 (b), we can easily find two desired cycles, a contradiction.

(a) (b) (©

Figure 1: The structure in Case 3

Now, label v,, v, € V(Zj(vt,u)) such that yv,,yv, € E(G), wheret < a < b < n — 1.
Since dg(y) > b, then either yu € E(G) or yv, € E(G). Suppose that yu € E(G), this implies
that y # vy, see Figure 1 (c). By our assumption and Claim 3.1, v;v, € F(G) there at most six
chords in @, this gives us 3n — 5 < |E(G)| < n + 6, a contradiction. Hence, yu ¢ E(G) and so
yv, € E(G). Then again, y # v;_1, vpv;—1 € E(G) and there at most five chords in @), this gives
us 3n — 5 < |E(G)| < n + 5, a contradiction. This proves Case 3 and Claim 3.5. O



By Claim 3.5, G — V(Q) # (. Let S; denote arbitrary one component of G — V(Q). For

H
convenience, label () = uv,v, ... v u such that u = vy and () is consistent with the increasing
order of the indices of v; (0 < ¢ < ¢). Note that ¢ > 3 by Claim 3.3. By our assumption, S is a
tree.

Claim 3.6 For each w € V(S) with dg, (w) < 1, we have dg(w) > 4.

Proof Otherwise, suppose that no such vertex exists in V' (.S7). Let v’ € V' (S;) such that dg, (u") <
1, then d¢(u') = 3 by Claim 3.1. Let v;, v; denote the neighbors of v’ on (), where [ < j.

Suppose that v # v; and u # vj, then consider the graph G' = G — u/, we prove that G’ is
2-edge-connected. This is obvious true if V(S1) = {«’}. Thus, we consider the case |V (S1)| > 2.
If S; contains at least three leaves, we have nothing to prove, hence, S contains exactly two leaves,
which implies that S is exactly a path. Now, by Claim 3.1, G’ is 2-edge-connected. This implies
that G’ is a 2-edge-connected graph with order n — 1 and size at least 3(n — 1) — 5, by induction
hypothesis, G’ contains two disjoint cycles, such that u belongs to one of them, and so does G,
a contradiction. Hence, without loss of generality, we may assume that © = v;. Then consider
the graph ' = G — v + yw; if yv; ¢ E(G); otherwise, consider G’ = G — v/, which is a
2-edge-connected graph of order n — 1 and size at least 3(n — 1) — 5 and d¢r(u) > 3, by induction
hypothesis, G’ contains two disjoint cycles, such that u belongs to one of them, then we can extend
these two cycles to G by replacing v;v; by v;u'v;, a contradiction. O

Throughout the rest of this paper, choose any u; € V'(.S;) such that dg, (u;) < 1. By Claim 3.6,
|E(us, V(Q))] = 3.

Claim 3.7 wu is not incident with any chord of Q).

Proof Otherwise, we may assume that there exists 2 < t < ¢ — 1, such that uv; € E(G). Note that

— —

|E(V(S1), Q[v1,v1])] < 1and |[E(V(S1), Q[vit1,7,])] < 1. Since |E(uy, V(Q))| > 3, then
only three cases occur by symmetry, see Figure 2, where 1 <a <t < b <gq.

() (b) (©

Figure 2: The structure in Claim 3.7
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Now, suppose for the moment that |E(uy, V(Q))| > 4. That is, vyu € E(G) in Figure 2 (a).
Note that C_j(va, v;) (possibly Zj(va, v;) = () does not make contribution to the chords of @, thus,
replace @) by ulvta[vt, va)u1, we arrive at a contradiction to (4). Hence, |E(u1, V(Q))| = 3 and
|V (S1)| > 2 by Claim 3.6. Now, choose another leave vertex in Sy, say us, such that u; # ugy
and let P be path connecting u; and us in .S;. However, by our assumption and the symmetry role
between u; and us, we have dg(us) < 3 in Figure 2 (a) and (c), which contradicts Claim 3.6. Now,

it remains the case as in Figure 2 (b). However, Note that ZQ)(UQ, v;) (possibly Zj(va, vy) = ) does
not make contribution to the chords of @), thus, replace @) by usv; Q [vy, v, Ju; Pus, we arrive at a
contradiction to (4). O

Since 7(Q)) > 1 by Claim 3.3, we may assume that there exist 1 < a < b < ¢, such that v,, v, #

uwand v,v, € E(G). Without loss of generality, we may assume that vy = u € V(Cj(vb, v,)). Since
de(u) > 3, without loss of generality, by Claim 3.7, we may assume that E(u, V' (S;)) # 0. Note

that |E(V(Sy), Zj(va, vp))| < 1 by our assumption. In the following proof, when |S;| > 2, we
always assume that u, is another leave vertex in .Sy, such that u; # us. Let z € N(u, V(57)).

Claim 3.8 F(uy, 5(vb,u)) = 0 and E(uy, Cj(u, v,)) = 0.

H
Proof Otherwise, suppose that there exists v, € @ (vp, u), such that uyv,. € E(G). If z = uy, then
— —
u1 Q [ve, uug and @ v, vp|v, are two desired cycles, a contradiction. Hence, z # u;. Since S is a

— -
tree, there exists a path P in Sy connecting z and u,, then zPu; Q [v., u]z and Q [v,, vp|v, are two
desired cycles, a contradiction. O

Claim 3.9 2 # u;.

Proof By way of contradiction. Suppose that z = wy. If V(S;) = {u;}, then by Claim 3.8 and
ﬁ
our assumption, the situation between u; and () is as Figure 3 (a). Note that Q) (u,v,) (possibly

@)(u, v,) = ) does not make contribution to the chords of @, thus, replace @ by ulzj[va7 uluy,
we arrive at a contradiction to (4). Hence, |V (S7)| > 2, then by Claim 3.8 and our assumption,

the neighbors of uy in V(Q) is as in Figure 3 (b), Note that @)(u, v,) (possibly Zj(u, ve) = 0)
does not make contribution to the chords of (), thus, replace () by UQZQ)[UG, u]uy Pug, we arrive at
a contradiction to (4). O

By Claim 3.9 and Claim 3.6, the situation between u; and () is as in Figure 3 (c), where
1 <a < c<b<q. Note that Zj(u,va) (E)Bssibly Zj(u,va) = () does not make contribution

to the chords of @, thus, replace Q) by u; Pz Q [u, v,]u;, we arrive at a contradiction to (4). This
completes the whole proof of Theorem 1.8.

4 Conclusion

In this paper, we determine the extremal number for a graph to contain two disjoint theta graphs,
and we also determine the extremal number for a bridgeless graph to contain two disjoint cycles,
such that any specified vertex belongs to one of them. As a natural extension, for any positive
integer k > 2, we consider the extremal number of £ disjoint theta graphs and we conjecture

11



(a) (b) (©

Figure 3: The structure between u; and ()

Conjecture 4.1 Let k > 2 be an integer. Every graph of order n and size at least f(n, k) + 1
contains k disjoint theta graphs, when

fk) = max{(4k2— 1) k4 1), {2(/@ —1)(2k—1) + (24k —1)(n—2k+ 1>J }

If Conjecture 4.1 is true, then the bound on size is best possible, which can be seen as follows:
(7, is obtained by K1 and an isolated vertex set of order n — 4k + 1, such that there exists a
matching of size 4k — 1 between K ;1 and the isolated vertex set. The order of (G is n and size

(4k2_ 1) + (n — 4k + 1), but G; does not contain & disjoint theta graphs. Also, let n be an integer

such that n — (2k — 1) is even. Let [; = %, F =Ko 1, H =11Kyand Gy = F 4+ H;. Itis
obvious that the graph G, has order n, |E(G4)| = (k —1)(2k — 1) + (4k — 1)l, = (k — 1)(2k —

(4k—1)(n—2k+1) __ | 2(k—1)(2k—1)+(4k—1)(n—2k+1)
1)+ GRgken | C

. Clearly, GG, does not contain % disjoint theta

graphs.
Note that Theorem 1.3 implies that Conjecture 4.1 is true for k = 2.
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