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MULTI-ATTRIBUTE DECISION MAKING METHOD BASED ON

BONFERRONI MEAN OPERATOR AND POSSIBILITY DEGREE

OF INTERVAL TYPE-2 TRAPEZOIDAL FUZZY SETS

Y. B. GONG, L. L. DAI AND N. HU

Abstract. This paper proposes a new approach based on Bonferroni mean
operator and possibility degree to solve fuzzy multi-attribute decision making

(FMADM) problems in which the attribute value takes the form of inter-

val type-2 fuzzy numbers. We introduce the concepts of interval possibility
mean value and present a new method for calculating the possibility degree

of two interval trapezoidal type-2 fuzzy sets (IT2 TrFSs). Then, we develop

two aggregation techniques, which are called the interval type-2 trapezoidal
fuzzy Bonferroni mean (IT2TFBM) operator and the interval type-2 trape-

zoidal fuzzy weighted Bonferroni mean (IT2TFWBM) operator. We study

their properties and discuss their special cases. Based on the IT2TFWBM
operator and the possibility degree, a new method of multi-attribute decision

making with interval type-2 trapezoidal fuzzy information is proposed. Fi-

nally, an illustrative example is given to verify the developed approaches and
to demonstrate their practicality and effectiveness.

1. Introduction

The purpose of multi-attribute group decision making (MAGDM) is to find a
desirable solution from finite alternatives by a group of experts assessing on mul-
tiple attributes with different types of decision information, such as crisp num-
bers [13],interval values [3], linguistic scales [28], and fuzzy numbers [17]. Fuzzy
Multi-attribute decision making (FMADM) problem is to find the most desirable
alternative from a set of feasible alternatives, where the information provided by a
group of decision makers is usually uncertain or fuzzy due to the increasing complex-
ity of the socio-economic environment and the vagueness of inherent subjective na-
ture of human thinking. In recent years, some methods have been presented to deal
with FMADM problems based on traditional type-1 fuzzy sets (T1 FSs). Chen [4]
presented an extension of the TOPSIS method for FMADM problem. Chen [5] pre-
sented a method to evaluate the rate of aggregative risk in software development
using fuzzy sets under the fuzzy group decision making environment. Li [18] pre-
sented a method for FMADM based on the particular measure of closeness to ideal
solution which is developed from the fuzzy weighted Minkowski distance used as an
aggregating function in a compromise programming method. Xu [37] established
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a practical interactive procedure for solving the FMADM problems, in which the
information about attribute weights is partly known. Fan and Liu [14] presented a
method for group decision making based on the multi-granularity uncertain linguis-
tic information. Lin and Wu [19] presented a causal analytical method for group
decision making in the fuzzy environment. Tsai and Wang [27] presented a method
for computing coordination based fuzzy group decision making for web service.
Wang and Lin [29] presented a method for FMAGDM to select configuration items
for software development. Wu and Chen [30] presented a method for maximizing
deviation for group multi-attributes decision-making in a linguistic environment.
Li [20] presented some different distances measure and develop a method for solv-
ing FMAGDM problems with non-homogeneous information. However, the above
FMAGDM methods are based on traditional T1 FSs.

The concept of type-2 fuzzy sets (T2 FSs), initially introduced by Zadeh [42],
can be regarded as an extension of the concept of T1 FSs. The main difference
between the two kinds of fuzzy sets is that the memberships of T1 FSs are crisp
numbers whereas the memberships of T2 FSs are T1 FSs [31]; hence, T2 FSs in-
volve more uncertainties than T1 FSs. Since its introduction, type-2 fuzzy sets
are receiving more and more attention. Because the computational complexity of
using general T2 FSs is very high, to date, interval type-2 fuzzy sets (IT2 FSs) [23]
are the most widely used type-2 fuzzy sets and have been successfully applied to
many practical fields [24, 25, 26, 32, 33, 34]. In particular, some authors have ap-
plied IT2 FSs theory to the field of FMADM. Wu and Mendel [26, 34] presented
a method using the linguistic weighted average and IT2 FSs for handling fuzzy
multiple criteria hierarchical group decision-making problems. Chen and Lee [6]
presented a method for FMADM based on ranking values and the arithmetic oper-
ations of IT2 TrFSs. Chen and Lee [7] presented an interval type-2 fuzzy TOPSIS
method to handle FMADM problems based on IT2 TrFSs. Wang and Liu [35]
investigated the FMADM problems under IT2 fuzzy environment, and developed
an approach to handling the situations where the attribute values are character-
ized by IT2 TrFSs, and the information about attribute weights is partially known.
Chen and Yang [8] proposed a method for FMADM based on the ranking method
of IT2 TrFSs. Zhang [43] proposed a novel approach to FMADM by using inter-
val trapezoidal type-2 fuzzy soft sets. Chen and Chang [9] developed an extended
QUALIFLEX method for handling MADM problems in the context of IT2 TrFSs
and applications to medical decision making.

As two extensions of the arithmetic average (AA) and the geometric mean (GM),
the Bonferroni mean (BM) and the geometric Bonferroni mean (GBM) are two
very useful aggregation operators, which consider the interrelationships among ar-
guments. The BM originally introduced by Bonferroni [1] and then generalized by
Yager [41]. Due to its capability to capture the interrelationship between input
arguments, BM is very useful in various application fields and has attracted a lot of
attentions from researchers. Liu and Jin [21], Wei et al. [36] and Li et al. [22] pro-
posed some fuzzy linguistic BM operators and applied to linguistic multi-attribute
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decision making. Xu and Yager [38] investigated the BM operators under intuition-
istic fuzzy environment. Xia et al. [39] developed a GBM and applied it to multi-
criteria decision making problems. Zhu et al. [44] and Xia et al. [40] proposed some
intuitionistic and hesitant GBM operators and applied to fuzzy multi-attribute de-
cision making. Gong et al. proposed [15] some interval type-2 fuzzy GBM operators
and applied to interval type-2 fuzzy multi-attribute decision making.

Up to now, few studies have focused on interval type-2 fuzzy decision making
problems consider the interrelationship between input interval type-2 fuzzy argu-
ments. Therefore, it is necessary to pay attention this issue. The aim of this paper
is to develop some approaches to interval type-2 fuzzy decision making problems
consider the interrelationship between input interval type-2 fuzzy arguments. In
order to do so, we further extend the BM operator to interval type-2 fuzzy envi-
ronment. We first develop two aggregation techniques called the interval type-2
trapezoidal fuzzy Bonferroni mean (IT2TFBM) operator and the interval type-2
trapezoidal fuzzy weighted Bonferroni mean (IT2TFWBM) operator. We study its
properties and discuss its special cases. Then, we present a new method to deal
with FMADM problems based on the IT2TFWBM operator and the possibility
degree of IT2 FSs. The remainder of this paper is organized as follows. In section
2, we give a review of basic concepts and operations related to IT2 TrFSs. In Sec-
tion 3, we introduce the concepts of lower and upper possibility mean value of IT2
TrFSs. Then, we present a new method for calculating the possibility degree of two
IT2 TrFSs based on the interval-valued possibility mean values. In section 4, the
interval type-2 trapezoidal fuzzy Bonferroni mean (IT2TFBM) operator and the in-
terval type-2 trapezoidal fuzzy weighted Bonferroni mean (IT2TFWBM) operator
are developed, some desirable properties of these operators are studied and some
special cases are discussed. Section 5 introduces a procedure for FMADM problem
based on IT2TFWBM operator and the possibility degree of two IT2 TrFSs. Sec-
tion 6 we use global supplier selection problem to illustrate the proposed method.
The conclusions are discussed in Section 7.

2. The Basic Concepts and Arithmetic Operations of IT2 FSs

In this section, the basic concepts and arithmetic operations of IT2 FSs are
introduced below to facilitate future discussions. Type-2 fuzzy sets, characterized
by primary and secondary membership, are the extension of type-1 fuzzy sets.

Definition 2.1. [23] Let Ã be a type-2 fuzzy set, i.e.

Ã = {((x, u), µÃ(x, u))|∀x ∈ X,∀u ∈ JX ⊆ [0, 1], 0 ≤ µÃ(x, u) ≤ 1} (1)

where X denotes the domain of Ã and µÃ denotes the membership function of Ã.

Definition 2.2. [23] For a type-2 fuzzy set Ã, if all µÃ(x, u) = 1, then Ã is called
an interval type-2 fuzzy set, i.e.

Ã =

∫
x∈X

∫
u∈JX

1/(x, u) (2)

where JX ⊆ [0, 1].
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In this paper, we present a method to use interval type-2 trapezoidal fuzzy
number (IT2 TrFN) for handling FMADM problems, where the reference points
and the heights of the upper and the lower membership functions of IT2 FSs are
used to characterize IT2 FSs.

Definition 2.3. [6, 7, 8] Suppose thatÃ1 and Ã2 are two non-negative IT2

TrFNs, where Ã1 = (ÃU1 , Ã
L
1 ) = ((aU11, a

U
12, a

U
13, a

U
14;hU1 ), (aL11, a

L
12, a

L
13, a

L
14;hL1 )) and

Ã2 = (ÃU2 , Ã
L
2 ) = ((aU21, a

U
22, a

U
23, a

U
24;hU2 ), (aL21, a

L
22, a

L
23, a

L
24;hL2 )). The arithmetic

operations between Ã1 and Ã2 are defined as follows:
(1)Addition operation

Ã1⊕Ã2 = ((aU11+aU21, a
U
12+aU22, a

U
13+aU23, a

U
14+aU24;min(hU1 , h

U
2 )), (aL11+aL21, a

L
12+aL22,

aL13 + aL23, a
L
14 + aL24;min(hL1 , h

L
2 ))) (3)

(2) Multiplication operation

Ã1⊗Ã2 = ((aU11×aU21, aU12×aU22, aU13×aU23, aU14×aU24;min(hU1 , h
U
2 )), (aL11×aL21, aL12×aL22,

aL13 × aL23, aL14 × aL24;min(hL1 , h
L
2 ))) (4)

(3) Multiplication by real number operation

kÃ1 = ((kaU11, ka
U
12, ka

U
13, ka

U
14;hU1 ), (kaL11, ka

L
12, ka

L
13, ka

L
14;hL1 )) (5)

(4) Power operation

(Ã1)k = (((aU11)k, (aU12)k, (aU13)k, (aU14)k;hU1 ), ((aL11)k, (aL12)k, (aL13)k, (aL14)k;hL1 ))(6)

3. The Interval-valued Possibility Mean Value and Possibility
Degree of IT2 TrFNs

In this section, we extended the concept of Carlsson and Fullér [11] about the
possibilistic mean value of type-1 fuzzy numbers. We first introduce the lower and
upper possibility mean value of IT2 TrFSs. If an IT2 TrFN Ã = (ÃU , ÃL), the upper

membership functionÃU and the lower membership function ÃL have pseudo level
sets with ÃUα = [aU1 (α), aU2 (α)], α ∈ [0, hU ] and ÃUβ = [aU1 (β), aU2 (β)], β ∈ [0, hL] ,

where hL, hU are the maximum membership function value of ÃU and ÃL , then
we present the following concepts:

Definition 3.1. The lower possibility mean value of an IT2 TrFN Ã = (ÃU , ÃL)is
defined as

M∗(Ã) =

∫ hU

0

αaU1 (α)dα+

∫ hL

0

βaL1 (β)dβ (7)

Obviously,M∗(Ã)is nothing else but the level-weight average of the arithmetic
means of all pseudo level sets, that is , the weight of the arithmetic mean of aU1 (α)
and aU1 (α). In a similar manner, we introduce the upper possibility mean value

M∗(Ã) as follows
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Definition 3.2. The upper possibility mean value of an IT2 TrFN Ã = (ÃU , ÃL)
is defined as

M∗(Ã) =

∫ hU

0

αaU2 (α)dα+

∫ hL

0

βaL2 (β)dβ (8)

Let us introduce the notation

M(Ã) = [M∗(Ã),M∗(Ã)] (9)

That is, M(Ã) is a closed interval bounded by the lower and upper possibility mean

values of IT2 FSs Ã .

Definition 3.3. Let M(Ã1) = [M∗(Ã1),M∗(Ã1)] and M(Ã2) = [M∗(Ã2),M∗(Ã2)]

be interval-valued possibility mean values of IT2 TrFNs Ã1andÃ2 ,respectively, then
we define the possibility degree formula of IT2 TrFNs as follows:

p(Ã1 � Ã2) = min{max(
M∗(Ã1)−M∗(Ã2)

M∗(Ã1)−M∗(Ã1) +M∗(Ã2)−M∗(Ã2)
, 0), 1} (10)

Theorem 3.4. The possibility degree p(Ã1 � Ã2) of IT2 TrFNs Ã1 and Ã2 has
the following properties [15]:

(1) 0 ≤ p(Ã1 � Ã2) ≤ 1, 0 ≤ p(Ã2 � Ã1) ≤ 1

(2) If M∗(Ã1) ≤M∗(Ã2), then p(Ã1 � Ã2) = 0

(3) If M∗(Ã1) ≥M∗(Ã2), then p(Ã1 � Ã2) = 1

(4) p(Ã1 � Ã2) + p(Ã2 � Ã1) = 1, specially p(Ã1 � Ã1) = 0.5

(5)For IT2 FSs Ã1, Ã2 and Ã3, if p(Ã1 � Ã2) ≥ 0.5 and p(Ã2 � Ã3) ≥ 0.5 then

p(Ã1 � Ã2) + p(Ã2 � Ã3) ≥ p(Ã1 � Ã3)

Example 3.5. Two IT2 TrFNs Ã1 = (ÃU1 , Ã
L
1 ) = ((0.1, 0.3, 0.6, 0.7; 1), (0.2, 0.3, 0.5,

0.6; 0.9)) and Ã2 = (ÃU2 , Ã
L
2 ) = ((0.2, 0.4, 0.6, 0.8; 1), (0.2, 0.3, 0.5, 0.8; 0.8)). Then,

the low and upper possibility mean value is computed respectively as follows:

M̃∗(Ã1) = 0.237, M̃∗(Ã1) = 0.557, M̃∗(Ã2) = 0.273, M̃∗(Ã2) = 0.573

From formula (10), the possibility degree of IT2 TrFNs Ã1 and Ã2 is

p(Ã1 � Ã2) = min{max(
0.557− 0.273

0.557− 0.237 + 0.573− 0.273
, 0), 1} = 0.458

Let Ãi = (ÃUi , Ã
L
i ) be an IT2 TrFN, the fuzzy preference matrix P can be

obtained, shown as follows:

P =


p(Ã1 � Ã1) p(Ã1 � Ã2) . . . p(Ã1 � Ãn)

p(Ã2 � Ã1) p(Ã2 � Ã2) . . . p(Ã2 � Ãn)
...

...
...

...

p(Ãn � Ã1) p(Ãn � Ã2) . . . p(Ãn � Ãn)


(11)

Then, the ranking value of IT2 TrFNs Rank(Ãi) is calculated as follows [36]:

Rank(Ãi) =
1

n(n− 1)
(

n∑
k=1

p(Ãi � Ãk) +
n

2
− 1)

(12)
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Where 1 ≤ i ≤ n and
∑n
i=1Rank(Ãi) = 1 .The larger ranking value Rank(Ãi) ,

the greater the IT2 FSs Ãi.
Using the thirteen sets of interval type-2 trapezoidal fuzzy numbers provided

by Bortolan and Degani [2], we computed the possibility degrees to compare those
fuzzy numbers based on different definitions proposed by Chen et al. [6], Hu et
al. [16], and equtaion (10) developed by us respectively. The calculated results are
shown in Table1.

Sets of fuzzy number Chen et al. method Hu et al. method The proposed method

Set1 A1 0.520 0.423 0.250
A2 0.480 0.576 0.750

Set2 A1 0.400 0.250 0.380

A2 0.600 0.750 0.620
Set3 A1 0.360 0.375 0.250

A2 0.640 0.625 0.750

Set4 A1 0.390 0.431 0.475
A2 0.330 0.292 0.305

A3 0.280 0.277 0.220

Set5 A1 0.400 0.487 0.390
A2 0.320 0.333 0.340

A3 0.280 0.180 0.270

Set6 A1 0.390 0.487 0.400
A2 0.340 0.333 0.320

A3 0.270 0.180 0.280
Set7 A1 0.500 0.500 0.500

A2 0.500 0.500 0.500

Set8 A1 0.280 0.294 0.290
A2 0.350 0.337 0.320

A3 0.370 0.369 0.390

Set9 A1 0.280 0 0.250
A2 0.720 1 0.750

Set10 A1 0.490 0.590 0.750

A2 0.510 0.410 0.250
Set11 A1 0.250 0 0.250

A2 0.750 1 0.750

Set12 A1 0.630 0.750 0.750
A2 0.370 0.250 0.250

Set13 A1 0.630 0.820 0.750

A2 0.370 0.180 0.250

Table 1. A Comparison of the Ranking Results for Different Methods

From Table1, we can see the drawbacks of the existing ranking methods, de-
scribed as below:

(1) From Set 1 of Table1, we can see that Hu et al.’s method and the proposed

method get the same ranking order: “Ã1 ≺ Ã2”, while Chen and Lee’s method
failed to produce a correct order. The reason is that Chen and Lee’s method,
overall, has enhanced the influence of the value of right branch.

(2) From Set 10, the result from Chen and Lee’s method is inconsistent with other
approaches, because the membership effect of the interval type-2 fuzzy number has
been enlarged.
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(3) From Set 9 and Set 11, we can see that Hu et al.’s method and other methods

get the same ranking order: “Ã1 ≺ Ã2”. However, Hu et al.’s method is too simple
discrimination for fuzzy uncrossed numbers.

4. The Interval Type-2 Trapezoidal Fuzzy Bonferroni Mean Operators

Bonferroni [1] originally introduced a mean type aggregation operator, called
Bonferroni mean, which can provide for aggregation lying between the max, min
operators and the logical “or” and “and” operators, which was defined as follows:

Definition 4.1. [1] Let p, q ≥ 0, and ai > 0(i = 1, 2, . . . , n) be a collection of
nonnegative numbers. The aggregation functions:

BMp,q(a1, a2, . . . , an) = (
1

n(n− 1)

n∑
i,j=1,i6=j

api a
q
j)

1/p+q

(13)

is called the Bonferroni mean (BM) operator.
The BM operator, however, has usually been used in situations where the input

arguments are the non-negative real numbers. We shall extend the BM operators
to accommodate the situations where the input arguments are interval type-2 fuzzy
variables. In this section, we shall investigate the BM operator under interval type-
2 trapezoidal fuzzy environments. Based on Definition 4.1, we give the definition
of the interval type-2 trapezoidal fuzzy Bonferroni mean (IT2TFBM) operator as
follows:

Definition 4.2. Let Ãi = (ÃUi , Ã
L
i ) = ((aUi1, a

U
i2, a

U
i3, a

U
i4;hUi ), (aLi1, a

L
i2, a

L
i3, a

L
i4;hLi ))

(i = 1, 2, . . . n) be a collection of the IT2 trapezoidal fuzzy variables, and p, q ≥ 0,
then, we call:

IT2TFBMp,q(Ã1, Ã2, . . . , Ãn) = (
1

n(n− 1)

n∑
i,j=1,i6=j

Ãpi ⊗ Ã
q
j)

1/p+q

(14)

an IT2 Trapezoidal Fuzzy Bonferroni Mean (IT2TFBM) operator.
According to the operations of the IT2 trapezoidal fuzzy variables, we can get

the following result.

Theorem 4.3. Let Ãi = (ÃUi , Ã
L
i ) = ((aUi1, a

U
i2, a

U
i3, a

U
i4;hUi ), (aLi1, a

L
i2, a

L
i3, a

L
i4;hLi ))

(i = 1, 2, . . . n) be a collection of the IT2 trapezoidal fuzzy variables, and p, q ≥ 0,
then, the aggregated result by Equtaion (14) is also an IT2 trapezoidal fuzzy variable,
and

IT2TFBMp,q(Ã1, Ã2, . . . , Ãn) = Ã = (ÃU , ÃL) (15)

where

ÃU = ((
1

n(n− 1)

n∑
i,j=1,i6=j

(aUi1)p(aUj1)q)1/p+q, (
1

n(n− 1)

n∑
i,j=1,i6=j

(aUi2)p(aUj2)q)1/p+q,

(
1

n(n− 1)

n∑
i,j=1,i6=j

(aUi3)p(aUj3)q)1/p+q, (
1

n(n− 1)

n∑
i,j=1,i6=j

(aUi4)p(aUj4)q)1/p+q;
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min
1≤i≤n

{hUi }) (16)

and

ÃL = ((
1

n(n− 1)

n∑
i,j=1,i6=j

(aLi1)p(aLj1)q)1/p+q, (
1

n(n− 1)

n∑
i,j=1,i6=j

(aLi2)p(aLj2)q)1/p+q,

(
1

n(n− 1)

n∑
i,j=1,i6=j

(aLi3)p(aLj3)q)1/p+q, (
1

n(n− 1)

n∑
i,j=1,i6=j

(aLi4)p(aLj4)q)1/p+q;

min
1≤i≤n

{hLi })) (17)

We use mathematical induction to prove this theorem as follows.

Proof. (1) Firstly, we need to prove that:
n∑

i,j=1,i6=j

Ãpi ⊗ Ã
q
j = ((

n∑
i,j=1,i6=j

(aUi1)p(aUj1)q,

n∑
i,j=1,i6=j

(aUi2)p(aUj2)q,

n∑
i,j=1,i6=j

(aUi3)p(aUj3)q

n∑
i,j=1,i6=j

(aUi4)p(aUj4)q; min
1≤i≤n

{hUi })), (
n∑

i,j=1,i6=j

(aLi1)p(aLj1)q,

n∑
i,j=1,i6=j

(aLi2)p(aLj2)q,

n∑
i,j=1,i6=j

(aLi3)p(aLj3)q,

n∑
i,j=1,i6=j

(aLi4)p(aLj4)q; min
1≤i≤n

{hLi })))
(18)

By the operations equtaions (3)-(6) of the IT2 trapezoidal fuzzy variables, we have

Ãpi ⊗ Ã
q
j = (((aUi1)p(aUj1)q, (aUi2)p(aUj2)q, (aUi3)p(aUj3)q, (aUi4)p(aUj4)q;min(hUi , h

U
j )),

((aLi1)p(aLj1)q, (aLi2)p(aLj2)q, (aLi3)p(aLj3)q, (aLi4)p(aLj4)q;min(hLi , h
L
j ))) (19)

(a) When n = 2, we can get

2∑
i,j=1,i6=j

Ãpi ⊗ Ã
q
j = ((

2∑
i,j=1,i6=j

(aUi1)p(aUj1)q,

2∑
i,j=1,i6=j

(aUi2)p(aUj2)q,

2∑
i,j=1,i6=j

(aUi3)p(aUj3)q

2∑
i,j=1,i6=j

(aUi4)p(aUj4)q;min(hU1 , h
U
2 )), (

2∑
i,j=1,i6=j

(aLi1)p(aLj1)q,

2∑
i,j=1,i6=j

(aLi2)p(aLj2)q,

2∑
i,j=1,i6=j

(aLi3)p(aLj3)q,

2∑
i,j=1,i6=j

(aLi4)p(aLj4)q;min(hL1 , h
L
2 )))

So, when n = 2, equation (18), is right.
(b) Suppose when n = k, equation (18) is right, i.e.

k∑
i,j=1,i6=j

Ãpi ⊗ Ã
q
j = ((

k∑
i,j=1,i6=j

(aUi1)p(aUj1)q,

k∑
i,j=1,i6=j

(aUi2)p(aUj2)q,

k∑
i,j=1,i6=j

(aUi3)p(aUj3)q

k∑
i,j=1,i6=j

(aUi4)p(aUj4)q; min
1≤i≤k

{hUi })), (
k∑

i,j=1,i6=j

(aLi1)p(aLj1)q,

k∑
i,j=1,i6=j

(aLi2)p(aLj2)q,
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k∑
i,j=1,i6=j

(aLi3)p(aLj3)q,

k∑
i,j=1,i6=j

(aLi4)p(aLj4)q; min
1≤i≤k

{hLi }))) (20)

then, when n = k + 1, we have

k+1∑
i,j=1,i6=j

Ãpi ⊗ Ã
q
j =

k∑
i,j=1,i6=j

Ãpi ⊗ Ã
q
i +

k∑
i,j=1,i6=j

Ãpi ⊗ Ã
q
k+1 +

k∑
i,j=1,i6=j

Ãpk+1 ⊗ Ã
q
i

(21)

By the operations equtaions (3)-(6) of the IT2 trapezoidal fuzzy variables, we can
get

k∑
i=1

Ãpi ⊗ Ã
q
k+1 = ((

k∑
i=1

(aUi1)p(aUk+1,1)q,

k∑
i=1

(aUi2)p(aUk+1,2)q,

k∑
i=1

(aUi3)p(aUk+1,3)q

k∑
i=1

(aUi4)p(aUk+1,4)q; min
1≤i≤k

{hUi }, hUk+1)), (

k∑
i=1

(aLi1)p(aLk+1,1)q,

k∑
i=1

(aLi2)p(aLk+1,2)q,

k∑
i=1

(aLi3)p(aLk+1,3)q,

k∑
i=1

(aLi4)p(aLk+1,4)q; min
1≤i≤k

{hLi }, hLk+1))) (22)

and
k∑
j=1

Ãpk+1 ⊗ Ã
q
j = ((

k∑
j=1

(aUj1)q(aUk+1,1)p,

k∑
j=1

(aUj2)q(aUk+1,2)p,

k∑
j=1

(aUj3)q(aUk+1,3)p

k∑
j=1

(aUj4)q(aUk+1,4)p; min
1≤j≤k

{hUj }, hUk+1)), (

k∑
j=1

(aLj1)q(aLk+1,1)p,

k∑
j=1

(aLj2)q(aLk+1,2)p,

k∑
j=1

(aLj3)q(aLk+1,3)p,

k∑
j=1

(aLj4)q(aLk+1,4)p; min
1≤j≤k

{hLj }, hLk+1))) (23)

So, by the equtaions (19)-(23), we get

k+1∑
i,j=1,i6=j

Ãpi ⊗ Ã
q
j = ((

k+1∑
i,j=1,i6=j

(aUi1)p(aUj1)q,

k+1∑
i,j=1,i6=j

(aUi2)p(aUj2)q,

k∑
i,j=1,i6=j

(aUi3)p(aUj3)q

k+1∑
i,j=1,i6=j

(aUi4)p(aUj4)q; min
1≤i≤k+1

{hUi })), (
k+1∑

i,j=1,i6=j

(aLi1)p(aLj1)q,

k+1∑
i,j=1,i6=j

(aLi2)p(aLj2)q,

k+1∑
i,j=1,i6=j

(aLi3)p(aLj3)q,

k+1∑
i,j=1,i6=j

(aLi4)p(aLj4)q; min
1≤i≤k+1

{hLi })))

Thus, when n = k + 1, equtaion (18) is right. So, equtaion (18) is right for all n.
(2) Then, we can prove equtaion (15) is right. By the operations of the IT2

trapezoidal fuzzy variables defined in equtaions (3)-(6) and equtaion (18) , we can
get

IT2TFBMp,q(Ã1, Ã2, . . . , Ãn) = (
1

n(n− 1)

n∑
i,j=1,i6=j

Ãpi⊗Ã
q
j)

1/p+q = Ã = (ÃU , ÃL)
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is right for all n. �

It can be easily proved that the IT2TFBM operator has the following properties.

Corollary 4.4. (Idempotency)Let Ãi = (ÃUi , Ã
L
i ) = ((aUi1, a

U
i2, a

U
i3, a

U
i4;hUi ), (aLi1, a

L
i2,

aLi3, a
L
i4;hLi ))(i = 1, 2, . . . n) be a set of the IT2 trapezoidal fuzzy variables. If all

Ãi = (ÃUi , Ã
L
i ) are equal, i.e.Ãi = (ÃUi , Ã

L
i ) = Ã0 = (ÃU0 , Ã

L
0 ) for all i, then

IT2TFBMp,q(Ã1, Ã2, . . . , Ãn) = Ã0 = (ÃU0 , Ã
L
0 ) (24)

Corollary 4.5. (Boundedness)Let Ãi = (ÃUi , Ã
L
i ) = ((aUi1, a

U
i2, a

U
i3, a

U
i4;hUi ), (aLi1, a

L
i2,

aLi3, a
L
i4;hLi ))(i = 1, 2, . . . n) be a set of the IT2 trapezoidal fuzzy variables, and let

Ã− = (ÃU−, Ã
L
−) = ((min

i
{aUi1},min

i
{aUi2},min

i
{aUi3},min

i
{aUi4}; min

i
{hUi }),

(min
i
{aLi1},min

i
{aLi2},min

i
{aLi3},min

i
{aLi4}; min

i
{hLi }))

Ã+ = (ÃU+, Ã
L
+) = ((max

i
{aUi1},max

i
{aUi2},max

i
{aUi3},max

i
{aUi4}; max

i
{hUi }),

(max
i
{aLi1},max

i
{aLi2},max

i
{aLi3},max

i
{aLi4}; max

i
{hLi }))

Then

Ã− ≤ IT2TFBMp,q(Ã1, Ã2, . . . , Ãn) ≤ Ã+ (25)

Corollary 4.6. (Monotonicity)Let Ãi = (ÃUi , Ã
L
i ) = ((aUi1, a

U
i2, a

U
i3, a

U
i4;hUi ), (aLi1, a

L
i2,

aLi3, a
L
i4;hLi )) and B̃i = (B̃Ui , B̃

L
i ) = ((bUi1, b

U
i2, b

U
i3, b

U
i4;hUi ), (bLi1, b

L
i2, b

L
i3, b

L
i4;hLi ))(i =

1, 2, . . . n) be two set of the IT2 trapezoidal fuzzy variables, if aUik ≤ bUik and aLUik ≤
bLik(k = 1, 2, 3, 4) for all i, then

IT2TFBMp,q(Ã1, Ã2, . . . , Ãn) ≤ IT2TFBMp,q(B̃1, B̃2, . . . , B̃n) (26)

Corollary 4.7. (Commutativity)Let Ã′i = (Ã
′U
i , ÃL

i ) = ((a
′U
i1 , a

′U
i2 , a

′U
i3 , a

′U
i4 ;h

′U
i ), (a

′L
i1 ,

a
′L
i2 , a

′L
i3 , a

′L
i4 ;h

′L
i )) is any permutation of the IT2 trapezoidal fuzzy variables Ãi =

(ÃUi , Ã
L
i ) = ((aUi1, a

U
i2, a

U
i3, a

U
i4;hUi ), (aLi1, a

L
i2, a

L
i3, a

L
i4;hLi ))(i = 1, 2, . . . , n) then

IT2TFBMp,q(Ã1, Ã2, . . . , Ãn) = IT2TFBMp,q(Ã′1, Ã
′
2, . . . , Ã

′
n) (27)

By assigning different values to the parameters p and q, some special cases of
the IT2TFBM can be obtained as follows:

Case1: If q = 0, then the equtaion (15) reduces to an IT2 trapezoidal fuzzy
generalized mean operator. It follows that:

IT2TFBMp,q(Ã1, Ã2, . . . , Ãn) = (((
1

n

n∑
i=1

(aU
i1)

p)1/p, (
1

n

n∑
i=1

(aU
i2)

p)1/p, (
1

n

n∑
i=1

(aU
i3)

p)1/p,

(
1

n

n∑
i=1

(aU
i4)

p)1/p; min
1≤i≤n

{hU
i }), ((

1

n

n∑
i=1

(aL
i1)

p)1/p, ((
1

n

n∑
i=1

(aL
i2)

p)1/p, (
1

n

n∑
i=1

(aL
i3)

p)1/p,

(
1

n

n∑
i=1

(aLi4)p)1/p; min
1≤i≤n

{hLi }))) (28)
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Case2: If p = 1 and q = 0, then the equtaion (15) reduces to an IT2 trapezoidal
fuzzy average operator. It follows that:

IT2TFBM1,0(Ã1, Ã2, . . . , Ãn) = ((
1

n

n∑
i=1

aU
i1,

1

n

n∑
i=1

aU
i2,

1

n

n∑
i=1

aU
i3,

1

n

n∑
i=1

aU
i4;

min
1≤i≤n

{hU
i }), (

1

n

n∑
i=1

aL
i1,

1

n

n∑
i=1

aL
i2,

1

n

n∑
i=1

aL
i3,

1

n

n∑
i=1

aL
i4; min

1≤i≤n
{hL

i })) (29)

Case3: If p = 1 and q = 1, then the equtaion (15) reduces to an IT2 trapezoidal
fuzzy square mean operator. It follows that:

IT2TFBM1,1(Ã1, Ã2, . . . , Ãn) = (((
1

n(n− 1)

n∑
i,j=1,i 6=j

aU
i1a

U
j1)

1/2, (
1

n(n− 1)

n∑
i,j=1,i 6=j

aU
i2a

U
j2)

1/2, (
1

n(n− 1)

n∑
i,j=1,i 6=j

aU
i3a

U
j3)

1/2, (
1

n(n− 1)

n∑
i,j=1,i 6=j

aU
i4a

U
j4)

1/2;

min
1≤i≤n

{hU
i }), ((

1

n(n− 1)

n∑
i,j=1,i 6=j

aL
i1a

L
j1)

1/2, (
1

n(n− 1)

n∑
i,j=1,i 6=j

aU
i2a

U
j2)

1/2,

(
1

n(n− 1)

n∑
i,j=1,i 6=j

aL
i3a

L
j3)

1/2, (
1

n(n− 1)

n∑
i,j=1,i 6=j

aL
i4a

L
j4)

1/2; min
1≤i≤n

{hL
i })) (30)

Considering that the input arguments may have different importance, here we
define the IT2 Trapezoidal Fuzzy Weighted Bonferroni Mean (IT2TFWBM) oper-
ator.

Definition 4.8. Let Ãi = (ÃUi , Ã
L
i ) = ((aUi1, a

U
i2, a

U
i3, a

U
i4;hUi ), (aLi1, a

L
i2, a

L
i3, a

L
i4;hLi ))

(i = 1, 2, . . . n) be a collection of the IT2 trapezoidal fuzzy variables, and p, q ≥
0, w = (w1, w2, . . . , wn) is the weight vector of Ãi = (ÃUi , Ã

L
i ), where wi satisfying

wi ≥ 0 and
∑n
i=1 wi = 1 then, we call:

IT2TFWBMp,q(Ã1, Ã2, . . . , Ãn) = (
1

n(n− 1)

n∑
i,j=1,i 6=j

(wiÃi)
p ⊗ (wjÃj)

q) (31)

an IT2 Trapezoidal Fuzzy Weighted Bonferroni Mean (IT2TFWBM) operator.
Similar to Theorem4.3, we can get

Theorem 4.9. Let p, q ≥ 0, Ãi = (ÃUi , Ã
L
i ) = ((aUi1, a

U
i2, a

U
i3, a

U
i4;hUi ), (aLi1, a

L
i2, a

L
i3,

aLi4;hLi ))(i = 1, 2, . . . n) be a collection of the IT2 trapezoidal fuzzy variables,, whose
weight vector is w = (w1, w2, . . . , wn),which satisfies wi ≥ 0 and

∑n
i=1 wi = 1.

Then,the aggregated result by Eq. (31) is also an IT2 trapezoidal fuzzy variable,
and

IT2TFWBMp,q(Ã1, Ã2, . . . , Ãn) = Ãw = (ÃU
w , Ã

L
w) (32)

where

ÃU
w = ((

1

n(n− 1)

n∑
i,j=1,i 6=j

(wia
U
i1)

p(wja
U
j1)

q)1/p+q, (
1

n(n− 1)

n∑
i,j=1,i 6=j

(wia
U
i2)

p

(wja
U
j2)

q)1/p+q, (
1

n(n− 1)

n∑
i,j=1,i 6=j

(wia
U
i3)

p(wja
U
j3)

q)1/p+q,
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(
1

n(n− 1)

n∑
i,j=1,i 6=j

(wia
U
i4)

p(wja
U
j4)

q)1/p+q; min
1≤i≤n

{hU
i }) (33)

and

ÃLw = ((
1

n(n− 1)

n∑
i,j=1,i6=j

(wia
L
i1)p(wja

L
j1)q)1/p+q, (

1

n(n− 1)

n∑
i,j=1,i6=j

(wia
L
i2)p

(wja
L
j2)q)1/p+q, (

1

n(n− 1)

n∑
i,j=1,i6=j

(wia
L
i3)p(wja

L
j3)q)1/p+q,

(
1

n(n− 1)

n∑
i,j=1,i6=j

(wia
L
i4)p(wja

L
j4)q)1/p+q; min

1≤i≤n
{hLi })) (34)

Similarly to IT2TFBM operator, the IT2TFWBM operator owns idempotency,
boundedness, monotonicity and commutativity.

5. A New Method for Fuzzy Multi-attributes Group Decision Making
Under Interval Type-2 Fuzzy Environment

In this section, we present a new method for handling FMADM problems under
interval type-2 fuzzy environment. Assume that there is a set X of alternatives and
a set F of attributes, where X = (x1, x2, . . . , xn) and F = (f1, f2, , fm). Assume

that there are l decision-makers D1, D2, . . . , Dl. Let R̃(k) = (Ã
(k)
ij )n×m be an IT2

fuzzy decision matrix, where Ã
(k)
ij is an IT2 FSs, provided by the DM Dk for the

alternative xi with respect to the attribute fj .
In general, attributes can be classified into two types: benefit attributes and cost

attributes. In other words, the set F of attributes can be divided into two sets F1

and F2, where F1 denotes the set of benefit attributes, F2 denotes the set of cost
attributes, F1 ∩ F2 = ∅, and F1 ∪ F2 = F . The decision matrices R̃(k) needs to
be normalized unless all the attributes fj(j = 1, 2, . . . ,m) are of the same type.
In this paper, we choose the following normalized formula to update the decision
matrices R̃(k):

Ã
(k)
ij =

{
Ã

(k)
ij , j ∈ F1

(Ã
(k)
ij )c, j ∈ F1 (35)

whereÃ
(k)
ij )c is the complement of Ã

(k)
ij . Hence, we obtain the normalized decision

matrices R̃k = (Ã
(k)
ij )n×m

In the process of group decision making, we need to fuse all the individual de-
cision opinion into a group opinion so as to make a final decision. We utilize
the equtaion (6) to aggregate all individual normalized decision matrices R̃k =

(Ã
(k)
ij )n×m into the collective normalized decision matrix R̃ = (Ãij)n×m, where

Ãij =
∑l
k=1 λkÃ

k
ij .

Suppose the information about attribute weights is completely known, that
is, the weight vector w = (w1, w2, . . . , wm) of the attributes fj(j = 1, 2, . . . ,m)
can be completely determined in advance. Then, we utilize the IT2 trapezoidal
fuzzy weighted Bonferroni mean (IT2TFWBM) operator to develop an approach
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to FMADM problems with interval IT2 fuzzy information, which can be described
as following:

Step1: Utilize the normalized decision matrix R̃ = (Ãij)n×m and the weight
vector w = (w1, w2, . . . , wm), the IT2TFWBM operator are shown as follows:

d̃k = IT2TFWBMp,q
w (Ãk,1, Ãk,2, . . . , Ãk,m) = (

1

m(m− 1)

∑
i,j=1,i6=j

(wiÃki)
p

⊗(wjÃkj)
q)1/p+q (36)

where k = (1, 2, , n), in general, we can take p = q = 1.

Step2: Utilize fuzzy possibility degree equation (10) to calculate the fuzzy pref-
erence matrix P = (pij)n×n.

Step3: Utilize the ranking formula (12) to calculate the ranking value Rank(d̃k)

of the IT2 FSs d̃k ,where 1 ≤ k ≤ n. The large the value of Rank(d̃k), the more
the preference of the alternative xk, 1 ≤ k ≤ n.

6. Numerical Example

In this section, we use an example to illustrate the FMADM process of the
proposed method. Table2 shows the linguistic terms “Very Low” (VL), “Low”(L),
“Medium Low” (ML), “Medium”(M), “Medium High”(MH), “High” (H), “Very
High”(VH) and their corresponding interval type-2 fuzzy sets, respectively [6, 8].

Linguistic terms Interval type-2 fuzzy sets

Very Low (VL) ((0,0,0,0.1;1),(0,0,0,0.05;0.9))
Low (L) ((0,0.1,0.1,0.3;1),(0.05,0.1,0.1,0.2;0.9))
Medium Low (ML) ((0.1,0.3,0.3,0.5;1),(0.2,0.3,0.3,0.4;0.9))
Medium (M) ((0.3,0.5,0.5,0.7;1),(0.4,0.5,0.5,0.6;0.9))
Medium High (MH) ((0.5,0.7,0.7,0.9;1),(0.6,0.7,0.7,0.8;0.9))
High (H) ((0.7,0.9,0.9,1;1),(0.8,0.9,0.9,0.95;0.9))
Very High (VH) ((0.9,1,1,1;1),(0.95,1,1,1;0.9))

Table 2. Linguistic Terms and Their Corresponding

Interval Type-2 Fuzzy Sets

Assume that the problem discussed here is concerned with a manufacturing
company, searching the best global supplier for one of its most critical parts used
in assembling process [35]. There are three potential global suppliers x1, x2 and x3
to be evaluated with four attributes (f1: quality of the product, f2: risk factor,
f3: service performance of supplier, f4: supplier’s profile (whose weight vector
w = (0.30, 0.15, 0.20, 0.35)). An expert group is formed which consists of three
experts D1, D2 and D3 (whose weight vector is λ = (0.30, 0.45, 0.25) from each
strategic decision area. The experts D1, D2 and D3 use the linguistic terms shown
in Table 1 to represent the characteristics of the potential global suppliers x1, x2
and x3 with respect to different attributes fi(i = 1, 2, 3, 4), respectively, listed in
Table3:
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Attribute Alternatives Decision makers
D1 D2 D3

Quality of the product ( f1 ) x1 MH H MH

x2 H MH H
x3 VH H MH

Risk facto ( f2 ) x1 H VH H

x2 MH H VH
x3 VH VH H

Service performance of supplier ( f3 ) x1 VH H H

x2 H VH VH
x3 M MH MH

Supplier’s profile ( f4 ) x1 VH H H

x2 H VH H
x3 H VH VH

Table 3. Evaluating Values of Alternatives of the
Decision-makers with Respect to Different Attributes

Considering that the attributes are the benefit attributes except to the attribute
f2 (risk factor), then based on the formula (35) and Table 3, the decision matrices

R̃k = (Ãkij)3×4(k = 1, 2, 3) can be updated to the following normalized matrices
respectively, listed in Table 4:

Attribute Alternatives Decision makers

D1 D2 D3

Quality of the product ( f1 ) x1 MH H MH
x2 H MH H

x3 VH H MH

Risk facto ( f2 ) x1 L VL L
x2 ML L VL

x3 VL VL L

Service performance of supplier ( f3 ) x1 VH H H
x2 H VH VH

x3 M MH MH

Supplier’s profile ( f4 ) x1 VH H H
x2 H VH H

x3 H VH VH

Table 4. Evaluating Values of Alternatives of the Decision-makers
with Respect to Different Attributes

Based on Table 2, we utilize equtaions (3) and (5) to aggregate all individual

normalized IT2 fuzzy decision matrices R̃k = (Ãkij)3×4(k = 1, 2, 3) into a collective

normalized IT2 fuzzy decision matrix R̃ = (Ãij)3×4 shown as follows:

R̃ =

Ã11 Ã12 Ã13 Ã14

Ã21 Ã22 Ã23 Ã24

Ã31 Ã32 Ã33 Ã34
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where

Ã11 = ((0.590, 0.790, 0.790, 0.945; 1), (0.690, 0.790, 0.790, 0.868; 0.9))

Ã12 = ((0, 0.055, 0.055, 0.210; 1), (0.028, 0.055, 0.055, 0.133; 0.9))

Ã13 = ((0.760, 0.930, 0.930, 1; 1), (0.845, 0.930, 0.930, 0.965; 0.9))

Ã14 = ((0.760, 0.930, 0.930, 1; 1), (0.845, 0.930, 0.930, 0.965; 0.9))

Ã21 = ((0.610, 0.810, 0.810, 0.955; 1), (0.710, 0.810, 0.810, 0.883; 0.9))

Ã22 = ((0.030, 0.135, 0.135, 0.31; 1), (0.083, 0.135, 0.135, 0.223; 0.9))

Ã23 = ((0.840, 0.970, 0.970, 1; 1), (0.905, 0.970, 0.970, 0.985; 0.9))

Ã24 = ((0.790, 0.945, 0.945, 1; 1), (0.868, 0.945, 0.945, 0.973; 0.9))

Ã31 = ((0.710, 0.880, 0.880, 0.975; 1), (0.795, 0.880, 0.880, 0.928; 0.9))

Ã32 = ((0, 0.025, 0.025, 0.150; 1), (0.013, 0.025, 0.025, 0.088; 0.9))

Ã33 = ((0.440, 0.640, 0.640, 0.840; 1), (0.540, 0.640, 0.640, 0.740; 0.9))

Ã34 = ((0.840, 0.970, 0.970, 1; 1), (0.905, 0.970, 0.970, 0.985; 0.9))

Step1: Suppose p = q = 1. By equtaions (33) and (34), we can get the overall
performance value,

d̃1 = IT2TFWBM1,1
w (Ã1,1, Ã1,2, Ã1,3, Ã1,4)

= ((0.138, 0.177, 0.177, 0.205; 1), (0.158, 0.177, 0.177, 0.191; 0.9))

d̃2 = IT2TFWBM1,1
w (Ã2,1, Ã2,2, Ã2,3, Ã2,4)

= ((0.148, 0.186, 0.186, 0.211; 1), (0.167, 0.186, 0.186, 0.198; 0.9))

d̃3 = IT2TFWBM1,1
w (Ã3,1, Ã3,2, Ã3,3, Ã3,4)

= ((0.134, 0.168, 0.168, 0.195; 1), (0.151, 0.168, 0.168, 0.182; 0.9))

Step2: Based on equtaions(7) and (8), calculate interval-valued possibility mean

values of the weighted decision matrix D = (d̃1, d̃2, d̃3) , shown as follows:

M(d̃1) = [0.151, 0.167], M(d̃2) = [0.159, 0.174], M(d̃3) = [0.144, 0.159]

Based on equtaion (11), we can construct the fuzzy possibility degree preference
matrix P , shown as follows:

P =

0.500 0.248 0.753
0.752 0.500 1.000
0.247 0.000 0.500


Step3: Based on equtaion (12), the ranking values Rank(d̃j) of the IT2 FSs d̃j

can be calculated, shown as follows:

Rank(d̃1) = 0.334, Rank(d̃2) = 0.459, Rank(d̃3) = 0.208

Because Rank(d̃2) > Rank(d̃1) > Rank(d̃3), the preference orders of the alter-
native x1, x2 and x3 is: x2 > x1 > x3. That is, the best desirable global supplier
among x1, x2 and x3 is x2. The proposed method does not require complicated com-
putations in the implementation procedure for evaluate global supplier. It provides
us with a useful way for dealing with FMADM problems based on IT2 FSs.

A comparative study was conducted to validate the results of the proposed
method with those from another approach. In the following, we use the above
example to compare the ranking results of the proposed method with the existing
methods. Using Gong et al.’s trapezoidal interval type-2 geometric Bonferroni mean
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(TIT2FWGBM) operators method [15], suppose p = q = 1, the overall performance
value can be calculated shown as follows:
d̃1 = IT2TFWGBM1,1

w (Ã1,1, Ã1,2, Ã1,3, Ã1,4)
= ((0.638, 0.881, 0.881, 0.942; 1), (0.842, 0.881, 0.881, 0.9171; 0.9))

d̃2 = IT2TFWGBM1,1
w (Ã2,1, Ã2,2, Ã2,3, Ã2,4)

= ((0.831, 0.912, 0.912, 0.956; 1), (0.878, 0.912, 0.912, 0.936; 0.9))

d̃3 = IT2TFWGBM1,1
w (Ã3,1, Ã3,2, Ã3,3, Ã3,4)

= ((0.634, 0.855, 0.855, 0.926; 1), (0.819, 0.855, 0.855, 0.899; 0.9))

It is noted that operator aggregation values d̃i obtained by BM method are
smaller than 0 and the ones obtained by Gong et al.’s GBM method are bigger
than 0, which indicates that our method can obtain more unfavorable (or pes-
simistic) expectations, while the one given by Gong et al. has more favorable (or
optimistic) expectations. Xia et al. [40] has been a detailed comparison of the two
operators. Using Chen and Lee’s fuzzy ranking method [6], the upper and lower
fuzzy preference matrix PU , PL shown as follows:

PU =

0.500 0.194 0.592
0.806 0.500 0.654
0.408 0.346 0.500



PL =

0.500 0.264 0.677
0.736 0.500 0.834
0.323 0.166 0.500


The ranking values Rank(d̃j) of the IT2 FSs d̃j can be calculated shown as

follows:

Rank(d̃1) = 0.621, Rank(d̃2) = 0.838, Rank(d̃3) = 0.540

Because Rank(d̃2) > Rank(d̃1) > Rank(d̃3), the preference orders of the alter-
native x1, x2 and x3 is: x2 > x1 > x3.

Using Hu et al.’s [16] possibility method, the possibility degree matrix P shown
as follows:

P =

0.500 0.347 0.602
0.653 0.500 0.769
0.398 0.231 0.500


The ranking values Rank(d̃j) of the IT2 FSs d̃j can be calculated shown as follows:

Rank(d̃1) = 0.325, Rank(d̃2) = 0.404, Rank(d̃3) = 0.272

Because Rank(d̃2) > Rank(d̃1) > Rank(d̃3), the preference orders of the alter-
native x1, x2 and x3 is: x2 > x1 > x3.

The ranking order is consistent with the one by ours. But compared with Chen’s
method, the main advantage of our method is that the values in UMF and LMF
are considered simultaneously, and the possibility degree is calculated only once
instead of twice in Chen’s method, resulting in reduced computing time. Moreover,
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it is much easier to obtain the wrong order by Chen’s method when the trapezoidal
interval type-2 fuzzy numbers are closer. The advantages of our method when
compared with Hu’s method are shown as follows. First, the computation in our
possibility degree formula is simpler than the possibility degree formula of Hu’s
method. Second, the IT2TFWBM operator can be very good to aggregate IT2 FSs
information than TIT2-WAA operator.

7. Conclusions

In this paper, the BM operator and possibility degree have been extended to the
interval type-2 fuzzy environment to organize and model the uncertainties better
within multi- attribute decision analysis. We have presented a new method for
FMADM based on the IT2TFWBM operator and the possibility degree of IT2 FSs.
Compared with type-1 fuzzy numbers, interval trapezoidal type-2 fuzzy number
better represent the uncertainties of decision-maker. We also use one example to
illustrate the FMADM process of the proposed method. The result shows that the
proposed method provides us with a useful way to deal with FMADM problems
based on IT2 FSs.

In the future, we will apply the developed procedures to some other decision-
making problems where the information about attribute weights is incomplete,
such as making investment choices, hierarchical decision-making and hierarchical
and distributed decision making [10], etc. and will consider the situations where
the decision makers cannot provide their preference information about attribute
weights in the process of decision making [12].
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