
Beyond SynFloods: Guarding Web Server Resources from DDoS Attacks

Srikanth Kandula Shantanu Sinha Dina Katabi Matthias Jacob
kandula@mit.edu ssinha@mit.edu dk@mit.edu mjacob@cs.princeton.edu

Problem. Denial-of-Service attacks on web servers take many forms.
In this paper, we look at a new breed of application-level attacks. An
attacker compromises a large number of dummy clients (by means of
a worm, virus or Trojan horse) and causes the clients to flood the web
server with well-formed HTTP requests that download large files or
generate complex database queries. Such requests cause theweb server
to expend costly server resources like sockets, disk bandwidth, database
sub-system bandwidth and worker processes on these dummy users. As
a result, performance seen by legitimate users will degrade, eventually
leading to denial of service. These attacks are hard to counter as the
malicious requests are indistinguishable from legitimate requests at the
server. Further, the dummy requests arrive from a large number of
geographically distributed machines; thus, they cannot befiltered on
source IP addresses or arrival patterns.

Prior work has looked at network/transport level DDoS attacks such
as SYN flood and bandwidth attacks [1] and proposed a few solu-
tions [2], [3]. We assume that a subset of these solutions protect a
web server from both SYN flood and bandwidth attacks and focuson
application-level attacks.

Approach. Despite the distributed nature of clients participating in a
DDoS attack, typically a small group of human operators initiates and
manages the attack. By requiring the clients to interact with their hu-
man operator before they access server resources, we limit the speed of
the DDoS attack and make the human attacker a shared bottleneck.

In our system, a web-server can be in either of two modes, NOR-
MAL and UNDER ATTACK. The server behavior is unchanged in
NORMAL mode. When the web server perceives resource depletion
beyond an acceptable limit it shifts to the UNDERATTACK mode.
In this mode, the server continues to serve connections thatwere es-
tablished during the NORMAL mode. The server asks new clients to
solve a puzzle that is easy to solve by a human but difficult to compute
by a machine, before providing access to the system. Depending upon
the desired level of protection, the puzzle could be a variation on the
following text: “We are suspecting a DDoS attack on Foo. To access
Foo, type in the text boxKEYi after replacing the number 6 by 2” or a
URL embedded in an image - a CAPTCHA [4]. Keys are large strings
chosen randomly from a large and sparsely populated space, such that,
it is unlikely that a client will be able to guess a valid key.

One concern is that the user might not be willing to solve the puz-
zle. In this case, our system behaves like current systems which handle
these attacks by asking the user to “come back later”. The user can still
choose to ignore the puzzle and “come back later”; solving the puzzle
enables the user immediate access to the server.

Challenges. Incorporating a human in the loop has been used to counter
automated user account creation and e-mail spam. However, using this
approach to prevent a DDoS attack on web server resources is different
due to the following challenges.
1. The puzzle should be sent and validated without allocating any
TCB’s or sockets at the server, while ensuring correct TCP congestion
control semantics.
2. The client’s TCP stack and the browser should not be modified.
3. Mechanism should be transparent to web caches.
4. A normal user would have to manually enter the key just once per
browsing session, potentially consisting of multiple TCP connections.
5. If the system is experiencing a flash crowd rather than a DDoS at-
tack, the mechanism should be benign.

6. Validation should be independent of the source IP address asmali-
cious users could share IP with ordinary users due to NAT or spoofing.
7. One puzzle allows access to only one client, so it is useless for an
attacker to solve a puzzle and distribute it to a large numberof worms.
8. Switching from NORMAL to UNDERATTACK mode (and vice
versa) should be inexpensive and transparent to ongoing sessions.
9. Mechanism should work when requests are handled by a server farm.

Ongoing Implementation. We are working on an implementation run-
ning Apache on Linux to address the above challenges - some as-
pects of which are discussed below. Currently, we use CAPTCHA-
like images(1-2 pkts) as puzzles but are experimenting withnatural
language puzzles which are smaller in size. The puzzle is returned
in an HTML form. To solve the puzzle, a human user types the an-
swer(key) and submits the form creating an HTTP request contain-
ingGET /validate?answer=KEYi. On a new connection request
(i.e. SYNs to the web server), we want to send a puzzle and validate the
key without allocating any TCB’s or sockets at the server. The server
responds to SYN packets with a SYN Cookie. The client receives the
SYN cookie, increases its congestion window to two packets,trans-
mits a SYNACKACK and the first data packet that usually contains
the HTTP request. The kernel at the server end does not createa new
socket upon completion of the TCP handshake. Instead the SYNACK-
ACK packet is discarded. When the server receives the client’s data
packet, if the header of the HTTP request is not of the formGET
/validate?answer=KEYi, then this packet begins an HTTP ses-
sion and is not an attempt at validating a key. The server replies with
a new puzzle (1-2 pkts) as the HTTP response and immediately resets
the connection (using the TCP RST flag). Otherwise, the kernel checks
the cryptographic validity of the key. If the check succeeds, a socket
is established and the request is delivered to the application. Note that
this scheme preserves TCP congestion control semantics andprevents
attacks that hog TCB’s and sockets by establishing connections that
exchange no data.

The above scheme creates the following per-session overhead when
the server is in UNDERATTACK mode; two hashes to validate the
answer, a few memory accesses to look at HTTP headers, fetching a
puzzle and sending it to the client. To ensure that a user needs to solve
a puzzle once even if the session contains multiple HTTP 1.0 connnec-
tions, the server uses a cookie at the client. Again note thatthe attacker
cannot mount an attack by replicating a cookie because each cookie is
mapped to a single key and the server constrains the number ofconnec-
tions using the same key to be small (e.g. four).

Assuming that worms are not equipped with OCR software or natu-
ral language parsers, the rate at which malicious clients gain access is
equal to the rate at which the human operators solve puzzles.To pre-
vent attackers from distributing one puzzle’s answer to a herd of clients,
the server constrains the number of active TCP connections per key.

REFERENCES

[1] CERT, “Cert advisory ca-2001-19 code red worm exploiting buffer overflow in iis indexing service
dll,” 2002.

[2] Livio Ricciulli, Patrick Lincoln, and Pankaj Kakkar, “Tcp syn flooding defense,” .
[3] Thomer M. Gil and Massimiliano Poletto, “MULTOPS: A Data-Structure for bandwidth attack de-

tection,” pp. 23–38.
[4] L. von Ahn, M. Blum, N. Hopper, and J. Langford, “Captcha:Using hard ai problems for security,” .


