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Abstract. The control of underwater explosions is an industrial concern. In this paper, a comparison of 

experimental and numerical results of high-pressure generation using underwater explosion of spiral 

detonating cord is presented. To demonstrate that the converging process of underwater shock wave yields 

high pressure near the spiral center, the experimental investigation aims to compare underwater shock wave 

pressures obtained with several detonating cord geometrical configurations and study the wave converging 

process for a spiral cord. Because the experimental approach of these fast transient events is expensive and 

time-consuming, numerical simulations of experimental cases by using multi-material Eulerian formulation 

are carried out. The multi-material Eulerian, which is a particular multi-material ALE (Arbitrary Lagrangian 

Eulerian) formulation was successfully used in many industrial applications involving computational fluid 

dynamic problems. By using an explicit finite element method, a good agreement between numerical and 

experimental results will valid multi-material Eulerian formulation abilities to solve accurately underwater 

shock wave problems for spiral detonating cord in various shapes. 

Introduction 

In recent years, the various processing ways using shock waves from explosions in water results in new 

industrial developments as non-thermal food sterilization [1], punching technique [2], and others. It is 

necessary to make a control of underwater shock wave to meet the industrial demands. The controls include 

the convergence of underwater shock waves by an appropriate technique and the adjustment of the pressure 

distribution of shock wave in the application. 

This study mainly focuses on the numerical investigations on the underwater explosion of detonating cord 

in a spiral shape to obtain the converging underwater shock wave in comparison with the experimental results 

[3,4]. Detonating cord is a high velocity non-electric blasting accessory, flexible, easy to use and extremely 

safe. Detonating cord has a core of pentaerythritoltetranitrate (PETN) covered with various layers of cotton 

yarns and synthetic fibers. PETN is one of the strongest known high explosives. The explosion of the spiral 

detonating cord will be expected to result in the convergence of shock available at the nearby of the spiral 

center, which generates the high shock pressure. 

In recent years, the necessity for numerical analysis has been increasing. The numerical investigation 

described in this paper aims to model this physical phenomenon by using a multi-material Eulerian scheme. 

This formulation has already been used with success in the simulation of fluid with large motion such as the 

impact and penetration problems [5]. The main advantage of the Eulerian method is that the time steps can 

remain roughly constant during simulations in contrast to the Lagrangian formulation where the mesh 

undergoes large deformations in explosions problems. Because a hydrodynamic material model requires an 

equation of state to define the pressure-volume relationship, we use the Jones-Wilkins-Lee-Baker equation of 

state for detonating cord while the Mie-Grüneisen equation of state is used for water model. The comparison 

between numerical and experimental results will demonstrate the capability of the multi-material Eulerian 

method to treat underwater explosions for detonating cord in several forms. 

Multi-material Eulerian formulation 

The multi-material Eulerian method means that the material flows through a fixed mesh and two or more 

different materials can be mixed within the same fixed mesh. 
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Table 1 JWLB parameters for detonating cord 
A1 

(Mbar) 

A2 

(Mbar) 

A3 

(Mbar) 

A4 

(Mbar) 

R2 R1 R3 

 

R4 

521.96 71.104 4.4774 0.97725 8.7877 44.169 25.072 2.2251 

 

C 

(Mbar) 
ω Aλ1 Bλ1 Rλ1 Aλ2 Bλ2 Rλ2 

0.1570 0.32357 12.257 52.404 43.932 8.6351 -4.9176 2.1303 

 

Lagrangian phase. A Lagrangian phase is performed, in which the mesh moves with the material, in this 

phase the changes in velocity an internal energy due to the internal and external forces are calculated. The 

equilibrium equations are: 
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where vi is the velocity of the material, σij is the Cauchy stress and e is the internal energy. 

After the Lagrangian phase is performed, either the stress tensor, pressure and deviatoric stress should be 

equilibrated, but most mixture theories equilibrate only pressure, the pressure equilibrium is a non-linear 

problem, which is complex and expensive to solve. Skipping the stress equilibrium phase is assuming an equal 

strain rate for both materials, which is incorrect. For most problems, the linear distribution based on volume 

fraction of the volumetric strain during the Lagrangian phase also leads to incorrect results. The volume 

distribution should be scaled by the bulk compression of the two materials in the element. Now, to determine 

the volume distribution in a ALE cell, the material interface position must be known. 

There are several methods to treat the material interface in a fluid problem; the common one is the MAC 

method, which involves Eulerian flow calculation and Lagrangian particle movement. 

Another possible way of tracking interfaces is the use of the volume fractions of the elements, or the Young 

method [6]. The Young method is developed to track an interface in elements containing two materials for 

two-dimensional problems. This method is adapted in this paper for the two dimensional problems. 

The interface position is used to calculate the volume of the fluid flowing across cell sides. The interface 

calculation prevents advection of very small fluxes between partially filled and empty elements. Instead fluid 

flow is transported from ‘filled’ element to ‘empty’ element and this change in volume will be monitored and 

used to ‘fill-up’ the element or increase its volume fraction. 

Advection phase. In the second phase, the transport of mass, momentum and internal energy across the 

element boundaries is computed. This phase may be considered as a ‘re-mapping’ phase. The displaced mesh 

from the Lagrangian phase is remapped into the initial mesh for an Eulerian formulation, or an arbitrary 

distorted mesh for an ALE formulation. 

In this advection phase, we solve a hyperbolic problem, or a transport problem, where the variables are 

density, momentum per unit volume and internal energy per unit volume. Details of the numerical method used 

to solve the equations are described in detail in [6] and [7], where the Donor Cell algorithm, a first order 

advection method and the Van Leer algorithm, a second order advection method [8] are used. As an example, 

the equation for mass conservation is: 
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These algorithms have already been described in detail by some authors [7, 9]. 

Jones-Wilkins-Lee-Baker (JWLB) equation of state used for detonating cord 

We used this equation of state for 

detonating cord. The JWLB 

equation-of-state was recently 

developed by Baker and is further 

described by Orosz [10]. The 

derived form of the equation of state 

is based on the Jones-Willkins-Lee 

(JWL) form due to its computational 

robustness and asymptotic to an 

ideal gas at high expansions. Additional experimental terms and a variable Gruneisen parameter have been 

added to adequately describe the high pressure region above the Chapman-Jouguet state. 

The JWLB thermodynamic equation of state enables the accurate representation of the P-V behaviour of 

explosives. This relationship, which is an extension of the commonly used Jones-Wilkins-Lee relationship, 

can be expressed as 
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Table 2 Grüneisen parameters for water 
ρ0 (g/cm3) γ0 C (mm/µs) S 

1.00 0.1 148 1.92 
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where V is the relative volume and Ai, Ri, Aλi, Bλi , Rλi, C, and ω are input constants defined above. Table 1 

gives the JWLB parameters for detonating cord. 

Mie-Grüneisen equation of state used for water 

In our study, the water was modelled with Mie-Grüneisen 

equation of state with the parameters as given in table 2. 

The Mie-Grüneisen equation of state with cubic shock 

velocity-particle velocity defines pressure for compressed 

materials as 
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where C is the intercept of the particle velocity behind the shock front, up, versus shock velocity, us curve 

respectively; S is the coefficient of the slope of the us-up curve (us=C+Sup); γ0 is the initial Gruneisen gamma 

and µ=(ρ/ρ0)–1. The Grüneisen gamma is defined by the Mie-Grüneisen equation of state, Equation (5) related 

the pressure, p to the internal energy per unit volume, E. 

)( hh EEpp −+= γ  (5) 

where the subscript h defined the Hugoniot jump values given by equations (6). 

)(0 pss uuu −= ρρ , psh uup 0ρ= , 2/)( 0 VVpE hh −=  (6) 

The artificial viscosity method 

A widely used method for correcting the discontinuities is the addition of an artificial viscosity, which spreads 

the shock wave over three or four mesh points and so regularized the discontinuity. Bulk viscosity is proposed 

in one spatial dimension by Von Neumann and Richtmyer [11]. They introduced a pressure-like term, 

designated q that is added consistently to the pressure, P, in all of the governing equations. 
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Later researchers added a linear term to eliminate the remaining oscillations behind the shock [12]. 

uaCuCq Lq ∆+∆= ρρ 2)(  (8) 

where q is the shock viscosity, Cq is the quadratic viscosity coefficient, ρ is the density, ∆u is the velocity jump 

across a shock, a is the speed of sound and CL  is the linear viscosity coefficient. Typical values used in 

calculations for Cq and CL are 1.5 and 0.06 respectively. 
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Table 3 Experiment condition 
FORM OF 

DETONATING CORD 

LENGTH OF 

DETONATING CORD 
Dh 

(V) STRAIGHT 250mm 50mm 

(VI) r1=60mm 250mm 50mm  

SPIRAL (VII)r1=100mm 400mm 50mm 

(VIII) CIRCLE 250mm 50mm 

 

 
Fig.1 Model of case V, 

form of detonating cord: 

straight, Dh=50mm 

 

 

 
Fig.2 Case V, Form of detonating cord: 

Straight 

 
Fig.3 Model of case VI 

 
Fig.4 Model of case VII 

 
Fig.5 Model of case VIII 

(a) 

(b) 

Fig.6 Numerical plots of pressures 

Finite element models 

Only cases V, VI, VII and VIII when 

Dh=50mm are chosen for the numerical study. 

The explosion of a detonating cord generates 

an immense pressure in water. A detonation 

wave propagates at great constant speed 

(6308m/s). A chemical reaction occurs 

producing large quantities of gas in a short period of time. The density of detonating cord used is 1.2g/cm
3
. 

The three-dimensional 

model represented in figure 1 

has been discretized in the case 

V into 287745 8-noded brick 

elements and 319200 nodes. 

The ignition of the explosion is 

applied at the point O (2.3485, 

0, 0). The position of pressure 

measurement is shown in figure 

2, which sketches experimental 

devices. 

Figure 3-5 present the model 

of the spiral detonating cord in 

water. The ignition of the 

explosion is applied at the point 

O (59, 0, 0) (Case VI), O (99, 0, 0) (Case VII), O (36.7145, 0, 0) (Case VIII). 

NUMERICAL RESULTS 

 In this section, we present numerical results for several cases of detonating cord underwater explosion. The 

pressure histories with multi-material Eulerian formulation are plotted in figures 7,9,11 and 13. The numerical 

overpressure representing the pressure jump measured at Dh=50 mm. 

Figures 6(a) and (b) show the plots of pressures taken in the propagating process of the shock wave. 

The plots have 5 µs inter-frame time in figure 6(a) and in figure 6(b) is 2µs. The objective of these plots is 

to indicate the convergence of underwater shock wave of the detonating cord. Both figure 6 

(a) and figure 6(b) allow to show clearly the 

convergence of underwater shock wave when 

using spiral detonating cord. 

Case V. The pressure history at Dh=50mm, for 

which the Eulerian results were captured, is as 

shown in figure 7. Experimental curve is 

presented in the same figure. The experimental 

overpressure is 176.5MPa while the numerical 

peak value is175.88MPa. Figure 8 gives the 

propagation of pressure for case V at t=12µs, 

24µs and 36µs. 
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Fig.7 Case V:Numerical and experimental 

curves of pressure-time at Dh=50mm 

 

Fig.8 Pressure profile at t=12µs, 24µs and 36µs 

 
Fig.9 Case VI:Numerical and experimental curves 

of pressure-time at Dh=50mm 

 

 

 

Fig.10 Pressure profile at t=10µs, 20µs and 30µs 

 
Fig.11 Case VII:Numerical and experimental 

curves of pressure-time at Dh=50mm 

 

 

 
Fig.12 Pressure profile at t=18µs, 36µs and 54µs 

 
Fig.13 Case VIII:Numerical and experimental 

curves of pressure-time at Dh=50mm 

 

 

 

Fig.14 Pressure profile at t= 12µs, 24µs and 36µs 

 Case VI. The pressure profile at Dh=50mm for which the detonating cord is spiral, is as shown in figure 9. 

Experimental curve is superposed in the same figure. The experimental overpressure is 440MPa while the 

numerical overpressure is 440.92MPa. Figure 10 shows the propagation of pressure for case VI at t=10µs, 

20µs and 30µs. 

 Case VII. As shown in figure 11, experimental curve is superposed with numerical pressure history. The 

experimental peak value is 539.5MPa while the numerical overpressure is about 550.6MPa. Figure 12 gives 

the propagation of pressure for case VII at t=18µs, 36µs and 54µs. 
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Table 4 Comparisons of the pressure peak in experimental and 

numerical cases 
 Overpressure (MPa) 

 CASE V CASE VI CASE VII CASE VIII 

Experimental results  176.5 440 539.5 109.3 

Numerical results 175.88 440.92 550.6 106.77 

Relative Error (%) 0.35 0.20 2.05 2.31 

 

 Case VIII. Figure 13 gives the 

experimental curve superposed with 

the numerical curve. In this case, the 

experimental overpressure is 

109.3MPa and the numerical 

overpressure is 106.77MPa. Figure 

14 gives the propagation of pressure 

for case VIII at t=12µs, 24µs and 

36µs. 

Table 4 presents the summary of the experimental and simulation overpressures. In the four cases, the 

relative error between the experimental and numerical jump pressure values show that the multi-material 

Eulerian formulation gives good agreement with experimental results. 

Conclusion 

This study demonstrates that the underwater shock wave from a specially designed spiral shape of detonating 

cord converges at the spiral center to increase the shock pressure. The impulse of shock wave also is able to be 

improved at distance Dh=272mm. A numerical investigation was presented in order to demonstrate the 

abilities of the multi-material Eulerian method to simulate the underwater explosion problems. Comparing the 

overpressure values at Dh=50mm for several cases reveals a maximum relative error under 2.5%. The 

multi-material Eulerian formulation can predict the pressure history of underwater explosion from detonating 

cord in various shapes. 
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