

 1

Recursive Dynamics Algorithms for Serial, Parallel, and Closed-chain
Multibody Systems

by
Subir Kumar Saha

Department of Mechanical Engineering, IIT Delhi
Hauz Khas, New Delhi 110 016

saha@mech.iitd.ac.in

Abstract

In this paper, it is shown how to obtain recursive dynamics algorithms for multibody systems with serial,
parallel, and closed-loop chains using the concept of Decoupled Natural Orthogonal Complement
(DeNOC) matrices. The DeNOC is the product of two block matrices to yield the Natural Orthogonal
Complement (NOC), which is a velocity transformation matrix orthogonal to the kinematic constraint
matrix of the system at hand. Note that one of the two DeNOC matrices is a lower block triangular and
the other one is a block diagonal. This representation allows one to compute the inverse and forward
dynamics algorithms of the constrained multibody systems recursively, which was not possible with the
original representation of the NOC. As a result, the computational complexities of the algorithms are
reduced in many instances, particularly, in forward dynamics with large number of bodies in a system,
e.g., space robots, parallel robots, vehicle systems, etc. Moreover, many physical interpretations are
available, for example, articulated body inertia, etc., which can be exploited for debugging of a program
and architecture design. Illustrations with several multibody systems, e.g., two six-degrees-of-freedom
serial manipulators, a parallel manipulator, a carpet scrapping machine with general closed-chain, are
presented.

1 Introduction

The conventional approach to obtain the dynamic model, i.e., equations of motion, of a multibody
system, consisting of serial, tree, or closed kinematic chains with rigid and flexible bodies, is to use
either Newton-Euler (NE) or Euler-Lagrange (EL) formulations. While the NE equations of motion are
obtained from the free-body diagrams, the EL equations resulted from the kinetic and potential energies
of the system at hand. The former is not suitable for motion simulation, as it finds the internal moments
and forces that do not affect the motion of the system. Alternatively, EL equations give an independent
set of equations of motion that is good for motion simulation, however, requires complex calculations
for the partial derivatives. With the advent of digital computations, it was possible to introduce the
computer-oriented methods to reduce the dimension of the unconstrained dynamical equations of
motion, namely, Newton-Euler equations, by eliminating the constraint forces. Such methods are
reported in Huston and Passerello (1974), Wehage and Haug (1982), Kamman and Huston (1984),
Angeles and Lee (1988), Saha and Angeles (1991), Saha (1997; 1999a-b; 2003), and others.

Let us focus on the methodologies proposed by Angeles and Lee (1988) and Saha (1997), which
are the basis for the development of recursive dynamics algorithms proposed in this paper. Whereas the
Natural Orthogonal Complement (NOC) concept (Angeles and Lee, 1988) was used to reduce a set of
NE unconstrained equations of motion to a reduced-dimension independent EL equations of motion, the
Decoupled NOC (DeNOC) matrices allowed one to obtain the elements of the associated matrices and
vectors in analytical form, thereby, leading to recursive order (n), i.e., O(n)---n being the number of
bodies in the multibody system---dynamics algorithms. Note that the NOC is a velocity transformation
matrix which relates the joint rates of the system at hand to the angular and translational velocities
referred to as the twists of the constrained bodies. The matrix is also the orthogonal complement of the

Indo-US Workshop on Protein Kinematics & Protein Conformations, IISc, Bangalore, Dec. 10-11, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357269735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

velocity constraints of the multibody system under study, which is defined as the matrix whose columns
span the null-space of the matrix of the velocity constraints. Hence, the pre-multiplication of the
transpose of the NOC with the unconstrained dynamic equations of motion eliminates the joint
constraint moments and forces referred to as the constraint wrenches. The said orthogonal complement
is not unique. In some approaches, an orthogonal complement is found with numerical schemes which
are computationally intensive, requiring, for example, singular-value decomposition or eigenvalue
computations (Wehage and Haug, 1982; Kamman and Huston, 1984; Stejskal and Valasek, 1996). In the
NOC approach, the velocity constraint matrix is written in a linear homogeneous form, and the
complement is obtained naturally from the velocity constraint expressions without any complex
computations. Therefore, the term natural is used. The NOC was later extended to express it as a
product of two matrices, one of which is lower block triangular and the other one is block diagonal
(Saha, 1997; 1999a-b; 2003; Saha and Schiehlen, 2001; Mohan and Saha, 2007; Chaudhary and Saha,
2007). Hence, the adjective decoupled is added to the new expression of the NOC, i.e., DeNOC. The
dynamic modeling based on the DeNOC matrices has the following features:

1. Each element of the generalized inertia matrix, and other matrices and vectors, can be
expressed in an invariant form (Saha, 1999a-b).

2. Due to the availability of the explicit expressions for the associated matrices and equations,
immediate computer implementation of the algorithm, e.g., inverse or forward dynamics, is not
required.

3. The invariant forms in the inverse and forward dynamics algorithms exhibit simplifying
features, which contributes to a lower computational complexity (Saha, 1999b; 2003) and
lower numerical errors (Mohan and Saha, 2007).

4. An inverse dynamics algorithm, where the motions of a constrained system are given to find
the joint actuator torques or forces, is obtained recursively, similar to the recursive Newton-
Euler inverse dynamics algorithm of a serial robotic system (Craig, 1986)

5. Since the expressions for the matrix elements are available, the inertia matrix can be
decomposed in an invariant form. The decomposition is required in forward dynamics and
simulation. While forward dynamics implies the algebraic solution of the joint accelerations
from the dynamic equations of motion, simulation pertains to the numerical integration of the
joint accelerations to obtain the joint velocities and angles. The proposed decomposition shows
the recursive nature of the forward dynamics algorithm (Saha, 1997), which is not possible
with the numerical LU or LLT decompositions (Stewart, 1973). Hence, a uniform development
of the recursive inverse and forward dynamics algorithms for the constrained multibody
systems is possible (Saha, 1999a-b; Saha and Schiehlen, 2001).

6. The decomposition also allows one to explicitly invert the inertia matrix of a serial-chain rigid
multibody system, e.g., a robot manipulator (Saha, 1999b), which not only provides the
recursive forward dynamics algorithm as in item 5 above, but also facilitates a deeper
understanding of the dynamics involved in the constrained multibody system.

7. Even though the uniform recursive algorithms based on the DeNOC matrices were originally
proposed for serial-chain open-loop rigid-body systems, the concept has been applied to
parallel (Saha and Schiehlen, 2001; Khan et al., 2005) and general closed-chain systems
(Chaudhary and Saha, 2007) as well.

8. It was shown in Mohan and Saha (2007) that the DeNOC concept can even be applied to those
multibody systems which have structurally flexible bodies.

9. The expressions for the elements of the generalized inertia matrix arising out of the dynamic
equations of motion before or after the decomposition allow for many physical interpretations,
for example, composite mass matrix, articulated body inertia, etc.

 3

10. The physical interpretations, as mentioned in item 9 above, can be exploited for the
architecture selection of a constrained system, e.g., in Bhangale et al. (2004), and Saha et al.
(2006).

While almost all proposed inverse dynamics algorithms for serial-chain mechanical systems, as

shown in Fig. 1, are recursive and O(n), e.g., Hollerbach (1980), Luh, Walker and Paul (1980), Kane and
Levinson (1983), Angeles et. al. (1989), Sciavicco and Siciliano (1996), most of the traditional forward
dynamics algorithms (Walker and Orin, 1982; Kane and Levinson, 1983; Angeles and Ma, 1988) are of
O(n3), except one of the four methods reported in Walker and Orin (1982) that has O(n2) complexity.
Note here that, in inverse dynamics, the explicit derivation of the equations of motion in terms of the
generalized coordinates is not required. For example, in Sciavicco and Siciliano (1996), the joint torques
are calculated from the trajectory of the end-effector. Alternatively, explicit expressions for the matrices,
particularly, the generalized inertia matrix associated with the equations of motion in terms of the
generalized coordinates must be evaluated for forward dynamics, e.g., in Angeles and Ma (1988) and
others, in which the joint accelerations are solved from the equations of motion. Conventionally, a
numerical approach is taken to solve for the joint accelerations. In Angeles and Ma (1988), first, the
elements of the inertia matrix are evaluated. Then, the numerical decomposition of the matrix, namely,
Cholesky decomposition (Stewart, 1973), is performed, and finally, the joint accelerations are solved by
backward and forward substitutions. Since the complexity of Cholesky decomposition is of O(n3)
(Stewart, 1973), the forward dynamics algorithm also requires O(n3) computations. There is, however,
an alternative approach to obtain a forward dynamics algorithm recursively whose computational
complexity is of order n, i.e., O(n), e.g., Armstrong (1979), Featherstone (1983), Rodriguez (1987),
Schiehlen (1991), Rodriguez and Kreutz-Delgado (1992), and Saha (1997). There is also a parallel
O(logN) algorithm proposed in Fijany et al. (1995) which requires a special computer hardware, namely,
a parallel architecture. Because of the special hardware requirements, parallel algorithms will not be
discussed any further. It is interesting to note that, compared to the O(n3) schemes, e.g., Angeles and Ma
(1988), all the O(n) schemes are computational efficient when n ≥ 10, as evident from Table 2. The O(n)
algorithms, however, calculate the joint accelerations that are smoother (Ascher et al., 1997; Mohan and
Saha, 2007). As a result, the numerical integration is faster and, hence, the total time in simulation may
be less even for n < 10, as compared to the O(n3) schemes.
 The paper is organized as follows: Section 2 presents the modeling of serial-chain multibody
systems, which forms the basis for other recursive algorithms, mainly, for parallel-type and general
closed-chain systems. This is followed by the modeling of parallel multibody systems in Section 3,
whereas recursive modeling of closed-chain systems is presented in Section 4. Finally, the conclusions
are drawn in Section 5.

2 Modeling of Serial-chain Systems

In this section, dynamic equations of motion of an n-link n-degree-of-freedom (DOF) serial-chain
multibody system, e.g., a robot manipulator shown in Fig. 1(a), are derived. The methodology is based
on the concept of the Decoupled Natural Orthogonal Compliment (DeNOC) matrices introduced in Saha
(1997).

2.1 Uncoupled Newton-Euler equations

For a serial-chain system shown in Fig. 1(a), if mi is the mass of the ith link and Ii
 denotes its 3×3 inertia

tensor about the mass center, Ci, as indicated in Fig. 1(b), the Newton-Euler equations of motion for the
ith link can be derived from its free-body diagram as

 4

Euler’s equation: c
i

c
i

c
i nωIωωI =×+ iii& (1a)

Newton’s equation: c
iim fc =i&& (1b)

(a) Serial chain

(b) The ith free-body

Figure 1 A serial-chain multibody system

where ωi and iω& are the 3-dimensional vectors of angular velocity and angular acceleration of the ith
body, respectively, whereas ic&& is the 3-dimensional vector of linear acceleration or simply acceleration

of the mass center, Ci. Moreover, c
in and c

if are the 3-dimensional vectors of the resultant moment
about Ci and resultant force at Ci, respectively. Note that, one can also represent the equations of motion,
eqs. (1a-b), with respect to point Oi where the ith body is coupled to its previous body, namely, (i-1)st

ci

Joint, i

X

Y

Z

Frame, F

Body, #i

Ci

di

ri
Joint, i+1

ai

vi

Mass: mi;
Inertia: Ii

ni

fi

ωi

Oi

1

X

Z

#1

O1

#2

2

3

O2

O3
Oi

Y

Frame, F

End-effector

#i

#n

i
n

On
i+1

Oi+1
#i-1

Oi-1
i-1

 5

one, Fig. 1(a). To express the NE equations with respect to the point, Oi, the relations between its
velocity, iv , and acceleration, iv& , with ic& and ic&& , respectively, are first obtained as

iiii dωvc ×+=& (2a)
)(iiiiiii dωωdωvc ××+×+= &&&& (2b)

Similarly, the relationships between the moment and force with respect to Oi, namely, ni and fi,
respectively, and c

in and c
if of eqs. (1a-b) are given by

c
ii

c
ii fdnn ×+= and c

ii ff = (3)
Upon substitution of eqs. (2-3) into eq. (1), yields

iiiiiiiii m nωIωvdI =×+×+ω && (4a)
iiiiiiiim fdωωdωv =××+×+)]([&& (4b)

where from the parallel axis theorem,)(1ddII ××−= iii
c
ii m  iI being the 3×3 inertia tensor about Oi.

Equations (4a-b) are now written in a compact form as (Saha and Schiehlen, 2001):
iiiiiii wtEMWtM =+& (5)

where the 6×6 matrices of the extended mass, Mi, and of the extended angular velocity, Wi, and the 6-
dimensional vector of wrench of resultant external moments and forces, iw , are defined as









×−

×
≡

11d
1dI

M
iii

iii
i mm

m
)(

)(
; 








×

×
≡

1ω
1ω

W
i

i
i Ο

Ο
; and 








≡

i

i
i f

n
w (6)

in which di×1 and ωi×1 are the 3×3 cross-product tensors associated with the vectors, di and ωi,,
respectively, such that (di×1)x ≡ di×x and (ωi×1)x ≡ ωi×x, for any three-dimensional Cartesian vector,
x. Whereas vector di is shown in Fig. 1(b), ωi is the angular velocity of the ith body. Moreover, 1 and O
are the 3×3 identity and zero matrices, respectively. Furthermore, the 6-dimensional vectors, namely,
twist ti, and wrench wi, are given by

 







≡

i

i
i v

ω
t and 








≡

i

i
i f

n
w (7)

In eq. (5), vector it& is the time derivative of the twist vector, ti of eq. (7). Also, Mi of eq. (6) is the mass
matrix which compactly embodies the mass and inertia properties of the ith body about Oi. The 6×6
matrix, Ei, is the coupling matrix and represented as









≡

ΟΟ
Ο1

E i

Writing eq. (5), for the system of n moving bodies, i.e., for i = 1, …, n, the 6n scalar equations of motion
are then expressed as

wWMEttM =+& (8)
where the 6n×6n matrices, M, W, and E, are the generalized mass, velocity, and coupling matrices,
respectively, namely,

[]ndiag MMM L1≡ ; []ndiag WWW L1≡ ; and []ndiag EEE L1≡ (9)
Also, the 6n-dimensional vectors of the generalized twist, twist-rate, and wrench, t , t& , and w ,
respectively, are

 []TT
n

T ttt L1≡ , []TT
n

T ttt &L&&
1≡ and []TT

n
T www L1≡ (10)

Equation (8) represents the 6n uncoupled scalar NE equations of motion for the n bodies in the serial-
chain multibody system under study.

 6

2.2 Kinematic constraints

Referring to Figs. 1(a) and 2, it is assumed that the bodies of the serial-chain system are coupled by
kinematic pairs or joints that are either revolute or prismatic. From the rigid body motion of the two
bodies, namely, #(i-1) and #i, Fig. 2, the twist of the ith body defined in eq. (7) can be derived from the
velocities of the (i-1)st body, and the joint motion of the ith joint. If the ith joint is revolute, then the
angular velocity of the ith body and its velocity at point Oi, denoted with ωi and vi, respectively, are
obtained as:
 iiii θ+= −

&eωω 1 (11a)
 iiiii ,111 −−− ×+= aωvv (11b)

Figure 2 Three coupled bodies

where ωi-1 and vi-1 are defined as the angular velocity and velocity of Oi-1 of the (i-1)st body,
respectively. Moreover, ei is the 3-dimensional unit vector parallel to the axis of the revolute joint, as
indicated in Fig. 2, and θi is the angular displacement of the ith revolute joint. Furthermore, the 3-
dimensional vector, ai-1,i denotes the position of Oi with respect to Oi-1, also shown in Fig. 2. The above
six scalar velocity constraint equations can be written in compact form as
 iiiiii θ+= −−

&ptAt 11, (11c)

where the 6×6 matrix, Ai,i-1, and the 6-dimensional vector, pi, are defined as

 







×

≡
−

− 11a
O1

A
1,

1,
ii

ii and 







≡

0
e

p i
i (11d)

in which ai,i-1 ×1 is the cross-product tensor associated with vector ai,i-1 that is defined similar to ωi×1 of
eq. (6), i.e, (ai,i-1 ×1)x = ai,i-1 × x, for any arbitrary 3-dimensional Cartesian vector x. The vector, ai,i-1 is
also given by, ai,i-1 = - ai-1,i. It is interesting to note here that the matrix, Ai,i-1, and the vector, pi, have the
following interpretations:

• For two rigidly connected moving bodies, #(i-1) and #i, Ai,i-1, propagates the twist of #(i-1) to
#i. Hence, matrix Ai,i-1 is termed as the twist propagation matrix (Saha, 1997; 1999a-b), which
has the following properties:

 Ai-1,i Ai,i+1 = Ai-1,i+1; Aii = 1; and 1,
1

,1 −
−
− = iiii AA or iiii ,1

1
1, +

−
+ = AA (12a)

• Vector pi, on the other hand, takes into account the motion of the ith joint. Hence, pi is termed as
the joint-rate propagation vector, which is dependent on the type of joint. For example, the

 7

expression of pi in eq. (11d) is for a revolute joint shown in Fig. 2, whereas for a prismatic joint,
vector pi is given by

 







≡

i
i e

0
p : For a prismatic joint (12b)

where ei is the unit vector parallel to the axis of linear motion. Correspondingly, iθ& of eq. (11c) means
the linear joint rate. Other joints are not treated here because any other joint, e.g., spherical or screw, can
be treated as combination of three revolute, or revolute and prismatic pairs, respectively. For i = 1, …, n,
eq. (11c) is now put in a compact form for all the n joints as

,θNt &= where N ≡ Nl Nd (13a)

where t containing the twists of all the links is the 6n-dimensional generalized twist, as defined in eq.
(10). Using eq. (11c), for i = 1, …, n, it is possible to express the generalized twist, t, eq. (13a), as a
linear transformation of the n-dimensional joint-rate vector, θ& (Saha, 1997; 1999a-b), where the 6n × 6n
matrix, Nl, the 6n × n matrix, Nd, and the n-dimensional vector, θ& , are defined as follows:



















≡

1AA

O1A
OO1

N

L

MOMM

L

L

21

21

nn

l ;


















≡

n

d

p00

0p0
00p

N

L

MOMM

L

L

2

1

; and





















θ

θ
θ

≡

n
&
M

&

&

& 2

1

θ (13b)

The 6n × n matrix, N, in eq. (13a) is nothing but the original Natural Orthogonal Complement (NOC)
matrix of the velocity constraints introduced by Angeles and Lee (1988), whereas its decoupled form, Nl
and Nd, are introduced in Saha (1997) and referred as the Decoupled NOC (DeNOC) matrices. The
expressions of the DeNOC matrices allow one to develop the recursive inverse and forward dynamics
algorithms (Saha, 1999a) required in control and simulation of serial-chain multibody systems, e.g., a
robot manipulator, respectively. This will be shown Subsection 2.4.

2.3 Coupled equations of motion

The uncoupled NE equations of motion given by eq. (8) are re-written here as
 CE wwWMEttM +=+& (14)

where w of eq. (8) is substituted by, w ≡ wE + wC ---wE and wC being the external and constraint
wrenches, respectively. The external wrench, wE, is contributed from the moments and forces due to the
joint actuators, gravity, environmental effects, etc., whereas the constraint wrench, wC, is due to the
presence of the joints that contains the reaction moments and forces at the joint interfaces. Since the
constraint wrench, wC, does not do any useful work towards the motion of the robot links, the power
consumed due to wC, i.e., ΠC ≡ tT wC, vanishes. The sole purpose of wC is to maintain the relative
configuration of the bodies without getting separated. Using the expression for the generalized twist, t,
from eq. (13a), the vanishing power due to wC, is given by

 ΠC ≡ tT wC ≡ Tθ& NTwC ≡ CT wNNθ T
l

T
d

& = 0 (15a)

Note that for the n-body, n-DOF serial-chain system, the n-dimensional joint-rate vector,θ& , is
independent. Hence, to satisfy eq. (15a), the following condition must hold good:

 NTwC ≡ CwNN T
l

T
d = 0 (15b)

 8

Upon multiplication of the transpose of the NOC, NT, to the uncoupled NE equations of motion, eq.
(14), the following set of independent dynamic equations of motion results:
 τhθI =+&& , where θCh &≡ (16a)

In deriving eq. (16a) the result of eq. (15b) and the time derivative of the generalized twist, t, from eq.
(13a), namely, θNθNt &&&&& += , are used. Moreover, the n×n matrices, I and C, and the n-dimensional
vectors, h and τ, are defined as

I ≡NTMN d
T
d NMN ~

≡ : the n×n generalized inertia matrix (GIM), which is symmetric and
positive definite;

C ≡ d
T
d

T)NMMM(NWMEN)N(MN ewl
~~~

++≡+& : the n×n matrix of convective inertia (MCI) 
terms; 

wNθCh ′=≡ ~T
d

& : the n-dimensional vector of convective inertia (VCI) terms; 

τ ≡ NTwE E~wNT
d≡ : the n-dimensional vector of generalized forces due to driving torques/forces, 

and those resulting from the gravity, environment and dissipation. 

Also, the 6n×6n matrices, M~ , lM~ , wM~ , eM~ , and the 6n-dimensional vectors, Ew~ and w~ ′ , are given 
below: 

 l
T
l MNNM ≡

~ ; l
T
l NMNM &≡l

~ , WMM ~~ ≡w , l
T
le WMENNM ≡

~ ;       (16b) 

 ( )WMEttMNw +′≡′ T
l

~ ; ( ) θNWNNt && dll +≡′ ; and EE~ wNw T
l≡               (16c) 

where dWNN =d& is used, and the matrices, Nl, M, W, E, and the vector wE are defined in the previous 
Subsection 2.1. Note above that t′  is nothing but the twist-rate vector while 0θ =&& . It is pointed out here 
that eq. (16a) is nothing but the Euler-Lagrange equations of motion, which are obtained using the 
uncoupled Newton-Euler equations of motion and simple linear algebra concepts without performing 
any complex partial differentiations explicitly. 
 
2.4 Recursive dynamics algorithms 
 
In this section, recursive dynamics algorithms, namely, the inverse and forward dynamics of serial 
multibody systems are presented. Whereas inverse dynamics is defined as “given the system’s 
geometrical and inertial parameters, along with its joint trajectories, find the joint torques and forces to 
follow the specified trajectory,” forward dynamics referred to as the “evaluation of the joint 
accelerations,θ&& , from the dynamic equations of motion governed by eq. (16a) while its joint torques and 
forces, along with the robot’s physical parameters, are known.” The latter requires the algebraic solution 
of eq. (16a), which is linear inθ&& . Inverse and forward dynamics are generally required for the control 
and simulation of a system, respectively.  
 
2.4.1 Inverse dynamics algorithm 
 
The recursive inverse dynamics algorithm here has two recursions, namely, forward and backward. They 
are given below: 
 
 



 
 

 9

Forward Recursion 
 ;111 θ= &pt                       111111 θ+θ= &&&& pWpt  
 ;1222 tpt +θ= &           121121222222 tAtApWpt &&&&&& ++θ+θ=  
  M               M    
 ;1−+θ= nnnn tpt &            11,11, −−−− ++θ+θ= nnnnnnnnnnnn tAtApWpt &&&&&&  
Backward Recursion 

;*
nnnnnnn tEMWtMw += &      *

n
T
nn wp=τ  

 ;*
1,111111

*
1 n

T
nnnnnnnnn wAtEMWtMw −−−−−−−− ++= &   *

111 −−− =τ n
T
nn wp   

  M       M   
 ;*

221111111
*
1 wAtEMWtMw T++= &     *

111 wpT=τ   
where ti, it& and *

iw  are the 6-dimensional vectors of twist, twist rate, and the inertia wrench. If gravity is 
present, it is taken into account by providing negative acceleration due to the gravity, denoted by g, to 
the acceleration of the first body, #1 (Kane and Levinson, 1983), i.e.,  
  ρpWpt +θ+θ= 111111

&&&& , where TT ],[ g0ρ −≡                 (17) 
 

 Table 1 Computational complexities of recursive inverse dynamics algorithms (Saha, 1999a) 
Algorithm Multiplications/ 

Divisions (M) 
Addition/ 

Subtraction (A) 
n = 6 

Hollerbach (1980) 412n-277 320n-201 2195M 1719A 
Luh et al. (1980) 150n-48 131n+48 852M 834A 
Walker and Orin (1982) 137n-22 101n-11 800M 595A 
RIDIM (Saha, 1999) 120n-44 97n-55 676M 527A 
Khalil et al. (1986) 105n-92 94n-86 538M 478A 
Angeles et al. (1989) 105n-109 90n-105 521M 435A 
Balafoutis et al. (1988) 93n-69 81n-65 489M 421M 

 

Note that an algorithm very similar to the above one was also reported in Saha (1999a), where 
the twist of each body is defined with respect to the mass-center, Ci, instead of point Oi of Fig. 1(b). The 
computational complexity of the inverse dynamics algorithm reported in Saha (199a) is given in Table 1, 
where the same is compared with others available in the literature. From Table 1, the benefit of the 
inverse dynamics algorithm based on the DeNOC concept is not so substantial. However, it will be 
shown next how the DeNOC concept is useful for the forward dynamics algorithm. The inverse 
dynamics algorithm of Saha (1999a) was implemented in a C++ program called RIDIM (Recursive 
Inverse Dynamics for Industrial Manipulator) that has a MS-Windows interface, as shown in Fig. 3. To 
run RIDIM, one needs the following inputs: For i = 1, …, n, 

1. Constant Denavit-Hartenberg (DH) parameters (Denavit and Hartenberg, 1955) of the robot 
under study. They are bi, ai, αi,, for a revolute joint, and θi, ai, αi, for a prismatic joint. The 
parameters, bi, θi, ai, and αi, are referred as joint offset, joint angle, link length, and twist angle, 
respectively. The exact definitions and notations for the DH parameters used in RIDIM are 
explained in Saha (1999a). 

2. Time history of the variable DH parameter, θi, for a revolute pair, and bi, for a prismatic joint, 
and their first and second time derivatives, i.e., iθ& , ib& , and iθ&& , ib&& , respectively.  

3. Mass of each body, mi. 



 
 

 10

4. Vector denoting the distance of the (i + 1)st joint from the ith mass center, Ci, in (i + 1)st frame, 
i.e., 1][ +iir . 

5. Inertia tensor of the ith body about its mass center, Ci, in the (i + 1)st frame, 1][ +iiI . 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3  MS-Windows interface of RIDM 

2.4.2 Forward dynamics algorithm 
 
Conventionally, joint accelerations are solved from eq. (16a) using Cholesky decomposition of the GIM, 
I, as done by Walker and Orin (1982), Angeles (2003), and others, or in the MATLAB command of 
“φ\I” (Pratap, 2002), where φ represents the vector of generalized forces due to external moments and 
forces, gravity and Coriolis terms, etc., namely, hτφ −≡ . The above approach requires O(n3)---n being 
the number of links in the robot---computations, and produces non-smooth joint accelerations (Ascher et 
al., 1997). On the contrary, the dynamic formulation based on the Decoupled Natural Orthogonal 
Complement (DeNOC) matrices presented here allows one to solve θ&&  from eq. (16a) recursively with 
O(n) computations (Saha, 1999a-b;  2003; Mohan and Saha, 2007). Such recursive algorithms are 
known to provide smooth profiles forθ&& , as reported in Ascher et al. (1997), Mohan and Saha (2007), 
and others.  

The algorithm is based on the UDUT decomposition of the generalized inertia matrix, I of eq. 
(16a) (Saha, 1997), i.e., I = UDUT, where U and D are the upper and diagonal matrices, respectively. 
Moreover, substituting for I and, θCτφ &−≡ , in eq. (16a), one obtains 
  φθUDU ≡&&T                     (18) 
A three step recursive scheme is then used to calculate the joint accelerations from eq. (18), i.e., 
1. Solution for φ̂ : The solution, φUφ 1ˆ −= , is evaluated in terms of the scalar terms as 
 1,

ˆ
+−= ii

T
iii ηpφφ , for i = n, …, 1               (19a) 

Note nn φφ ≡ˆ , and the 6-dimensional vector, 1, +iiη , is obtained as 



 
 

 11

 1,11, +++ ≡ i
T

iiii ηAη  and 2,1111,
ˆ

+++++ +φ≡ iiiiii ηψη              (19b) 
in which 0η =+1,nn . In order to calculate the new variable, 1+iψ  of eq. (19b), is the 6-dimensional 
vector, iψ , is evaluated as 

 
i

i
T

ii
i m̂

ˆ,1 ψA
ψ +≡ , where iii pMψ ˆˆ ≡ and i

T
iim ψp ˆˆ ≡               (19c) 

In eq. (19c), the 6×6 matrix, iM̂ , is called the “articulated body inertia” (Saha,  1997;1999a) that can be 
obtained recursively as 
 ,iii

T
,iiii 111ˆ

++++≡ AMAMM , where T
iiii ψψMM ˆˆ −≡             (19d) 

for i = n-1, …, 1, and nn MM =ˆ . 
 
2. Solution for φ~ : The solution, φφD ˆ~ = , involves the inverse of the diagonal matrix, D of eq. (18), 
which is simple, namely, D-1 has only nonzero diagonal elements that are the reciprocal of the 
corresponding diagonal elements of D. The scalar elements of vectorφ~ is obtained as follows: For i = 
1, …, n,  
 iii m̂/ˆ~ ϕφ =                            (20) 
where the scalar, im̂ , is obtained in eq.(19c). 
 
3. Solution for θ&& : In this step, φUθ ~T−=&& , is calculated, for i = 2, …, n, as  
 1,

~ˆ~
−−φ=θ ii

T
iii µψ&&                      (21a) 

where 11
~
φ≡θ&& , and the 6-dimensional vector, 1,

~
−iiµ , is obtained as 

 11,1,
~~
−−− ≡ iiiii µAµ  and 2,1111

~~
−−−−− +≡ iiiii µpµ θ&&                    (21b) 

in which 0µ ≡10
~  

The complexity of the above recursive forward dynamics algorithm is compared in Table 2 with 
some other algorithms. Note in Table 2 that if a rigid body in the kinematic chain is transformed to an 
equivalent body defined by its DH parameters the complexity of the above algorithm reduces further 
(Mohan and Saha, 2007). Also, compared to other existing recursive algorithms, the one proposed above 
based on the DeNOC concept is the best. 
 

Table 2 Computational complexities of forward dynamics algorithms 
Algorithm Multiplication Additions n*  n+  

Mohan and Saha (2007) 173n-128 150n-133 10 (1602 M) 12 (1948M 1667A)
Saha (2003) 191n – 284 187n-325 10 (1626 M) 14 (2390M 2293A)
Featherstone (1983) 199n-198 174n-173 12 (2190 M) 14 (2588M 2263A)
Valasek [15] 226n-343 206n-345 13 (2595 M) 15 (3047M 2745A)
Brandle et.al [15] 250n-222 220n-198 14 (3278 M) 16 (3778M 3322A)
Walker and Orin (as 
implemented by 
Featherstone) 47

3
115

2
23

6
1 23

−+

+

n

nn
 

46
6

233

7
6
1 23

−+

+

n

nn
 

10 (1653 M) 12 (2357M 1716A) 

n*: Number of links for which the O(n) algorithm benefits over O(n3) one when only multiplications are considered. 
n+: Number of links for which the O(n) algorithm benefits over O(n3) one when both multiplications and additions are 

considered. 



 
 

 12

For the numerical simulation, the above forward dynamics algorithm requires the following input: 
For i =1, …, n, 

1. Input items 1 and 3-5 for the inverse dynamics algorithm presented in Subsection 3.1. 
2. Initial values for the variable DH parameters, i.e.,θi, for a revolute joint, and bi, for a prismatic 

joint, and their first time derivatives, i.e., iθ& and ib& . 
3. Time history of the input joint torques and forces, i.e., τi. 
4. The vector, θCτφ &−≡ , that can be obtained recursively from eq. (16a) using the inverse 

dynamics algorithm presented in Subsection 3.1 while 0θ =&& . 
 
2.5 Numerical examples 
 
In this section, two serial six-degree-of-freedom manipulators with PUMA and Standford arm 
architectures shown in Figs. 4 and 5, respectively, are considered. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 4 PUMA architecture        Figure 5 Stanford arm 
 

2.5.1 PUMA  
 
For the PUMA architecture with all joints revolute, as shown in Fig. 4, the inverse dynamics results 
were obtained for the DH and inertial parameters shown in Table 3.  The joint angle for each joint is 
taken as (Angeles, 2003) 















−

−
+= t

T
Tt

T
T ii

ii
π

π
θθ

θθ 2sin
2

)0()(
)0(                 (22a) 















−

−
= t

T
π

T
)(θ(T)θ

θ ii
i

2cos1
0& ; 














−

= t
T
π

T
π

T
)(θ(T)θ

θ ii
i

2sin20&&         (22b) 

X5, X6 

End-effector 

X1, X2 

Xe 

X4 

X3 

Z5 

Ze

Z4, Z6 
 

Z2 

Z3 

Z1 0.432 

0.149 

0.042 

0.056 

0.6 

X1 

Xe 
X5, X6 

End-effector 

X2 

X4 

X3 

Z5 

Ze 
Z4, Z6 

Z2 

Z3 

Z1 

b3 

0.1 0.1 



 
 

 13

where T = 10sec, and initial joint values are θi(0) = == )0()0( ii θθ &&& 0, whereas the final joint values are 
θi(T) = π,  == )0()0( ii θθ &&& 0, for i = 1, …, 6. The joint torques can then be calculated using RIDIM. The 
results are shown in Figs. 6(a-f). In Fig. 7(a-f), free-fall simulation results are shown where the PUMA 
manipulator is allowed to fall under gravity from its initial configuration shown in Table 3(a). For the 
numerical integration, an in-house developed C++ program based on Runga-Kutta 5th/6th order 
numerical integration method (Press et al., 1997) was used. 

 
Table 3 The DH and inertia parameters of PUMA 

(a) DH parameters 
Link Joint ai  

(m) 
bi  

(m) 
αi 

(rad)
θi  

(rad) 
1 r 0 0 -π/2 JV [0] 
2 r 0.432 0.149 0 JV [0] 
3 r 0.02 0 -π/2 JV [0] 
4 r 0 0.432 -π/2 JV [0] 
5 r 0 0 -π/2 JV [0] 
6 r 0 0.05 0 JV [0] 

JV: Joint variable with initial values inside [ and ]; r: Revolute joint 
(b) Mass and inertia parameters 

Link mi ri,x ri,y ri,z Ii,xx Ii,xy Ii,xz Ii,yy Ii,yz Ii,zz 
 (kg) (m) (kg-m2) 
1 10.521 0 0 0.054 1.612 0 0 1.612 0 0.5091 
2 15.761 0.292 0 0 0.4898 0 0 8.0783 0 8.2672 
3 8.767 0.02 0 -0.197 3.3768 0 0 3.3768 0 0.3009 
4 1.052 0 -0.057 0 0.181 0 0 0.1273 0 0.181 
5 1.052 0 0 -0.007 0.0735 0 0 0.1273 0 0.0735 
6 0.351 0 0 0.019 0.0071 0 0 0.0071 0 0.0141 

 
2.5.2 Stanford arm 
 
For the Stanford arm shown in Fig. 6, the DH and other parameters are shown in Table 4. Note that it 
differentiates from the PUMA architecture in a way that it has a prismatic pair in joint location 3. The 
joint trajectory for the revolute joints were taken same as PUMA, i.e., eqs. (22a-b), with the following 
data: T = 10sec, θi(0) = 0, for i ≠ 2,3, θ2(0)  = π/2; and θi(T) = π/3, for i ≠ 3. For the third prismatic joint, 
the joint variable denoted by b3 is taken same as 















 π

π
−

−
+= t

T
Tt

T
bTb

bb 2sin
2

)0()(
)0( 33

33                    (23) 

where b3(0) = 0, and b3(T) = 0.1m. The joint torques and force are then evaluated using RIDIM shown in 
Fig. 8(a-f), whereas the free-fall simulation is shown in Fig. 9(a-f). Note that the joint torques and force 
obtained shown in Fig. 8 match exactly with those reported in Cyril (1988) for the same arm.  
 
 
 



 
 

 14

Table 4 The DH and inertia parameters of Stanford arm 
(a) DH parameters 

Link Joint ai  
(m) 

bi  
(m) 

αi 
(rad)

θi  
(rad) 

1 r 0 0.1 -π/2 JV [0] 
2 r 0 0.1 -π/2 JV [0] 
3 p 0 JV [0] 0 0 
4 r 0 0.6 π/2 JV [0] 
5 r 0 0 -π/2 JV [0] 
6 r 0 0.0 0 JV [0] 

JV: Joint variable with initial values within [ and ]; r: Revolute joint; p: Prismatic joint 
(b) Mass and inertia parameters 

Link mi ri,x ri,y ri,z Ii,xx Ii,xy Ii,xz Ii,yy Ii,yz Ii,zz 
 (kg) (m) (kg-m2) 
1 9 0 -0.1 0 0.01 0 0 0.02 0 0.01 
2 6 0 0 0 0.05 0 0 0.06 0 0.01 
3 4 0 0 0 0.4 0 0 0.4 0 0.01 
4 1 0 -0.1 0 0.001 0 0 0.001 0 0.0005 
5 0.6 0 0 -0.06 0.0005 0 0 0.0005 0 0.0002 
6 0.5 0 0 0.2 0.003 0 0 0.001 0 0.002 

 
3 Modeling of Parallel Systems 
 
Realizing the benefits of the recursive and minimum order formulations, an attempt is made here to 
obtain a recursive minimum order algorithm for parallel-type systems as well. Such systems are Stewart 
platform, hexapod and hexaslide machine tools, and like. Whereas recursive inverse and forward 
dynamics algorithms for serial-chain open-loop systems are available in the literature, as indicated in 
Tables 1 and 2, the same closed-chain systems is difficult. In this section, symmetric closed-chain 
multibody systems, namely, the parallel types are considered, which will be followed by general closed-
chain systems in Section 4. 
 
3.1. Existing formulations 
 
Before proceeding to the development of unified recursive algorithms for the parallel systems, a look 
into the existing formulations is given in this section. Available literature on the dynamics of closed-
chain systems suggest that it can be broadly classified as either recursive DAE (differential algebraic 
equations) or non-recursive minimum order dynamic equations. For example, the algorithms by Bae and 
Haug (1987b), Schiehlen (1990), Stejskal and Valasek (1996), Bae et al. (1999), and others write the 
equations of motion of a closed-chain system in the following manner:  

• Cut the closed chains of the system to open into a serial or tree structure; 
• Introduce Lagrange multipliers to substitute for the cut joints; 
• Use a recursive scheme for the open chain system, e.g., (Featherstone, 1983; Bae and Haug, 

1987a), etc., to obtain a recursive algorithm. 
The above formulation does provide a recursive inverse and forward dynamics algorithms but form a 
DAE system which is known for its difficulty in numerical integration due to numerical instability and 



 
 

 15

constraint violation problems. On the contrary, the formulations by Brauchli and Weber (1991), Blajer et 
al. (1993), and Ghorbel (1994) follow the steps given below: 

• Open the closed chains to make it an open chain or tree structure, as above; 
• Write the equations of motion of the new system recursively in terms of a larger number of 

generalized coordinates (Featherstone, 1983; Bae and Haug, 1987a); 
 
 

 
 

Figure 6 Torques for PUMA architecture: (a) Joint 1; (b) Joint 2; (c) Joint 3; (d) Joint 4; (e) Joint 5; (f) 
Joint 6 

 
 



 
 

 16

• Since the above generalized coordinates are not independent for the original closed-chain 
system, the loop closure conditions are introduced. This enables one to write the larger set of 
generalized coordinates in terms of an independent set. This step is, normally, done using a 
numerical method, e.g., using LU decomposition (Stewart, 1973). As a result the algorithm 
remains no longer recursive; 

• Transform the equations of motion of the open/tree system to the closed system, which is also 
not recurisve. 

 

 
 
Figure 7 Simulated joint angles for PUMA: (a) Joint 1; (b) Joint 2; (c) Joint 3; (d) Joint 4; (e) Joint 5; (f) 

Joint 6 



 
 

 17

 
Due to the last two steps above, the advantages of the recursive algorithm in the second step are lost. As 
a remedy, a formulation was proposed in Saha and Schiehlen (2001) where it was shown how to solve 
for the dependent joint rates recursively form the independent or actuated joint rates leading to recursive 
ODE (order or ordinary differential equation) formulation. Note that an ODE formulation is generally 
preferred over the DAE formulation due to its well-known advantages (Shabana 1994). This is shown 
next. 

 
 
Figure 8 Torques and force for Stanford arm: (a) Joint 1; (b) Joint 2; (c) Joint 3; (d) Joint 4; (e) Joint 5; 

(f) Joint 6 
 



 
 

 18

 
3.2 Recursive formulation for unactuated joints 
 
In this Subsection, the focus is closed-chain parallel type systems shown in Fig. 10(a). In order to derive 
the recursive kinematic relations, the following assumptions are made: 

• Each leg has only one actuator at the base joint denoted as 1; 
 

 
 
Figure 9 Simulated joint displacements for Stanford arm: (a) Joint 1; (b) Joint 2; (c) Joint 3; (d) Joint 4; 

(e) Joint 5; (f) Joint 6 
 



 
 

 19

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Architecture                   (b) The lth leg 
Figure 10 Parallel system 

 
• The system is non-redundant, i.e., the degrees of freedom (DOF) is equal to the number 

of driving actuators; 
• Number of legs is equal to the DOF; 
• Joint positions are known either from the sensor data, or from a suitable algorithm, e.g., using the 

one proposed in Hiller (1995); 
• No friction or damping; 
• Gravity is taken into account by adding negative acceleration due to gravity to the base body of 

the system given in eq. (17) for serial-chain systems.  
Referring to each leg of the parallel system, Fig. 10(b) and eq. (11c), the twist of the end-effector can be 
expressed in terms of the twist of the mth body, namely,  

meme tAt =                 (24) 
The unactuated joint rates, for i = m, …, 2, are then solved recursively. For that, a useful relation is 
introduced next. Let a=b+cx, where a, b, and c are vectors of same dimension, while x is a scalar. One 
may determine x as 

)(1 bac −
δ

= T

c
x , where  ccT

c ≡δ          (25a) 

Substituting the value for x from eq. (25a) into the expression, a=b+cx, and rearranging the terms, one 
may eliminate x from eq. (25a) to obtain a relationship between a, b, and c as 

ba cc ΦΦ = , where T

c
c cc1

δ
−≡

1
Φ            (25b) 

In eq. (25b), 1 is the identity matrix of compatible dimension, whereas the symmetric matrix, Φc, 
projects vectors a and b along the axis orthogonal to c. The matrix, Φc, is singular and has the following 
properties: 

c
T
ccc

T
c ΦΦΦΦΦ ==              (25c) 

To eliminate the unactuated joint velocities, eq. (25b) is employed here. For example, to eliminate the 
unactuated mth joint rate of each leg, mθ& , eq. (24) is first written in the form of a=b+cx, i.e., 

#m m

Base 

#i 

#1

i+1

1

i 

End 
effector



 
 

 20

mmmmmmmmeme θ+=θ+= −−−
&& ptptAAt ~~)( 111, , where 11,1

~
−−− ≡ mmem tAt , and memm pAp ≡~    (26) 

where the relation of the twist of the mth body, tm, in terms of the twist of the (m-1)st body, i.e., tm-1, in 
the form of eq. (11c) is used. Applying the rules of eqs. (25a-b) to eq. (26), one readily obtains the 
following: 

)~(~1
1−−

δ
=θ me

T
m

m
m ttp& , where m

T
mm pp ~~≡δ           (27a) 

and  

1
~

−= mmem tt ΦΦ , where  T
mm

m
m pp1 ~~1

δ
−≡Φ          (27b) 

The process is repeated until the first actuated joint rate, i.e., joint 1, is reached, i.e.,  
122

~tt ΦΦ =e  or 11122 θ= &pAt ee ΦΦ              (28) 
Since the matrix, Φ2, is singular the twist of the end-effector, te, cannot be expressed in terms of the 
actuated joint rate, 1θ& . However, if all the legs are considered, eq. (28) can be combined as 

 l
e

n

l
e ][ 1112

1
θ=∑

=

&pAt ΦΦ , where ∑
=

≡
n

l

l

1
2ΦΦ           (29a) 

where superscript ‘l’ stands for leg. Equations (29a) now allows one to obtain the twist of the end-
effector in terms of all the actuated joint rates, namely, [ ]n

1
1
1 θθ≡ &L&&θ , as 

θJt &=e , where ])(,,)[( 112
1

112
1 n

ee pApAJ ΦΦΦ L−≡           (29b) 
The 6×n matrix, J, is the well-known Jacobian matrix, which generally exists the system’s configuration 
is such that the 6×6 matrix, Φ, is singular. 
 
3.3 The DeNOC matrices for parallel systems 
 
Solving for theunactuated joint rates for each leg in Subsection 3.2, one can now express the twists of all 
bodies in a leg in terms of its actuated joint rates, namely, 
 111 θ&pt =               (30a) 

 e
T tpptAΨptAt 22

2
1212221212

~1
δ

θ +=+= &           (30b) 

 M  

 e
T
mm

m
mmmmmmmmmm tpptAΨptAt ~1

11,11, δ
θ +=+= −−−−
&         (30c) 

where Ψi, for i = 2, …, m, is the 6×6 matrix, which can be obtained as 

 ei
T
ii

i
i App1Ψ ~1

δ
−≡                (31) 

Combining eqs. (30a-c) for all legs, and performing some algebraic manipulations, one can then write 
the following (Saha and Schiehlen, 2001): 
 θNNNt &

dcl=               (32a) 
where the 6mn-dimensional twist and n-dimensional joint rate vector are as follows: 

 
















≡
)1(

)1(
1

n
n

n

t

t
t M , where 

















≡
n
i

i

i

t

t
t M

1

 and 
















≡
n

1

1
1

θ

θ

&
M

&

&θ           (32b) 



 
 

 21

Moreover, the 6mn×6mn lower block triangular matrix, Nl, the 6mn×6n matrix, Nc, and the 6n×6n, block 
diagonal matrix, Nd, are given by 
 

 

)1(

21

21

~~

~
n

mm

l



















≡

1AA

O1A
OO1

N

L

MOMM

L

L

, 

)1(

1

1

n

e

e
c



















≡

AC

AC
1

N
M

, and 





















≡

n

d

1

2
1

1
1

p00

0p0
00p

N

L

MOMM

L

L

      (32c) 

where the superscript (1n) of the matrix notation imply that the non-zero element matrices are to be read 
with the superscript (1n), e.g., ]~~[~ 1)1( n

ijij
n

ij diag AAA L≡ , etc. Moreover, the 6×6 matrices, l
ijA~  and l

e1A , 
and the 6n×6n constant matrix, C, are as follows: 
 l

jijiiiiii
l
ij )(~

1,12,11, −+−−−≡ AΨAΨAΨA L           (32d) 
and 

 















≡

11

11
C

L

MOM

L

             (32e) 

where 1 represents the 6×6 identity matrix. The matrices, Nl, Nc, and Nd, are the DeNOC matrices for 
the parallel system. Compared to its serial counterpart, the differences are  

• For serial-chain systems, the DeNOC matrices are two, namely, Nl and Nd, which are lower 
block triangular and block diagonal, respectively. Matrix Nl is a function of Aij only. 

• In case of parallel systems, the DeNOC matrices are three. Here, matrix Nl is not only the 
function of Aij, but also of ΨI that takes care of the effect of the unactuated joint rates on the 
twist of rigid bodies in a leg. Furthermore, the matrix, Nc, accounts for the interaction between 
all leg motions through the twist of the end-effector, te. Finally, the matrix, Nd, has the same 
structure as that of a serial-chain system (Saha, 1997; 1999a-b). 

  
3.4 Dynamic model 
 
For the dynamic model, the 6mn uncoupled NE equations of motion are again expressed in the form of 
eq. (8), where the 6mn×6mn matrices, M, W, and E are as follows: 

 
















≡
)1(

)1(
1

n
m

n

MO

OM
M

L

MOM

L

; 
















≡
)1(

)1(
1

n
m

n

WO

OW
W

L

MOM

L

; and 
















≡
)1(

)1(
1

n
m

n

EO

OE
E

L

MOM

L

     (33a) 

where the 6n×6n block matrices, )1( n
iM , )1( n

iW , and )1( n
iE are given by 

 
















≡
n
i

i
n

i

MO

OM
M

L

MOM

L1

)1( ;
















≡
n
i

i
n

i

WO

OW
W

L

MOM

L1

)1( ; and 
















≡
n
i

i
n

i

EO

OE
E

L

MOM

L1

)1(      (33b) 

Rest of the methodology remains same as presented for the serial-chain system in Subsection 2.3. 
 
 
 
 
 



 
 

 22

3.5 Numerical example: Five-bar parallel manipulator 
 
A five-bar planar parallel manipulator, also known as planar Delta robot (Brauchli and Weber, 1991), is 
shown in Fig. 11, in which the actuated joints are the first joints of both the legs that are indicated with 
pointing arcs. The parameters associated with the manipulator are given by 
 mamamama 2.1;7.0;1.1;6.0 2

2
2
1

1
2

1
1 ====           (34a) 

 22
2

2
1

1
2

1
1 /81.9;1.1;0.2;6.1;0.3 smgkgmkgmkgmkgm =====        (34b) 

where l
ia , for i,l = 1,2, and 0a are the link lengths, as shown in Fig. 11, and l

im , for i,l = 1,2, are the 
masses of the link I in the lth leg. Other values associated with the trajectories of the actuated joint, i.e., 
the joints 1 of legs 1 and 2 in the form of eq. (22a) are as follows: 
 sec20 and ;3.70)(;30)0(;90)(;30)0( 2

1
2

1
1
1

1
1 ===== TTT oooo θθθθ         (35) 

  
 
 
 

  
Figure 11 Five-bar manipulator  Figure 12 Joint angles (a) Leg 1; (b) Leg 2 

 
 
 
 
 
 
 
 
 
   
 
  
  Figure 13 Actuated joint torques       Figure 14 Simulation results 
 
The required actuated joint torques of the vertical planar parallel manipulator following the trajectory 
given by eqs. (22a) and (35) are shown in Fig. 13, where ‘τ_1-1’ and ‘τ_1-2’ represent the torques 1

1τ  
and 2

1τ , respectively. Free-fall simulation with the initial conditions given below: 
 sec/0)0()0();22.1(70)0();4.1(80)0( 2

1
1
1

2
1

1
1 radradrad oo ==== θθθθ &&         (36) 

1
1a  

1
2a  2

2a  

2
1a  

1
1θ  

2
1θ  

Base 

End 
effector

g



 
 

 23

is carried out next whose results are shown in Fig. 14, where ‘θ_1-1’ and ‘θ_1-2’ mean 1
1θ and 2

1θ , 
respectively. Note that after about 1.4 sec of simulation time the program stopped executing because the 
manipulator comes to an extreme position when it is singular. 
 
4 Modeling of Closed-chain Systems 
 
As pointed out in Section 3, semi-recursive formulations for general closed-chain multibody systems 
were developed with the DAE and ODE approaches. Here, a subsystem-level recursive method is 
presented for the inverse dynamics of a general closed-chain multibody system, which is based on the 
methodology proposed in Chaudhary and Saha (2007). To achieve such recursion, the closed-chains are 
first cut at appropriate joints to make a spanning tree. The spanning tree is an open system, that can have 
several serial or tree-type subsystems which are classified as ‘determinate’ or ‘indeterminate,’ as 
explained in Subsection 4.1. Next, the constrained equations of motion for the determinate subsystems 
are derived and solved for the Lagrange multipliers representing the constraint wrenches at the cut 
joints, and the driving torques/forces, if any. Interestingly, the determination of the Lagrange multipliers 
makes some of the indeterminate subsystems determinate, and the process is repeated. The above two 
steps are referred here as the subsystem-level recursion. The methodology also allows one to compute 
the joint moments and forces at the uncut unactuated joints using the body-level recursion (Chaudhary 
and Saha, 2007). 
 
4.1 Subsystems and their classifications 

 
Assume that there are one or more closed kinematic loops in a closed-chain multibody system under 
study, as shown in Fig. 15(a). In order to convert such multiloop system into an equivalent open-loop 
system, the closed kinematic loops are cut at some appropriate joints, as indicated in Fig. 15(a). Its open-
loops are then shown in Fig. 15(b), where λ1 and λ2 represent the Lagrange multipliers to keep the 
complete system in equilibrium. For a complex multiloop system, the joints to be cut can be identified 
using the graph theory approach (McPhee, 1996). The resulting cut system is called the spanning tree of 
the original closed-loop system, as illustrated in Fig. 16. The distinct branches of the spanning tree 
which originate from the base body, #0, are referred as “subsystems,” which could be either serial- or 
tree-type. For the purpose of defining the architecture of the spanning tree, base body is generally 
chosen as the fixed body of the system under study. Any other body whose position, velocity and 
acceleration are known can also be selected as the base body. Next, for the serial subsystems, the bodies 
are numbered from #1 that is connected to the base body, as indicated in Fig. 16. For a tree-type 
subsystem, the longest chain from the base body, #0, is called the main chain and assumed to have 0n  
bodies, whereas all other serial branches are called subchains. The subchains are assumed to be 
connected to the main chain, as shown in Fig. 16 for subchains k and l . Any subchain is identified by its 
base body, e.g., in subsystem I, the subchain k stems from the kth body of the main chain, i.e., # 0k , and 
has kn  bodies. If more than one subchains emerge from a body of the main chain, the each subchain can 
be identified by double subscripts. For example, k1 and k2, can emerge from the kth body of the main 
chain having 1kn  and 2kn bodies. Similarly the subchain, l , is connected to the l th body of the main 
chain, # 0l ,  and has ln  bodies, as shown in Fig. 16. In addition, the Roman numerals are prefixed 
before the number of a body to recognize a subsystem to which the body belongs. For example,  as 
indicated in Fig. 2, k1I# −  denotes the 1st body of the kth subchain in subsystem I, whereas 

k1I − denotes the first joint of the kth subchain in subsystem I. Note that the symbol, “#”, is used to 
distinguish labeling of bodies from that of joints. The index of subchain is dropped in the serial 



 
 

 24

subsystems, as in subsystems II and III, because the main chain has no subchains. Assuming that all 
joints are of one degree-of-freedom, and the total number of moving bodies is n, then the degree of 
freedom (DOF) of the spanning tree is given by 

∑
=

+=
s

Ij
jn6DOF                (37) 

where nj is the number bodies in the jth subsystem with the base body having six DOF. Moreover, s 
denotes the number of subsystems. For the spanning tree shown in Fig. 16, lnnnn k

I ++= 0 , rnII = , 
2=IIIn , and hence, IIIIII nnnn ++= .  

  
(a) The closed loops     (b) Its open-loops 

 
Figure 15 Closed chains in a multiloop multibody system  

 
On a free body in the spanning tree of Fig. 2 there may be as many as four categories of moments 

and forces or wrenches acting on it, namely, 1) external wrench from the environment that are external 
to the system, and those provided by the actuators to the system; 2) inertia wrench due to the motion of 
the body; 3) Lagrange multipliers representing the constraint or reaction wrench at the cut joints; and 4) 
the constraint wrench at the uncut joints. For a non-redundant spanning tree resulting from the closed-
loop system, the total number of unknowns, namely, the Lagrange multipliers and the driving 
torques/forces, is equal to the DOF of the spanning tree. Such a spanning tree is referred here as a 
determinate system. For example, the spanning tree of the four-bar mechanism, as shown in Fig. 17, is 
determinate, as it has three unknowns, namely, λ1, λ2, and τD, and three-DOF. Following the above 
definition, any subsystem originating from the base body of the spanning tree can also be categorized as 
determinate. The determinate subsystem is the one in which the number of unknowns, i.e., the Lagrange 
multipliers and the driving torques/forces associated with the subsystem are equal to its DOF. If the 
condition for the determinate is not satisfied then the subsystem is called indeterminate. It can be shown 
that once the unknowns for the determinate subsystems are solved, one or more of the remaining 
indeterminate subsystem(s) converted into determinate one. For example, there are two spanning trees 
for the four-bar mechanism depending on which joint is cut. In Fig. 17(a), subsystems I and II are 
determinate and indeterminate, respectively. Subsystem I has two unknowns, λ1 and λ2, with two DOF 
whereas subsystem II has three unknowns, λ1, λ2, and τD, with one-DOF. Alternatively, In Fig. 17(b) 
both subsystems are indeterminate.  
 
4.2 Equations of motion  
 
In this Subsection, a methodology for the development of recursive dynamics algorithm, mainly, for 
inverse dynamics, of a closed-loop system is presented. First, the closed-loop system is converted into a 
spanning tree by cutting the appropriate joints of the closed-loops, presented in Subsection 4.1. The 
loop-closure constraints are then incorporated into the equations of motion as Lagrange multipliers. The 

λ1 

λ2 



 
 

 25

equations of motion for the subsystems and the spanning tree are then systematically derived, as 
explained next. 

 

 
 

Figure 16 A spanning tree  
  

 (a) (b)  
 

Fig. 17 Open systems for four-bar mechanism 
4.2.1 Subsystem 

 
The Newton-Euler (NE) equations of motion for the ith rigid body of the jth subsystem can be 
represented using eq. (5), whereas for the subsystem j having nj moving bodies, the 6nj scalar 
unconstrained equations of motion are expressed as 

jjjjjjj wtEMWtM =+&          (38) 

Subsystem II 

λ2

Subsystem I

τD 

λ1 -λ2

-λ1

#1 

#2

#1

#0 
Subsystem II

λ2 

Subsystem I 

τD 
λ1 

-λ2 

-λ1 

#1 

#2 

#1 

#0 

#10

# k0

#0

k0

10

 0l  

0n

Subsystem I : 
tree type 

#1k

# kn  
kn  

# 0n  

l1

1k

 # 0l  

#1

#2

#r 

1

2

r 

Base body 

Subsystem II: 
Serial type 

# ln  

ln
# l1

Subchain, l  

Subchain, k  

#I-1k 

I-1k

#1 

#2 

1

2 

Subsystem III: 
Serial type 

Main chain, l  



 
 

 26

where the 6nj-vectors jt , jt& , and jw , respectively, are the generalized twist, twist-rate, and wrench, 
whereas the 6nj×6nj matrices, Mj, Wj, and Ej, are the generalized mass, angular velocity, and coupling 
matrices, respectively. For a serial subsystem with the bodies numbered from 1 to nj, the 6nj-
dimensional vectors, jt , jt& , and jw , and the 6nj×6nj matrices, Mj, Wj, and Ej, are defined as shown in 
eq. (9). For the complete tree-type system, i.e., Subsystem I of Fig. 16, the generalized vectors, t , t& , w , 
and the generalized matrices, M, W and E, are then defined as  



















≡
lt

t
t

t k
j

0

; 



















≡
l&

&

&

&

t
t
t

t k
j

0

; 



















≡
lw

w
w

w k
j

0

           (39a) 

and  
][ 0 lMMMM k

j diag≡ ; ][ 0 lWWWW k
j diag≡ ; ][ 0 lEEEE k

j diag≡  (39b) 
where the components of vectors and matrices are of sizes according to the serial subchains in the tree-
type Subsystem I. For example, 0t and 0M  are 6 0n -dimensional vector and 6 0n ×6 0n matrix, 
respectively. Note that, in contrast to serial-chain systems where the wrench, w of eq. (14), is composed 
of the wrenches, Ew , due to externally applied moments and forces on it including those provided by 

the driving actuators, and Cw , due to the nonworking constraint moments and forces at the uncut joints 

only. However, for the open-chain systems resulting from closed loops, an additional term, namely, λw , 

representing the constraint moments and forces at the cut joints must be present, i.e., 
λCE wwww ++≡ . For a subsystem, eq. (38) is now rewritten as 

λ
j

C
j

E
jjjjjj wwwtWMtM ++=+&          (40) 

where E
jw  , C

jw and λ
jw denote the 6nj-dimensional vectors of corresponding wrenches associated with 

the jth subsystem. It can be shown that the pre-multiplication of the transpose of the natural orthogonal 
complement (NOC) matrix, Nj, associated with the velocity constraint of the subsystem, with the 
unconstrained NE equations of motion, eq. (40), leads to a set of  nj constrained equations of motion free 
from the constraint wrenches at the uncut joints, as done in Subsection 2.3, i.e.,  

)()( λ
j

e
j

T
jjjjjjj

T
j wwNtEMWtMN +=+&         (9) 

where the term, C
j

T
j wN , vanishes, as pointed out in Subsection 2.3. Note that the size of the NOC 

matrix, Nj, is 6nj×nj if all nj moving bodies of the jth subsystem are coupled with one-DOF joints.  Now, 
introducing the notation for the inertia wrench of the jth subsystem as *

jw , 

i.e., *
jjjjjjj wtEMWtM ≡+& ,  eq. (41) is rewritten as 

λ
j

E
jj

T
j τ+τ=*wN           (10) 

where  
E
j

T
j

E
j wN≡τ : the nj-dimensional vector of generalized forces due to the external moments and forces, 

and those resulting from the actuators, gravity, and dissipation;  
λ
j

T
j

λ
j wN≡τ : the nj-dimensional vector of generalized forces due to the constraint moments and forces at 

the cut joints, i.e., the Lagrange multipliers. 
Equation (42) contains the nj scalar equations that are linear in Lagrange multipliers, and the 

driving torques/forces associated with the jth subsystem. Note that, for a determinate subsystem, nj is 
equal to the number of unknown Lagrange multipliers and the driving torques/forces, if any, that are 



 
 

 27

associated with it and can be solve uniquely. With the unknowns solved for the determinate subsystems, 
some or all of all the indeterminate subsystems become determinate, and the process can be repeated.  
This is referred here as the subsystem-level recursion.  
 
4.2.2 Spanning tree 
 
In case all the subsystems are indeterminate one needs to consider the whole spanning tree, whose 
constrained equations are obtained using eq. (42) as 

λ*
j

E
jj

T
j ττ +=wN  for j=I,  … , s             (43) 

where s is the number of subsystems, which can be either serial or tree-type originating from the base 
body of the spanning tree. Equation (43) is written in a compact form as: 

λeT ττ +=*wN                (44) 
where 

















≡
*

*

*

s

I

w

w
w M ;



















≡
E
s

E
I

E

τ

τ
τ M ; and 

















≡
λ
s

λ
I

λ

τ

τ
τ M             (45) 

and N is the 6n×n NOC matrix for the spanning tree, which is 
)( sIdiag NNN L=               (46) 

in which jN  is the NOC matrix for the jth subsystem be it a serial or tree-type, derived next in 

Subsection 4.3.  Moreover, *w  is the 6n-dimensional vector, and Eτ  and λτ  are the n-dimensional 
vectors, where SI nnn ++≡ L  is the total number bodies in the spanning tree. For a non-redundant 
spanning tree resulting from the closed-loop system, the total number of unknowns, the driving 
torques/forces, and the Lagrange multipliers, is equal to the total number of bodies, n, and the DOF of 
the system. Hence, the scalar equations of Eq. (14) can be solved using any standard method such as LU 
decomposition (Stewart, 1973). This approach is termed here as the system approach, where eqs. (42) 
and (44) are used. Similar methodology is also reported in Nikravesh and Gim (1993), Rodriguez et al. 
(1992), Anderson and Critchley, (2003), Shabana (1994) 
 
4.3 The DeNOC matrices for spanning tree  

 
The natural orthogonal complement (NOC) matrix is used to derive the constrained equations of motion, 
eqs. (40) and (42), for a subsystem and the spanning tree, respectively. For the serial-type subsystem, the 
NOC matrix can be obtained  as the multiplication of two block matrices, as done in eq. (13a), which are 
called the decoupled natural orthogonal complement (DeNOC) matrices. For a tree-type subsystem, they 
were derived next. Referring to the tree-type system of Fig. 16, i.e., Subsystem I, the generalized twist, 
for the main chain, denoted as 0t , is obtained similar to eq. (13a) as 

0000 θ&dl NNt =                 (47) 
where superscript ‘0’ indicates the main chain mentioned in Subsection 4.1. Moreover, for the kth 
subchain of subsystem I, the 6 kn -dimensional vector of generalized twist, denoted as kt , is given by  

kk
d

k
l

kkk
l

k θNNtANt &+−= 00                (48) 

where the 6 kn ×6 kn  matrix, k
lN , and the 6 kn × kn  matrix k

dN  are the DeNOC matrices of the kth 

subchain, and 0
0 k
k tt ≡  is nothing but the twist of the kth body in the main chain, 0. The twist, 0

kt , can be 
obtained from eq. (47) as 



 
 

 28

0000 θNNt &
dlkk =               (49a) 

 where the 6×6 0n  matrix, 0
lkN , is given by 

[ ]ΟΟ1AAN LL 0
1

0
1

0
−≡ k,kk,lk           (49b) 

Substituting eq. (49a) into eq. (49b) yields 
kk

d
k
ld

k
l

k θNNθNNt && += 000 , where 0
0

0
lk

kk
l

k
l NANN −≡            (50) 

For other subchains one can similarly obtain eq. (50). Now, the generalized twist for the tree-type 
subsystem I, Fig. 16, i.e., the 6n-vector, t, can be expressed as 
 θ&Nt = , where dl NNN ≡               (51) 
where lnnnn k ++≡ 0 being the total number of moving bodies in the tree-type system and the 6n-
vector, t, n-dimensional vector,θ& , the 6n×6n matrix, lN , and the 6n×n matrix, dN , are defined by 

















≡
lt

t
t

t k

0

; 
















≡
l&

&

&

&

θ
θ
θ

θ k

0

; 
















≡
ll
ll

k
l

k
l

l

l

NΟN
ΟNN
ΟΟN

N
0

0

0

; and 
















≡
l
d

k
d

d

d

NΟΟ
ΟNΟ
ΟΟN

N

0

        (52) 

For additional subchains, one can modify the expressions of t, θ& , lN , and dN , as given in eq. (52). 
Equations (51-52) together provide the DeNOC matrices for the tree-type system at hand, which are 
used to reduce the dimension of the system’s NE equations of motion, as mentioned in Subsection 4.2. 
 
4.4 Numerical example: Carpet scrapping machine 

 
In this Subsection example of an eight-body carpet scraping machine developed to clean a carpet after it 
is woven (Saha et al., 2003) is shown in Fig. 18. Two mechanisms, namely, the Hoeken’s four-bar and 
the Pantograph, are used in this machine, as indicated in Fig. 18(b). The Hoeken’s mechanism is a 
crank-rocker mechanism whose coupler generates a partially straight path. The straight line stroke 
generated by the Hoeken’s mechanism is magnified by the Pantograph mechanism. The spanning tree of 
the mechanism is obtained by cutting the joints between links #1-#2, #2-#5, and #2-#7, of the closed-
loops, #0-#1-#2-#3, #0-#1-#2-#5-#4, and #0-#1-#2-#7-#6-#4, respectively. The resulting spanning tree, 
Fig. 19, has three subsystems, I, II, and III. The links and joints of the subsystems are now numbered as 
per the scheme described in Subsection 4.1. For example, link #3 in Fig. 18 is indicated in Fig. 19 as #1 
of subsystem I, i.e., link #I-1. Subsystem I has two moving links, #I-1 and #I-2, with 2-DOF. Subsystem 
II has one only moving link, #II-1, which is connected to its previous body, i.e., #0, at joint, II-1. Both 
the subsystems, I and II, are serial types, whereas subsystem III is tree-type with four moving links 
numbered as #III-10, #III-20, #III-30, and #III-11, which are coupled by four revolute joints denoted as, 
III-10, III-20, III-30, and III-11. Note that each subsystem originates from the base body, #0, which is 
fixed. Moreover, to avoid clumsiness in Fig. 19, the subsystems notations, I, II, and III are not used in 
the link and joint numbers. Furthermore, the joint angles 1θ and 2θ of subsystem II, 1θ of subsystem I, 
and 0

1θ , 1
2θ , 0

3θ , 1
1θ of subsystem III are treated as generalized coordinates. The input motion is provided 

to joint 1 of the subsystem, II, by applying torque τD, which needs to be calculated for the known motion 
of the mechanism. Additionally, three unknown vectors of Lagrange multipliers, iλ for i=1, 2, 3, as 
indicated in Fig. 18, are, 

T
yx λλ ][ 111 =λ , T

yx λλ ][ 222 =λ , and T
yx λλ ][ 333 =λ . 

Being the motion of the mechanism planar, the two components for each Lagrange multiplier, represent 
the reaction forces at the cut revolute joints. Hence, the total number of scalar unknowns is 7, namely, 
λ1x, λ1y, λ2x, λ2y, λ3x, λ3y, and τD. Note that the DOF of the spanning tree (subsystems, I, II, and III, plus 



 
 

 29

the base body) is also seven. Hence, the spanning tree is determinate. Next, a determinate subsystem is 
sought. Note that the subsystem, III, has four unknowns, λ2x, λ2y, λ3x, λ3y and four DOF. Hence, it is 
determinate, and one can solve for the four unknowns using the four constrained equations of motion for 
the subsystem, III. The associated matrix size is 4×4. In the next step, evaluated λ2x, λ2y, λ3x, λ3y are 
taken as known external forces to the subsystem, I, that make it determinate, where λ1x, λ1y are the 
unknowns and the DOF is two. Hence, the two unknowns can be solved using the constrained equations 
of motion for subsystem I.  Now, only τD remains as the unknown in subsystem II, which can be solved 
by one constrained equation of motion of the subsystem. The above three steps correspond to the 
subsystem approach of Subsection 4.2. 

 
  (a) Photograph               (b) Multiloop mechanism 

 
Figure 18 Carpet scraping machine 

 

 
Figure 19 Subsystems of spanning tree for the carpet scraping machine 

 
For the multiloop scraping mechanism shown in Fig. 18(b), the physical parameters are shown in Table 
5. They are used here to find the inverse dynamics result, namely, the driving torque of the mechanism. 

Pantograph 
mechanism 

Hoeken’s 
mechanism 

Scraping pad 

Carpet 

#0 

b

#7 

#4 

Y

X Path of E  

Path of C 

C

#3 

#2 

#0

#1 

#6 

#5 

E

#20 

#10 #11 

#30 #1 

#2 

#1 

#0 
Subsystem III Subsystem II Subsystem I 

10

30 

20 

11 

1 

2

1 

#0

#0 

0
1θ

0
2θ

1
1θ  

0
3θ  

2θ  

1θ  

C 

1θ

X 

Y 
C

C

2λ

3λ

- 2λ  

- 3λ  

B

B 

1λ  

- 1λ

τD 
E 



 
 

 30

The input motion provided to link #II-1 is a constant speed of 45 rpm (4.712 rad/s). The fixed frame, 
XYZ, is located at joint II-1, Fig. 19, where axis Z is perpendicular to the page. Joints I-1 and III-10 are 
located at (-0.089m, 0) and (0.038m, 0.410m), respectively. Joint between #I-1 and #II-2 is located at the 
mid of link #II-2. Joint III-11 is at 0.096m on link #III-10 from joint III-10. The result is shown in Fig. 20, 
which is compared with that obtained from the model developed using the commercial software, 
MSC.ADAMS 2005 (Automated Dynamic Analysis of Mechanical Systems). As per as the 
computational complexity of the present inverse dynamics algorithm is concerned, it is in the order of 
O(43/3+33/3+1), compared to O(213/3) using the traditional approach, i.e., the one based on the 
uncoupled NE equations of motion. Note here that no forward dynamics algorithm is presented here for 
the general closed-loop systems. However, it can be anticipated that the order of computational 
complexity for such algorithm for the carpet scrapping machine will also be O(43/3+33/3+1),  as the 
inversion of the associated inertia matrices would be involved. This implies that the order of 
computation is sum of the cubes of the number of bodies in all the subsystems, whereas, for a serial-
chain system, it is proportional to the number of the bodies in the chain. 
 

Table 5 Link parameters of the scraping machine 

Subsystem Link Length Mass 
Moment of inertia 

@ link origin 
  (m) (kg) (kg-m2) 
I 1 a1,2 =0.115 3.0 0.0133
 2 a2,B =0.115 5.0 2.212×10-2

II 1 aII-1,II-2 =0.038 1.5 7.258×10-4

10 0
12a =0.335 4.2 0.157

20 0
23a =0.239 10.5 2.449

30 0
,3 ca =0.239 3.0 0.057

III 

11 1
,1 Ba =0.239 3.0 0.057

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-100

-50

0

50

100

Time (sec)

To
rq

ue
 (N

-m
)

τD :Proposed
τD :ADAMS

 
Figure 20 Driving torque for the scrapping machine 

 
5 Conclusions 
 
This paper presents several recursive algorithms for serial, parallel, and general closed-chain multibody 
systems. Whereas both inverse and forward dynamics results for the first two categories were presented 



 
 

 31

the inverse dynamics results for the last category was presented. From the computational complexity 
point of view, these algorithms are very efficient when the number of bodies in a multibody system is 
large. Furthermore, if the numerical stability aspect, particularly, for realistic rendering during computer 
simulation, is considered these algorithms also perform well. 
 
Acknowledgements 
 
The author acknowledges some of the figures, tables, results, and texts, mainly, in Section 4, by Dr. 
Himanshu Chaudhary, which were generated during his Ph. D thesis work under the supervision of the 
author. 
 
References 
 
Anderson, K.S., and Critchley, J. H., 2003, “A Generalized Recursive Coordinate Reduction Method for 
Multibody System Dynamics,” Int. Journal for Computational Engineering, V. 1, N. 2&3, pp. 181-199. 
 
Angeles, J., 2003, Fundamentals of Robotic Mechanical Systems, Second Edition, Springer-Verlag, 
New York. 
 
Angeles, J. and Lee, S., 1988, “The Formulation of Dynamical Equations of Holonomic Mechanical 
Systems Using a Natural Orthogonal Complement,” ASME Journal of Applied Mechanics, V. 55, N. 1, 
pp. 243-244. 
 
Angeles, J., and Ma, O., 1988, “Dynamic simulation of n-axis serial robotic manipulators using a natural 
orthogonal complement," Int. J. Rob. Res., V. 7, N. 5, pp. 32-47. 
 
Angeles, J., Ma, O., and Rojas, A., 1989, “An algorithm for the inverse dynamics of n-axis general 
manipulator using Kane's formulation of dynamical equations," Computers and Mathematics with 
Applications, V. 17, N. 12, pp. 1545-1561. 
 
Armstrong, W.W., 1979, “Recursive solution to the equations of motion of an n-link manipulator," Proc. 
5th World Cong. on Th. Mach. and Mech. (ASME), Montreal, Canada, V. 2, pp. 1343-1346. 
 
Ascher, U.M., Pai, D.K., and Cloutier, B.P., 1997, “Forward dynamics, elimination methods, and 
formulation sti_ness in robot simulation," Int. J. Rob. Res., V. 16, N. 6, pp. 749-758. 
 
Bae, B., and Haug, E.J., 1987a, “A recursive formulation for constrained mechanical system dynamics: 
Part I. Open loop systems," Mech. Struct. & Mach., V. 15, N. 3, pp. 359-382. 
 
Bae, D.,  and Haug, E.J., 1987b, “A recursive formulation for constrained mechanical system dynamics: 
Part II. Closed loop systems," Mech. Struct. & Mach., V. 15, N. 4, pp.481-506. 
 
Bae, D., Han, J.M., and Yoo, H.H., 1999, “A generalized recursive formulation for constrained 
mechanical system dynamics," Mech. Struct. & Mach., V. 27, N. 3, pp. 293-315. 
 
Bhangale, P.P., Saha, S.K., and Agrawal, V.P., 2004, “A dynamic model based robot arm selection 
criterion,'' Int. J. of Multibody System Dynamics, V. 12, N. 2, pp. 95-115. 
 



 
 

 32

Blajer, W., Schiehlen, W., and Schirm, W., 1993, “Dynamic analysis of constrained multibody systems 
using inverse kinematics," Mech. and Mach. Th., V. 28, N. 3, pp. 397-405. 
 
Brauchli, H., and Weber, R., 1991, “Dynamical equations in natural coordinates," Computer Meth. in 
Appl. Mech. and Eng., V. 91, pp. 1403-1414. 
 
Chaudhary, H., and Saha, S.K., 2007, “Constraint wrench formulation for closed-loop systems using 
two-level recursions,” ASME J. of Mechanical Design, V. 129, Dec., pp. 1234-1242. 
 

Craig, J.J., 1986, Introduction to Robotics: Mechanics and Control, Addison-Wesley. Singapore. 

 
Cyril, X., 1988, Dynamics of Flexible-Link Manipulators, Ph. D thesis, McGill University, Canada. 
 
Denavit, J., and Hartenberg, R.S., 1955, “A kinematic notation for lower-pair mechanisms based on 
matrices," ASME J. Appl. Mech., V. 77, pp. 215-221. 
 
Featherstone, R., 1983, “The calculation of robot dynamics using articulated-body Inertias," Int. J. Rob. 
Res., V. 2, N. 1, pp. 13-30. 
 
Featherstone, R., 1987, Robot Dynamics Algorithms, Kluwer Academic Publishers. 
 
Fijany, A., Sharf, I., and D'Eleuterio, M.T.D., 1995, “Parallel O(logN) algorithms for computation of 
manipulator forward dynamics, IEEE Trans. on R&A, V. 11., N. 3. 
 
Ghorbel, F., Chetelat, O., and Longchamp, R., 1994, “A reduced model for constrained rigid bodies with 
application to parallel robots," IFAC Robot Control (Proc. 4th Symp. On Robot Control, Capri, Italy), 
pp. 45-50. 
 
Hiller, M., 1995, “Multiloop kinematic chains," Kinematics and Dynamics of Multi-body Systems (Ch. 
4), in J. Angeles and A. Kecskemethy (editors), Springer-Verlag, New York. 
 
Hollerbach, J.M., 1980, “A recursive Lagrangian formulation of manipulator dynamics and a 
comparative study of dynamics formulation complexity," IEEE Trans. on Sys., Man, and Cybernatics, 
V. SMC-10, pp. 730-736. 
 
Huston, H., and Passerello, C.E., 1974, “On constraint equations--A new approach," ASME J. Appl. 
Mech., V. 41, pp. 1130-1131. 
 
Kamman, J.W., and Huston, R.L., 1984, “Dynamics of constrained multibody systems," ASME J. Appl. 
Mech., V. 51, Dec., pp. 899-903. 
 
Kane, T.R., and Levinson, D.A., 1983, “The use of Kane's dynamical equations for robotics," Int. J. 
Rob. Res., V. 2, N. 3, pp. 3-21. 
 
Khan, W.A., Krovi, V.N., Saha, S.K., and Angeles, J., 2005, “Recursive kinematics and inverse 
dynamics for a planar 3R parallel manipulator,” ASME Journal of Dynamic Systems, Measurement and 
Control, V. 27, N. 4, pp. 529-536. 
 



 
 

 33

Luh, J.Y.S., Walker, M.W., and Paul, R.P.C., 1980, “On-line computational scheme for mechanical 
manipulators," ASME J. Dyn. Sys., Meas., and Cont., V. 102, pp.69-76. 
 
McPhee, J. J., 1996, “On the use of linear graph theory in multibody system dynamics,” Nonlinear 
Dynamics, V. 9, pp. 73-90. 
 
Mohan, A., and Saha, S.K., 2007, “A recursive, numerically stable, and efficient simulation algorithm 
for serial robots,” Int. J. of Multibody System Dynamics, V. 17, N. 4, May, pp. 291-319. 
 
Nikravesh, P. E. and Gim, G., 1993, “Systematic construction of the equations of motion for multibody 
systems containing closed kinematic loops,” Journal of Mechanical Design, V. 115, pp. 143-149. 
 
Pratap, R., 2002, MATLAB 6: A Quick Introduction for Scientists and Engineers, Oxford University 
Press, New York. 
 
Press, W.H., Teukolsky, S.A., Vellerling, W.T., and Flannery, B.P., 1997, Numerical  Recipes in C, 
Cambridge University Press, 2nd Ed., New Delhi. 
 
Rodriguez, G., 1987, “Kalman filtering, smoothing, and recursive robot arm forward and inverse 
dynamics," IEEE Trans. on R&A, V. RA-3, N. 6, pp. 624-639. 
 
Rodriguez, G., and Kreutz-Delgado, K., 1992, “Spatial operator factorization and Inversion of the 
manipulator mass matrix," IEEE Trans. on R&A, V. 8, N. 1, pp. 65-76. 
 
Saha, S.K., 1997, “A decomposition of the manipulator inertia matrix,” IEEE Trans. on R&A, V. 13, N. 
2, Apr., pp. 301-304. 
 
Saha, S.K., 1999a, “Dynamics of Serial Multibody Systems Using the Decoupled Natural Orthogonal 
Complement Matrices,” ASME Journal of Applied Mechanics, V. 66, pp. 986-996. 
 
Saha, S.K., 1999b, “Analytical Expression for the inverted inertia matrix of serial robots,'' Int. J. of Rob. 
Res., V. 18, N. 1, Jan., pp.116-124. 
 
Saha, S.K., and Angeles, J., 1991, “Dynamics of nonholonomic mechanical systems using a natural 
orthogonal complement," ASME J. Appl. Mech., V. 58, Mar., pp. 238-243. 
 
Saha, S.K., and Schiehlen, W.O., 2001, “Recursive kinematics and dynamics for closed loop multibody 
systems,” Int. J. of Mechanics of Structures and Machines, V. 29, N. 2, pp.143-175. 
 
Saha, S. K., Prasad, R., and Mandal, A.K., 2003, “Use of Hoeken’s and Pantograph mechanisms for 
Carpet Scraping Operations,” Proc. of 11th Nat. Conf. On Machines and Mechanisms, Dec. 18-19, IIT 
Delhi, pp. 732-738. 
 
Saha, S.K., Shirinzadeh, B., and Alici, G., 2006, “Dynamic model simplification of serial manipulators,” 
CD-Proc. of the Int. Symp. on Robotics and Automation, San Miguel Regla Hotel, Hgo, Mexico, Aug. 
25-28, pp. 14-19. 
 



 
 

 34

Schiehlen, W., 1990, “Multibody systems and robot dynamics," RoManSy 8 (Proc. 8th CISM-IFToMM 
Symp. on Theory and Practice of Robots and Manipulators), Ed: A. Morecki, et. al., Warsaw Univ. of 
Tech. Publ., Warsaw, pp. 14-21. 
 
Schielen, W., 1991, “Computational aspects in multibody system dynamics," Computer Methods in 
Applied Mechanics and Engineering, V. 90, N. 1-3, pp. 569-582. 
 
Sciavicco, L, and Siciliano, B., 1996, Modeling and Control of Robot Manipulators, McGraw-Hill, New 
York. 
 
Shabana, A. A., 1994, Computational Dynamics, John Wiley & Sons, Inc., New York 
 
Stejskal, V., and Valasek, M., 1996, Kinematics and Dynamics of Machinery, Marcel Dekker, Inc., New 
York. 
 
Stewart, G.E., 1973, Introduction to Matrix Computations, Academic Press, Inc., New York. 
 
Walker, M.W., and Orin, D.E., 1982, “Efficient dynamic computer simulation of robotic mechanisms," 
ASME J. Dyn. Sys., Meas., and Cont., V. 104, Sept., pp. 205-211. 
 
Wehage, R.A., and Haug, E.J., 1982, “Generalized coordinate partitioning for dimension reduction in 
analysis of constrained dynamic systems," ASME J. Mech. Des., V. 104, pp. 247-255. 
 
 


