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Abstract 

A simple upper bound for the variance of the frequency estimates in a multivariate tariff using class criteria is 
deduced. This upper bound is based exclusively on univariate statistics and can therefore be calculated before a 
GLM analysis is carried out. It can be used to estimate the number of claims that will be needed for a tariff 
calculation depending on the number of tariff criteria and the number of levels of each criterion. 
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1. Introduction 

When the estimate of the Poisson parameter for identical risks is required to lie close to the 
true value (e.g. within 10%) with high probability (e.g. 95%) the number of observed claims 
must exceed a certain minimum which can be determined in a straightforward way. Let h be 
the Poisson parameter, s the number of risks, N the Poisson-distributed number of claims and 
n an observation of N, i.e. the observed number of claims. This means 

(1) Prob { 1 N/s-h 1 gch} 2p 

when we write c and p instead of 10% and 95%. 

Using the normal approximation with expected value and variance equal to hs and rewriting 
(1) as 

Prob{l N-hs I /d(hs)lcd(hs)}2p 

we have 

in our example with c-0.1 and p=0.95 and hence hs1384.16. This means the expected 
number of claims must exceed 384.16. Estimating the expected hs by the observed number n 
we thus get e384.16. Applying this result to the calculation of a tariff for identical risks one 
needs a sample with at least 385 claims (or any other minimum depending on appropriate 
values for c and p) in order to determine the claims frequency with the precision required. 
To the author’s knowledge no such rules guaranteeing sufficient precision are known in the 
case of tariffs using several rating criteria. It is intuitively clear that the minimum sample size 
will increase as the number of criteria increases but whether or not the available data is 
extensive enough is not known in advance. Often only after time-consuming analyses does 
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one discover that the statistical basis for the calculation of a sophisticated tariff was in fact 
too small. 
The purpose of the present paper is to give simple rules for checking whether or not the 
available sample is large enough to allow the frequencies of a multivariate tariff to be 
calculated. 

y =  

2. Notation 

- 
Y1 

. 

-Yn 

We use the following notation: 

Poisson-distributed random number of claims of risk i (i = 1, ...., n) 

i x i j b j  
(2) 1. - - J = I  

Xi is the Poisson parameter of risk i. (2) shows that we assume the dependence of the 
expected number of claims on the tariff criteria to be multiplicative. The Xij are called 
covariates, the bj parameters. In the following we assume Xil=l for all i. In this case the first 
parameter bl  is called intercept. 

1 -  

observed number of claims of risk i 

-hi Yi 
f(yi, b) = e / yi! probability for risk i to have yi claims 
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ln(b, y) = C log fQi, b) log-likelihood function of b 

For ln(b, y) to reach a maximum, the r partial derivatives with respect to bl ,  ......, br must be 
equal to 0. If we replace the observations yi by the random variables Yi in ln(b, y) the partial 
derivatives are also random variables. Let Un(b) be the vector of the partial derivatives which 
is also called the score vector. Because the Yi are Poisson-distributed this vector is 

i=l 

If we require the partial derivatives of In(b, Y) to be equal to 0, then the resulting bl ,  ......, br 
are also random variables which we designate as B1, ......., Br and, when arranged in vector 
form, as B. 
Because the Yi are independent and because Var(Yi)= Xi, the covariance of two elements of 
the score vector Un(b), for instance the first and the second, is equal to 

Let Q be the rr-matrix with elements as in (3), i.e. Q=Cov(Un(b)). In maximum likelihood 
theory, it is shown that the distribution of the vector B, i.e. of the estimators of the 
parameters bl ,  ......, br, is asymptotically normal (as n + oo), and that the inverse of Q tends 
to the covariance matrix of B: 

Q-1 - Cov(B) 

3. The case of class variables with 2 levels 

Following the example in the introduction the estimate for every frequency should be 
close, e.g. within cG (e.g. c=O.l) to the true value with high probability (e.g. 95%). For 
practical purposes we assume B actually follows a joint normal distribution with covariance 
matrix Q-1 although this holds true only asymptotically. In this case, according to (2), the 
logarithm of the frequency of risk i is the sum of r normally distributed variables xij Bj and 
therefore also normally distributed. The probability of the estimate of ki to lie tolerably close 

to its expected value depends on the variance of C xi, Bj. Writing M for Q-1 with elements 
mjk we have 
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(4) var(CXij -Bj )  = C C X i j  'Xik -mjk . 
j j k  

When the tariff criteria take on only two values, e.g. the driver's sex which is male or female, 
the place of residence (rural or urban), the car size (big or small), the engine size (large or 
small) and so on, then the covariates Xij have only two possible values for which it is 
convenient to choose 0 and 1. Thus Xij =1 when risk i meets criterion j and Xij = 0 otherwise. 
As can be seen from (3), in this case the elements qjk of Q represent the expected numbers of 
claims of risks which simultaneously meet criteria j and k. Now consider a particular risk i 
and assume, without loss of generality, Xij =1 forj=l, ..., r. This means (4) becomes 

There exists an upper bound for this variance since, as we are going to show in the following 

( 5 ) C C r n j k  I l/q11 +l/q22 +..........+ l/q, 

j k  
Note that the qjj on the right side of the sign of inequality are the expected numbers of claims 
of risks which meet criterion j and can be estimated with simple univariate statistics. 
Before proving ( 5 )  let us look at a numerical example which is known to all readers who have 
learnt the theory of generalised linear models using SAS. In the Technical Report P-243 [2] 
the following example is given: 

risks claims car type age group 
500 42small 1 

1200 37 medium 1 
100 1 large 1 
400 101 small 2 
500 73medium 2 
300 14 large 2 

Suppose we are interested in the variance of the logarithm of the frequency estimate for risks 
with small cars and age group 1. In order to include an intercept term in the model we define 
xi1 =1 for all i. Combining the car types medium and large into a new type ,,not small" we 
define xi2 =1 if the car type is small and xi2 =O if it is not small; likewise xi3 =1 if the age 
group is 1 and xi3 =O if it is 2. Estimating the expected numbers of claims in Q by the 
observed numbers we get 

small- and - age1 

age1 agel 1 small 
Q = small small [ small-and-agel 

or, numerically instead of informally, 
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268 143 80 
Q =  143 143 42 [ 80 42 80) 

x =  

According to (5) the variance of the logarithm of the frequency estimate is at most equal to 
1/268+1/143+1/80 = 0.02322. A check with the covariance matrix in appendix 1 shows that a 
computer run does actually give a lower value for the estimated variance, namely 0.01645. 

- 
X1 

. 

_XI 

In order to prove (5) we use some results from section 6 of chapter I11 (Normal Densities and 
Distributions) of the second volume of Feller [l]. The definitions of r, Q and M used in this 
article are the same as in Feller, whereas the random variables Bj - E(Bj) correspond to Xj in 
Feller's notation. From (3) it is seen that our covariance matrix Q has the following 
properties: 

(6) qj, > 0 for j=l,  ...., r 

According to Feller's 6.2 Q defines the density of an r-dimensional normal distribution cp(x): 

The vector of the r normally distributed random variables Xi,  ......, X,, 

has expectation E(X)=O and Cov(X)=Q-' . The marginal distributions have 

(8) Vfl j )= l  /qjj. 
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Since Feller's variables Xj are OUT Bj - E@j) proving relation (5) is the same as proving 
(9) Vm(X1 + X2 + ............. + Xr) 5 l/ql l+l/q22+ ......... + 1/e ,  . 

We prove (9) by induction. For r-1 (9) reduces to (8) and is true. Assume it is true for r-1. As 
Feller shows (6.13) for the conditional variable Xr I Xi ,  ...... Xr-1 

Therefore 

Put for abbreviation Cj = (4, - qjr)/q, . 
Since for arbitrary conditional random variables X I Y the relation 

Var(X) = E[Var(X I Y)] + Var[E(X I Y)] holds we have 

....... + Xr) = 1/ q + Var(c1 -Xi + .......... + cr-l. Xr-l). We look for the coefficients 
cj which maximise this variance. Because of (6) and (7) we have 0 5 cj 5 1. Since for every j 
(j=1, ...., r-1) the second derivative 

Var(X1 + rr 

.......... + Cr-1Xr-l) = 2Var(X j )  > 0 

the variance Var(c1 *Xi + .......... + 
are ordered appropriately then 

Xr-1) is maximal either for cj = 0 or cj = 1. If the Cj 

c1 = ........ = cs = 1, where s I r-1. The remaining cj = 0 (forj>s). Thus 

4. Class variables with more than 2 levels 

Class variables may assume more than two levels. For example the variable ,,car size" in [2] 
can have one of the three levels ,,small", ,,medium" or ,,large". A class variable v with k 
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levels (k>2) can be replaced by k -1 variables each having only 2 levels in the following 
way: call the k levels 11, .... lk and define the covariates for k-1 2-level-variables as 

Q =  

xl=l if v=ll 
0 otherwise 

143 143 143 42 
253 143 253 79 

x2=1 if v E {11,12} 
0 otherwise 

...................... 
xk-1'1 if v E (11, 12 ............ lk-11 

0 otherwise 

This one-to-one relation of a k-level-variable and k-1 2-level-variables makes it possible to 
apply the procedure of the previous section in the estimation of an upper bound for the 
variance of a claim frequency also to the case of general class variables. We illustrate this 
again using the numerical example from [2]. 

Suppose we are again interested in the variance of the logarithm of the frequency estimate for 
risks with small cars and age group 1. This time, however, we do not combine the car types 
medium and large into a new type but keep them separate. We define 

xl=l for the intercept term 

x2=l if car size = small 
0 otherwise 

x3=l if car size e (small, medium} 
0 otherwise 

q = 1  if age group=l 
0 otherwise 

Estimating the expected numbers of claims by inserting the observed numbers in the matrix 
Q we have 

(268 143 253 80 

(80  42 79 80 

According to (5) the variance of the logarithm of the frequency estimate is at most equal to 
1/268+1/143+1/253+1/80 = 0.2718 which is higher than the value one gets from the 
covariance matrix in appendix 2, namely 0.01737. 
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5. An upper bound for the minimum number of observed claims needed in a sample 

Suppose a tariff calculation is based on a sample which contains q claims and consider a class 
variable with k levels. The upper bound ( 5 )  of the variance will be the same for all tariff 
segments if the same number of claims have been observed for each level, i. e. qk .  Now let 
us replace the class variable by k-1 2-level-variables as in section 4. The numbers of observed 
claims corresponding to these 2-level-variables are q k ,  2qk, 3qk, .....,(k - l)q/k. They will 
appear in the main diagonal of the matrix Q when we use (5).  This applies to all r class 
variables. Let kj be the number of levels of variable number j. Bearing in mind that kl=l and 
q11=q because of the intercept we obtain for the right hand side of (5) 

(1 0) l/q.[ 1 +k2.( 1 +1/2+ ID+.. .... + l/(k2-l))+ ............ + kr-( 1 + 1/2+1/3+ ... ...+ l/(kr-l))]. 

We now return to the problem stated in the introduction: the estimate of ki should lie with 
high probability p (e.g. 95%) close to its expected value (e.g. within 10%). This means, 
writing c for lo%, the estimate 

Bi+B2+.. 
e 

....+ Br b l + b +  .... 
should not be lower than (1 -c)- e 

.+br 
or higher than 

b 1 +b2+. ... .+br 
(l+c). e 
distribution should not deviate from its expected value by more than log( 1 -c). This defines 
the limit for the standard deviation of B1+B2+ ....+ Br: let zp be the value defined by 
Prob(lZI5 zp}=p, where Z follows the standard normal distribution (in the example with 
p=0.95 and c=O. 1,3=1.96). Then we get from (1 0) if we call the expression in brackets u, 

. Consequently the exponent Bi+B2+ ....+ Br which follows a normal 

u=[ 1 +k2.( 1 + 1/2+ 1/3+. ... ..+1 /(k2- 1 ))+.. ......... .+ kr.( 1+1/2+1/3+ ...... + l/(k= 1 ))I, 

(1 1) q = z&dlog[( 1-c)] 2 

As a numerical example take again the motor insurance sample from [2] (see section 3). 
Suppose c=O.1 and $=1.96. There are 3 car size levels and 2 age group levels, so k2=3 and 
k3=2. Hence from (10) u=7.5 so that (1 1) yields q=2,595. 
Note that the necessary number of claims could be higher than the value q given in (1 1) if the 
number of claims corresponding to the various class levels is not the same for each level of 
the same class. In this case, the sample size needed can be determined assuming the 
composition of the sample remains the same. In the example taken from [2] the segment of 
large cars and age group 1 has the highest upper bound of the variance because it contains the 
lowest number of claims. Using the method of section 4 we define 

x2=l if car size = large 
0 otherwise 

x3=l if car size E {small, large} 
0 otherwise 

and leave xi and x4 unchanged. Then Q becomes 
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(268 15 158 80 
15 15 15 1 
158 15 158 43 

( 8 0  1 43 80 

The upper bound of the variance, i.e. the sum of the reciprocal diagonal elements, is 0.08923. 
Let us call this sum v and the factor with which each qjj is to be multiplied in order to get the 
sufficiently large sample f. Similarly to (1 1) we have in this case 

f = z+/log[( 1 -c)] 2 

or in our numerical example f = 30.88. The sample size needed is thus 30.88 times larger than 
the given sample with a total number of claims of 268 f = 8,276. 
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Appendix 1 

data insure; 
i n p u t  n c car$ age; 
l n= log (n ) ;  
cards; 
500 42 smal l  1 
1200 37 notsmal l  1 
100 1 notsmal l  1 
400 101 sma l l  2 
500 73 notsmal l  2 
300 14 notsmal l  2 

The GENMOD Procedure 

Model In format ion 

Desc r ip t i on  Value 

Data Set 
D i s t r i b u t i o n  
L ink  Function 
Dependent Var iab le 
O f f s e t  Var iab le 
Observations Used 

WORK.INSURE 
POISSON 
LOG 
C 
LN 
6 

Class Level  In format ion 

Class Levels Values 

CAR 2 notsmal l  smal l  
AGE 2 1 2  

Parameter In format ion 

Parameter E f f e c t  CAR AGE 

PRM1 INTERCEPT 
PRM2 CAR notsmal l  
PRM3 CAR smal l  
PRM4 AGE 1 
PRM5 AGE 2 
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C r i t e r i a  For Assessing Goodness Of F i t  

C r i t e r i o n  DF Value Value/DF 

Deviance 3 21 .7570 7.2523 
Scaled Deviance 3 21.7570 7.2523 
Pearson Chi-square 3 19.5238 6.5079 
Scaled Pearson X2 3 19.5238 6.5079 
Log L ike l ihood 827.9851 

Analysis O f  Parameter Estimates 

Parameter DF Estimate Std  E r r  ChiSquare Pr>Chi 

INTERCEPT 1 - 1 .3472 0.0912 218.0410 0.0001 
CAR notsmal l  1 - 0.9064 0.1227 54.5936 0.0001 
CAR s m a l l  0 0.0000 0.0000 
AGE 1 1 - 1 .2034 0.1337 80.9743 0.0001 
AGE 2 0 0.0000 0.0000 
SCALE 0 1 . 0000 0.0000 

Estimated Covariance M a t r i x  

Parameter 
Number PRMl PRY2 PRM4 

PRMl 0.008324 -0.006725 -0.004879 
PRM2 -0.006725 0.01505 -0.000984 
PRM4 -0.004879 -0.000984 0.01788 

Var(intercept + agel) = 0.008324 - 2.0.004879 + 0.01788 
= 0.016446 
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Appendix 2 

data insure;  
i n p u t  n c car$ age; 
l n= log (n ) ;  
cards; 
500 42 smal l  1 
1200 37 medium 1 
100 1 l a r g e  1 
400 101 sma l l  2 
500 73 medium 2 
300 14 l a r g e  2 

The GENMOD Procedure 

Model In format ion 

Desc r ip t i on  Value 

Data Set WORK.INSURE 
O i s t  r i b u t  i o n  POISSON 
L ink  Function LOG 
Dependent Var iab le C 
O f f se t  Var iab le LN I 

Observations Used 6 

Class Level  In format ion 

Class Levels Values 

CAR 3 l a r g e  medium smal l  
AGE 2 1 2  

Parameter In format ion 

Parameter E f f e c t  CAR AGE 

PRMl INTERCEPT 
PRM2 CAR l a r g e  
PRM3 CAR medium 
PRM4 CAR sma l l  
PRM5 AGE 1 
PRM6 AGE 2 
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C r i t e r i a  For Assessing Goodness O f  F i t  

C r i t e r i o n  DF Value Value/ DF 

Deviance 2 2.8207 1.4103 
Scaled Deviance 2 2. a207 1.4103 
Pearson Chi-square 2 2.8416 1.4208 
Scaled Pearson X2 2 2.8416 1 .4208 
Log L i ke l i hood  837.4533 

Analys is  O f  Parameter Estimates 

Parameter 

INTERCEPT 
CAR l a r g e  
CAR medium 
CAR smal l  
AGE 1 
AGE 2 

Parameter 
Number 

PRMl 
PRM2 
PRM3 
PRM5 

Var(intercept + agel) = 0.008150 
= 0.017374 

DF Estimate S td  E r r  

1 -1.3168 0.0903 
1 - 1 .7643 0.2724 
1 - 0.6928 0.1282 
0 0.0000 0.0000 
1 -1.3199 0.1359 
0 0.0000 0.0000 

Estimated Covariance Ma t r i x  

Chisquare Pr>Chi 

212.7321 0.0001 
41 .9587 0.0001 
29.1800 0.0001 

94.3388 0.0001 

PRMl PRM2 PRM3 PRM5 

o.ooai50 -0.007772 -0.006344 -0.004623 
-0.007772 0.07418 0.006556 o.003113 
-0.006344 0.006556 0.01645 -0.002592 
-0.004623 0.003113 -0.002592 0.01847 

2.0.004623 + 0.01 847 
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