
Using exact penalties to derive a new equation
reformulation of KKT systems associated to variational

inequalities
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Abstract

In this paper, we present a new reformulation of the KKT system associated to a
variational inequality as a semismooth equation. The reformulation is derived from
the concept of differentiable exact penalties for nonlinear programming. The best re-
sults are presented for nonlinear complementarity problems, where simple, verifiable,
conditions ensure that the penalty is exact. We also develop a semismooth Newton
method for complementarity problems based on the reformulation. We close the pa-
per showing some preliminary computational tests comparing the proposed method
with classical reformulations, based on the minimum or on the Fischer-Burmeister
function.

1 Introduction

Consider a constrained nonlinear programming problem

min f(x)

s.t. g(x) ≤ 0 (NLP)

h(x) = 0,

where x lies in Rn and f : Rn → R, g : Rn → Rm, and h : Rn → Rp are C2 functions.
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Penalty methods are a very popular framework to solve such problems. In these meth-
ods, the constrained problem is replaced by a sequence of unconstrained ones. A good
example is the augmented Lagrangian algorithm, that can be derived from a proximal
point method applied to the Lagrangian dual problem [3, 25].

Another possibility is the exact penalty approach, where a special penalty function is
used to transform (NLP) into a single unconstrained problem. For example, it is easy to see
that, under reasonable assumptions, the solutions to (NLP) are exactly the unconstrained
minima of

min
x∈Rn

φ(x, µ)
def
= f(x) + µ max

{
0, g1(x), g2(x), . . . , gm(x), |h1(x)|, |h2(x)|, . . . , |hp(x)|

}
,

if µ is chosen big enough [4]. However, this unconstrained problem is naturally nonsmooth
and special methods should be used to solve it. Moreover, it is not easy to estimate how
large µ must be to ensure the equivalence of the minima.

To overcome the lack of differentiability of the maximum, many authors proposed dif-
ferentiable formulas for exact penalties. The history of differentiable exact penalties starts
with Fletcher in 1970, when he published a series of three articles proposing automatic
updates for the multipliers in the augmented Lagrangian method for equality constrained
problems [13, 16, 14]. The idea was to estimate the multipliers as a function of the pri-
mal variables, denoted by λ(x), followed by the minimization of the associated augmented
Lagrangian

f(x) + 〈λ(x), h(x)〉+ ck‖h(x)‖2.

However, the multiplier function was not easy to compute and it was not clear how to
choose good values for the penalty parameter ck. Later on, in 1975, Mukai and Polak
proposed a new formula for λ(x) and showed that there is a threshold for ck that once
achieved would allow the modified augmented Lagrangian to recover the solutions of the
original problem after a single minimization [21].

In 1979, Di Pillo and Grippo presented a new formulation for exact penalties that
simplified the analysis of the associated problems [6]. In this work, they propose to fur-
ther extend the augmented Lagrangian function, penalizing deviations from the first order
conditions:

f(x) + 〈λ(x), h(x)〉+ ck‖h(x)‖2 + ‖M(x) (∇f(x) + Jh(x)′λ(x))‖2
,

where Jh(x) denotes the Jacobian of h at x. Special choices for M(x) resulted in modified
augmented Lagrangians that are quadratic in λ. In this case, it is possible to isolate the
dual variable in terms of x. One of such choices for M(x) recovered the method proposed
by Fletcher and the results from Mukai and Polak.

This last formulation is also important because it is able to deal with inequality con-
straints using slack variables and the classic transformation hi(x) = gi(x) + s2

i . With an

2



appropriate choice for M(x), one obtains a quadratic problem in the slacks. Then, the
slacks can be written as an explicit function of the original variables x. However, in this
case it is not possible to isolate the multipliers λ as a function of x.

In 1973, Fletcher had already extended his ideas to deal with inequality constraints [15],
but the proposed function lacked good differentiability properties. In 1979, Glad and Polak
proposed a new formula for λ(x) in inequality constrained problems and showed how to
control the parameter ck [17].

Finally, in 1985 and 1989, Di Pillo and Grippo reworked the results from Glad and
Polak and created a differentiable exact penalty for inequality constrained problems that
depends only on the primal variables [7, 8]. These papers are the base of our work. In
particular, from now on we focus exclusively on inequality constrained problems.

In this paper we extend the ideas of Di Pillo and Grippo to variational inequalities with
functional constraints and the related KKT system. The remaining of the paper is organized
as follows: Section 2 presents the formula for the penalty, Section 3 derives the exactness
results, Section 4 specializes the results for Nonlinear Complementarity Problems (NCP),
and Section 5 uses the proposed penalty to develop a semismooth Newton method for
complementarity. This last section is closed with some preliminary computational results
comparing the new penalty with other classical NCP functions.

2 Extending exact penalties

As described above, it is possible to build differentiable exact penalties for constrained
optimization problems using an augmented Lagrangian function coupled with a multiplier
estimate computed from the primal point. A natural multiplier estimate for inequality
constrained problems was given by Glad and Polak. It is computed solving, in the least-
squares sense, the equations involving the multipliers in the KKT conditions

min
λ∈Rm

‖∇xL(x, λ)‖2 + ζ2‖G(x)λ‖2, (1)

where L is the usual Lagrangian function, ζ > 0, and G(x) ∈ Rm×m is a diagonal matrix
with G(x)ii = gi(x). The first term tries to find a multiplier for which the fixed primal
point is a minimum of the Lagrangian function.1 The second term tries to enforce the
complementarity conditions.

This problem is convex and quadratic in λ and can be easily solved if the point x con-
forms to the Linear Independence Constraint Qualification (LICQ), that is, if the gradients
of the constraints that are active at x are linearly independent. The results concerning (1)
are summarized in the following proposition.

1Actually, a first order stationary point.
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Proposition 2.1. [17, Proposition 1] Assume that x ∈ Rn conforms to LICQ and define
the matrix N(x) ∈ Rm×m by

N(x)
def
= Jg(x)Jg(x)′ + ζ2G(x)2.

Then,

1. N(x) is positive definite.

2. The solution λ(x) of (1) is

λ(x) = −N−1(x)Jg(x)∇f(x).

3. If (x̄, λ̄) ∈ Rn × Rm is a KKT pair where LICQ holds then λ̄ = λ(x̄), i.e. λ̄ solves
(1) for x = x̄.

4. [7, Proposition 4] If LICQ holds in a neighborhood of x, then λ(·) is continuously
differentiable at x and its Jacobian is given by

Jλ(x) = −N−1(x)

[
Jg(x)∇2

xxL
(
x, λ(x)

) m∑
i=1

ei∇xL(x, λ(x))′∇2gi(x)+

+ 2ζ2Λ(x)G(x)Jg(x)

]
, (2)

where ei is the i-th element of the canonical base of Rm and Λ(x) ∈ Rm×m is a
diagonal matrix with Λ(x)ii = λ(x)i.

Using such estimate, one can build a differentiable exact penalty from the standard
augmented Lagrangian function,

Lc(x, λ)
def
= f(x) +

1

2c

m∑
i=1

(
max{0, λi + cgi(x)}2 − λ2

i

)
= f(x) + 〈λ, g(x)〉+

c

2
‖g(x)‖2 − 1

2c

m∑
i=1

max{0,−λi − cgi(x)}2.

The resulting exact penalty function, that we call wc(·), is obtained plugging the multiplier
estimate in the augmented Lagrangian

wc(x)
def
= Lc(x, λ(x)). (3)
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Our aim is to extend the definition of wc to the context of variational inequalities. Let
F : Rn → Rn be a continuous function and F ⊂ Rn a non-empty closed set. The variational
inequality problem is to find x ∈ F such that

∀y ∈ F , 〈F (x), y − x〉 ≥ 0. (VIP)

If F is convex it is easy to see that (VIP) is an extension of the geometrical optimality
conditions for (NLP) where the gradient of the objective function is replaced by a general
continuous function. In this paper we focus on problems where the feasible set can be
described as a system of twice differentiable convex inequalities F = {x | g(x) ≤ 0}.

In 1999, Eckstein and Ferris proposed an extension of multiplier methods to nonlinear
mixed complementarity problems [9], variational inequalities where F is a box. Afterwards,
Auslender and Teboulle proposed an extension of the notion of augmented Lagrangians to
(VIP) with general functional constraints [1, 2]. Their results are related to the rich duality
theory for generalized equations developed by Pennanen [22].

Following these developments, a natural way to extend the notion of exact penalty to
(VIP) is to use the gradient of wc(·), replacing ∇f by F . However, such gradient involves
the Jacobian of λ(·) given in Proposition 2.1. This first choice for exact penalty would have
a very complicated formula, depending on the Hessians of the constraints and the Jacobian
of F which may not be easily available.

To overcome such difficulty, we start with the classical augmented Lagrangian for vari-
ational inequality, which is the gradient of Lc(·, ·) with respect to the first variable. We
then plug into it the multiplier estimate λ(·):

λ(x)
def
= −N−1(x)Jg(x)F (x), (4)

Wc(x)
def
=F (x) + Jg(x)′λ(x) + cJg(x)′g(x) + cJg(x)′ max

{
0,−λ(x)/c− g(x)

}
(5)

=F (x) + Jg(x)′λ(x) + cJg(x)′ max
{
g(x),−λ(x)/c

}
. (6)

In the next sections we will show the relation between the zeros of Wc, for c large enough,
and the KKT system associated to (VIP).

Definition 2.2. The Karush-Kuhn-Tucker (KKT) system associated to (VIP) is

F (x) + Jg(x)′λ = 0, (Zero Condition)

g(x) ≤ 0, (Primal Feasibility)

λ ≥ 0, (Dual Feasibility)

∀i = 1, . . . ,m, λigi(x) = 0. (Complementarity)

A pair (x, λ) ∈ Rn+m that conforms to these equations is called a KKT pair. The primal
variable x is called a KKT (stationary) point.
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This system is known to be equivalent to (VIP) whenever the feasible set F is defined
by convex inequalities and conforms to a constraint qualification [10].

Some comments must be made before presenting the exactness properties for Wc. Note
that since Wc is not the gradient of wc, its zeros are not clearly related to the solutions
of an unconstrained optimization problem. In this sense, the proposed exact penalty ap-
proach is not equivalent to the penalties usually proposed in the optimization literature.
In particular, it has the major advantage of not depending on the Jacobian of F and on
second order information of the constraints.

As for the differentiability properties of Wc, the maximum present in its definition
clearly make it nonsmooth. This is a direct heritage of the classical augmented Lagrangian
used to derive it. Even though, it is (strongly) semismooth if F is (LC1) C1 and g is
(LC2) C2. Therefore, its zeros can be found by an extension of the Newton method to
semismooth equations [23, 24]. We present such a method in Section 5. In this sense, Wc

can be viewed as a NCP function, like the classical min
(
x, F (x)

)
or the Fischer-Burmeister

function. However, Wc incorporates dual information through the multiplier estimates.

3 Exactness results

Let us present the exactness results for Wc. Here we follow closely the results presented
in the nonlinear programming case by Di Pillo and Grippo [7, 8]. First, we show that the
proposed penalty has zeros whenever the original KKT system has solutions.

In order to define Wc in the whole space we will need the following assumption, that
we assume valid throughout this section:

Assumption 3.1. LICQ holds on the whole Rn, so that λ(·) and, hence, Wc is well-defined
everywhere.

This assumption is restrictive, but was present already in the original papers on (dif-
ferentiable) exact penalties [17, 6, 7, 8]. Fortunately, in many cases it is easily verifiable.
For example, it holds trivially in nonlinear and mixed complementarity problems.

Proposition 3.2. Let (x, λ) be a KKT pair. Then, for all c > 0, Wc(x) = 0.

Proof. The LICQ assumptions ensures that λ = λ(x). Then,

Wc(x) = F (x) + Jg(x)′λ(x) + cJg(x)′ max
{
g(x),−λ(x)/c

}
= 0 + cJg(x)′ max

{
g(x),−λ/c

}
= 0,

where the last equality follows from primal and dual feasibility and the complementary
condition.
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Next, we show that for c large enough the zeroes of Wc are nearly feasible. Then, we
show that if a zero is nearly feasible it will be a KKT point associated to (VIP).

Proposition 3.3. Let {xk} ⊂ Rn and {ck} ⊂ R+ be sequences such that xk → x̄, ck → +∞,
and Wck

(xk) = 0. Then, x̄ ∈ F .

Proof. We have,

0 = Wck
(xk) = F (xk) + Jg(xk)′λ(xk) + ckJg(xk)′ max

{
g(xk),−λ(xk)/ck

}
.

Now recall that, under LICQ, λ(·) is continuous. Moreover, F is assumed continuous and g
continuously differentiable. Hence, as xk → x̄ and ck → +∞, we may divide the equation
above by ck and take limits to conclude that

0 =
m∑

i=1

max
{
gi(x̄), 0

}
∇gi(x̄).

Once again we use LICQ to see that max
{
gi(x̄), 0

}
= 0 for all i = 1, . . . ,m, that is, x̄ is

feasible.

Proposition 3.4. Let x̄ ∈ F . Then, there are cx̄, δx̄ > 0 such that if ‖x− x̄‖ ≤ δx̄, c > cx̄,
and Wc(x) = 0 imply that

(
x, λ(x)

)
is a KKT pair associated to (VIP).

Proof. Let us introduce some notation

y(x)
def
= max

{
0,−λ(x)/c− g(x)

}
.

We will use capital letters to denote the usual diagonal matrix build from vectors. For
example, Y (x) denotes the diagonal matrix with y(x) in the diagonal.

It is easy o show that,

Y (x)λ(x) = −cY (x)
(
g(x) + y(x)

)
.

Hence,

Jg(x)
(
F (x) + Jg(x)′λ(x)

)
= Jg(x)F (x) + Jg(x)Jg(x)′λ(x)

= −N(x)λ(x) + Jg(x)Jg(x)′λ(x)

= −ζ2G(x)2λ(x) (7)

= −ζ2G(x)
(
G(x) + Y (x)

)
λ(x) + ζ2G(x)Y (x)λ(x)

= −ζ2G(x)Λ(x)
(
g(x) + y(x)

)
+ ζ2G(x)Y (x)λ(x).
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We combine the last results to get

1

c
Jg(x)

(
F (x) + Jg(x)′λ(x)

)
= −ζ2G(x)

(
1

c
Λ(x) + Y (x)

) (
g(x) + y(x)

)
.

Recalling the definition of Wc, we have

1

c
Jg(x)Wc(x) =

1

c
Jg(x)

(
F (x) + Jg(x)′λ(x)

)
+ Jg(x)Jg(x)′

(
g(x) + y(x)

)
(8)

= K(x, c)
(
g(x) + y(x)

)
, (9)

where K(x, c)
def
= Jg(x)Jg(x)′ − ζ2G(x)Y (x)− 1

c
ζ2G(x)Λ(x).

For x = x̄, recalling that it is feasible, if c → +∞ then y(x̄) → −g(x̄) and therefore
K(x̄, c) → N(x̄). As N(x̄) is nonsingular due to LICQ, we can conclude that there must
be cx̄, δx̄ > 0 such that if ‖x− x̄‖ ≤ δx̄, c > cx̄ then K(x, c) is also nonsingular.

Let x, c be such that ‖x − x̄‖ ≤ δx̄, c > cx̄ and Wc(x) = 0. Then, (9) imply that
g(x) + y(x) = 0. Plugging this into (8) and using LICQ once again, we see that F (x) +
Jg(x)′λ(x) = 0, the zero condition. Moreover, g(x) + y(x) = 0 is equivalent to

max
{
g(x),−λ(x)/c

}
= 0 =⇒

g(x) ≤ 0, λ(x) ≥ 0,

primal and dual feasibility. Finally, using (7) and the zero condition, complementarity
slackness holds.

These two results may be combined in the following exactness theorem:

Theorem 3.5. Let {xk, ck} ⊂ Rn+1 be a sequence such that Wck
(xk) = 0, ck → +∞, and

{xk} is bounded. Then, there is a finite index K such that for k > K,
(
xk, λ(xk)

)
is a

KKT solution associated to (VIP).

Proof. Suppose, by contradiction, that we can extract a sub-sequence {xkj} of points that
are not KKT. Since {xk} is bounded, we can assume without loss of generality that {xkj}
converges to some x̄. Using Proposition 3.3 we conclude that x̄ is feasible. Then, Proposi-
tion 3.4 ensures that when xkj is close enough to x̄,

(
xkj , λ(xkj)

)
will be a solution to the

KKT system.

Corollary 3.6. If there is a c̄ ∈ R such that the set {x | Wc(x) = 0, c > c̄} is bounded,
then there is a c̃ > 0 such that Wc(x) = 0, c > c̃, implies that

(
x, λ(x)

)
is a KKT solution

associated to (VIP).
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Proof. Suppose by contradiction that the result is false. Then, there must be ck → +∞
and a sequence {xk} ⊂ Rn such that Wck

(xk) = 0, and such that
(
xk, λ(xk)

)
is not a KKT

solution. But for ck > c̄ we have that xk belongs to the bounded set {x | Wc(x) = 0, c > c̄}
and then {xk} is bounded. This is not possible, as Theorem 3.5 ensures that for big enough
k,

(
xk, λ(xk)

)
is a KKT solution.

Note that the exactness results above depend on the boundedness of the zeroes. This
property may not be easily verified from the problem data for general variational inequali-
ties. In the optimization literature such boundedness is forced by the minimization on an
extraneous compact set that should contain the feasible set or at least a minimum [7, 8].
We believe, on the other hand, that by exploring the coerciveness properties of a (VIP) it
is possible to drop the necessity of such compact. We give the first results in this direction
in the next section, that deals with a special (VIP).

4 Nonlinear complementarity problems

We specialize the proposed exact penalty to nonlinear complementarity problems:

F (x) ≥ 0, x ≥ 0, 〈F (x), x〉 = 0. (NCP)

It is easy to see that (NCP) is a Variational Inequality with F = Rn
+ and, as stated before,

that LICQ holds everywhere.
After some algebra, we may see that the proposed exact penalty Wc(·), simplifies to

Wc(x)i = min

{
ζ2x2

i

1 + ζ2x2
i

F (x)i + cxi, F (x)i

}
, i = 1, . . . , n. (10)

In particular, the multiplier estimate can be computed explicitly.
In this case we can derive a reasonable assumption that ensures that, for large c, the

zeros of Wc(·) are solutions to (NCP).

Theorem 4.1. Assume that there are ρ, M > 0 such that 〈F (x), x〉 ≥ −M for ‖x‖ > ρ
or that F is monotone and (NCP) has a solution. Then, there is a c̄ > 0 such that Wc(·)
is exact for c > c̄, i.e. any zero of Wc(x) for c > c̄ is a solution to (NCP).

Proof. Suppose, by contradiction, that the result does not hold. Then there are ck → +∞,
and a sequence {xk} such that Wck

(xk) = 0 and xk is not a solution to (NCP). Theorem 3.5
asserts that ‖xk‖ → +∞. Proposition 3.4 says that xk is never feasible.

For each xk and each of its coordinates, (10) allows only three possibilities:
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1. If xk
i > 0, then F (xk)i = 0.

Observe that (10) implies F (xk)i ≥ Wck
(xk)i = 0. If F (xk)i > 0, Wck

(xk)i would be
the minimum of two strictly positive numbers, which contradicts the fact that it is
zero.

2. If xk
i = 0, then F (xk)i ≥ 0.

It follows from Wck
(xk)i = 0, that min{0, F (xk)i} = 0. This is equivalent to F (xk)i ≥

0.

3. If xk
i < 0, then F (xk)i = −ck

1+ζ2(xk
i )2

ζ2xk
i

.

First, if F (xk)i ≤ 0, Wck
(xk)i would be the minimum of a strictly negative number

and a negative number. This contradicts Wck
(xk)i = 0. Now, as F (xk)i > 0, it is

clear that the minimum is achieved in the first term, leading to

0 =
ζ2(xk

i )
2

1 + ζ2(xk
i )

2
F (xk)i + ckx

k
i ,

which gives the desired result.

Note that the cases above show that F (xk) ≥ 0.
Now consider that there are ρ, M > 0 such that 〈F (x), x〉 ≥ −M for ‖x‖ > ρ. On the

other hand, we have just proved that

〈F (xk), xk〉 =
∑
xk

i <0

−ck
1 + ζ2(xk

i )
2

ζ2
(11)

→ −∞, [xk is not feasible]

a contradiction.
Finally consider the case where F is monotone and where (NCP) has a solution x̄. We

have

0 ≤ 〈F (xk)− F (x̄), xk − x̄〉
= 〈F (xk), xk〉 − 〈F (xk), x̄〉 − 〈F (x̄), xk〉+ 〈F (x̄), x̄〉
≤ 〈F (xk), xk〉 − 〈F (x̄), xk〉

≤
∑
xk

i <0

−ck
1 + ζ2(xk

i )
2

ζ2
− F (x̄)ix

k
i

=
∑
xk

i <0

−ck − ζ2xk
i (ckx

k
i + F (x̄)i)

ζ2
,

10



where the second inequality follows from the fact that F (xk), x̄ ≥ 0 and 〈F (x̄), x̄〉 = 0, and
the third follows from Equation (11) and F (x̄) ≥ 0.

If, for some xk, ckx
k
i + F (x̄)i ≤ 0 whenever xk

i < 0, the last equation already shows a
contradiction as it must be strictly smaller than 0. Hence we conclude that for at least one
coordinate, ckx

k
i + F (x̄)i > 0 and we can write

0 ≤
∑

xk
i <0, ckxk

i +F (x̄)i>0

−ck − ζ2xk
i (ckx

k
i + F (x̄)i)

ζ2

≤
∑

xk
i <0, ckxk

i +F (x̄)i>0

−ck − ζ2xk
i F (x̄)i

ζ2

≤
∑

xk
i <0, ckxk

i +F (x̄)i>0

−ck + ζ2F (x̄)2
i /ck

ζ2
[ckx

k
i + F (x̄)i > 0]

→ −∞,

a contradiction

The coerciveness assumption on F (·) that appears in Theorem 4.1 is not very restrictive.
In particular, it holds whenever F presents a weak coercive property that is associated to
the compactness of the solution set [10, Proposition 2.2.7]:

Proposition 4.2. Let F conform to the following coerciveness property:

lim inf
‖x‖→∞

〈F (x), x〉
‖x‖η

> 0,

for some η ≥ 0. Then, there is a ρ > 0 such that 〈F (x), x〉 ≥ 0 for ‖x‖ > ρ. In particular,
the coercive assumption of Theorem 4.1 holds with M = 0.

Proof. There must be an ε > 0 such that

lim inf
‖x‖→∞

〈F (x), x〉
‖x‖η

> 2ε.

This implies that there is a ρ > 0 such that if ‖x‖ > ρ, 〈F (x),x〉
‖x‖η ≥ ε, which implies that

〈F (x), x〉 ≥ 0.

5 Numerical Methods

In this section, we develop a semismooth Newton method for nonlinear complementarity
problems based on Wc. We focus on the complementarity case as it has the most complete
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exactness results and because the computation of the respective multiplier estimates is
trivial, see (10).

The idea is to use the exact penalty to compute the Newton direction in a semismooth

Newton method that will be globalized using the Fischer-Burmeister function ϕFB(a, b)
def
=√

a2 + b2−a−b [12]. This function has the important property that, whenever ϕFB(a, b) =
0, both a and b are positive and complementary. Such functions are called NCP functions.
Hence, the nonlinear complementarity problem can be rewritten as

ΦFB(x)
def
=

 ϕFB

(
x1, F (x)1

)
...

ϕFB

(
xn, F (x)n

)
 = 0.

Under reasonable assumptions, the above system of equations is semismooth and can be

solved using a semismooth Newton algorithm [23]. Moreover, ΨFB(x)
def
= 1/2‖ΦFB(x)‖2 is

differentiable and can be used to globalize the Newton method.
However, there are other important NCP functions whose least square reformulation is

not differentiable. They do not have a natural globalization strategy. In this case, it is
usual to build hybrid methods, where the local fast convergence is obtained by a Newton
algorithm based on the desired NCP function, but the globalization is achieved using a
differentiable merit function like ΨFB. Such globalization ideas are described in the recent
books of Facchinei and Pang [10, 11]. A typical choice is the combination of the NCP

function based on the minimum, Φmin(x)
def
= min

(
x, F (x)

)
, with a merit function based

on Fischer-Burmeister. Such combination gives rise to many practical algorithms, see for
example [5].

Before presenting the variant of the semismooth Newton method used in this paper, it
is natural to search for regularity conditions that can ensure fast local convergence. The
semismooth Newton method can be shown to converge superlinearly if all the elements of
the B-subdifferential at the desired zero x∗ are nonsingular [23]. Such zeroes are called BD-
regular. In complementarity problems, the BD-regularity of the zeroes of a reformulation
is usually connected to the concepts of b and R-regularity of the solutions:

Definition 5.1. Let x∗ be a solution to the (NCP). Define the index sets

α
def
= {i | x∗i > 0 = F (x∗)i},

β
def
= {i | x∗i = 0 = F (x∗)i},

γ
def
= {i | x∗i = 0 < F (x∗)i}.

The solution x∗ is said to be b-regular if the principal submatrices JF (x∗)α∪δ,α∪δ are non-
singular for all subsets δ ⊂ β. It is called R-regular if JF (x∗)α,α is nonsingular and the
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Schur complement of this matrix in[
JF (x∗)α,α JF (x∗)α,β

JF (x∗)β,α JF (x∗)β,β

]
is a P -matrix.

In [5], the authors show that b-regularity is weaker than R-regularity. However, both
conditions are equivalent in important cases, like when x∗ is a nondegenerate solution or if
F is a P0 function, in particular if it is monotone.

We are ready to show the main regularity result for the penalty Wc.

Proposition 5.2. Let F be a C1 function and suppose that x∗ is a b-regular solution of
(NCP). Then, x∗ is a BD-regular solution of the system Wc(x) = 0, where Wc is defined
in (10) and c > 0.

Proof. The regularity is actually inherited from the minimum function, and hence we follow
the proof of [5, Proposition 2.10].

First, define

ξ1(x)
def
= {i | Wc(x)i = (ζ2x2

i )/(1 + ζ2x2
i )F (x)i + cxi},

ξ2(x)
def
= {i | Wc(x)i = F (x)i}.

It is clear that Wc is differentiable at x if, and only if, ξ1(x) ∩ ξ2(x) = ∅. In this case,

JWc(x)i =

{
ζ2x2

i

1+ζ2x2
i
JF (x)i +

(
2ζ2xi

(1+ζ2x2
i )2

F (x)i + c
)

ei, if i ∈ ξ1(x)

JF (x)i, if i ∈ ξ2(x),

where JWc(x)i denotes the i-th line of the Jacobian of Wc at x, JF (x)i is the analogous
for F , and ei is again the i-th canonical vector.

Let H ∈ ∂BWc(x) and denote its i-th row Hi. Using the index sets from Definition 5.1,
it is easy to see that:

1. If i ∈ α, Hi = JF (x∗)i.

2. If i ∈ γ, Hi =
ζ2(x∗i )2

1+ζ2(x∗i )2
JF (x∗)i +

(
2ζ2x∗i

(1+ζ2(x∗i )2)2
F (x∗)i + c

)
ei = cei.

3. If i ∈ β, Hi = JF (x∗)i or Hi = cei.

Hence, as in the proof of [5, Proposition 2.10], there is an index set δ ⊂ β such that

H =

[
JF (x∗)α∪δ, α∪δ JF (x∗)α∪δ̄, α∪δ̄

0γ∪δ̄, α∪δ cIγ∪δ̄,α∪δ̄

]
,

where δ̄ = β\δ. The result follows from the definition of b-regularity.
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This proposition guarantees the fast local convergence of a semismooth Newton method
that starts in a neighborhood of a BD-solution to (NCP), see Theorem 5.5.

We can now present a variant of the Newton method based on Wc and globalized by ΨFB.
We choose to use a Levenberg-Marquardt method, as we used the LMMCP implementation
of Kanzow and Petra [20] as a base for our code. Their program can be downloaded from
Kanzow web page [18]. In order to make the test more interesting, we also consider the
hybrid algorithm when the Newton direction is computed using Φmin instead of Wc. More
formally, we follow the “General Line Search Algorithm” from [5], and propose the following
modification to Algorithm 3.1 in [20]:

Semismooth Levenberg-Marquardt method with alternative search directions

(LMAD) Let ΨFB(x)
def
= 1/2‖ΦFB(x)‖2, and let G denote either Wc for a fixed c > 0 or

Φmin. Choose ε1, ε2 ≥ 0, µ̄ > 0, α1 > 0. Choose α2, β, σ1 ∈ (0, 1), σ2 ∈ (0, 1
2
). Set k = 0.

1. If ΨFB(x) ≤ ε1 or ‖∇ΨFB(xk)‖ ≤ ε2, stop.

2. Compute the search direction:

(a) Compute G(xk), Hk ∈ ∂BG(xk), and choose the Levenberg-Marquardt parameter
µk ∈ (0, µ̄].

(b) Find dk such that
(H ′

kHk + µkI)dk = −H ′
kG(xk).

(c) If
ΨFB(xk + dk) ≤ σ1ΨFB(xk),

set xk+1 = xk + dk, k = k + 1, and go to Step 1.

(d) If
‖dk‖ < α1‖∇ΨFB(xk)‖

or if
〈dk,∇ΨFB(xk)〉 > −α2‖dk‖‖∇ΨFB(xk)‖,

change dk to −∇ΨFB(xk)/‖∇ΨFB(xk)‖.

3. Find the largest value tk in {βl | l = 0, 1, 2, . . .} such that

ΨFB(xk + tkd
k) ≤ ΨFB(xk) + σ2tk〈∇ΨFB(xk), dk〉.

Set xk+1 = xk + tkd
k, k = k + 1 and go to Step 1.
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Note that the conditions in Step 2d ensure that the Armijo search in Step 3 is well defined
and will stop in a finite number of steps.

To prove the global convergence of the LMAD we will use the spacer steps result pre-
sented in [4, Proposition 1.2.6]. In order to do so, let us recall the definition of a gradient
related sequence:

Definition 5.3. A direction sequence {dk} is gradient related to {xk} with respect to ΨFB

if, for any subsequence {xkj} that converges to a nonstationary point, the corresponding
subsequence {dkj} is bounded and satisfies

lim sup
kj→∞

〈dkj ,∇ΨFB(xkj)〉 < 0.

We can present now the convergence results:

Theorem 5.4. Let {xk} be a sequence computed by the LMAD method. Then, every
accumulation point is a stationary point of ΨFB.

Proof. First, let us recall that ΨFB is continuously differentiable [20, Theorem 2.7].
Now, let K be the set of indexes where the condition of Step 2c failed. That is, the

set of indexes where the Armijo line search took place. We show that {dk}k∈K is gradient
related as defined above.

Let xkj → x∗, with kj ∈ K converging to a nonstationary point of ΨFB. Observe that
{dkj} is bounded due to the boundedness of the B-subdifferential of G on bounded sets
and the boundedness of the Levenberg-Marquardt parameters µkj

. Hence, without loss of
generality we can assume that there is a d∗ ∈ Rn such that

dkj → d∗,

lim sup
kj→∞

〈dkj ,∇ΨFB(xkj)〉 = 〈d∗,∇ΨFB(x∗)〉.

We need to prove that 〈d∗,∇ΨFB(x∗)〉 < 0.
If, in a given iteration kj, the condition described in Step 2d was true, we would have

dkj = −∇ΨFB(xkj)/‖∇ΨFB(xkj)‖. If this happens in an infinite number of iterations, we
get d∗ = −∇ΨFB(x∗)/‖∇ΨFB(x∗)‖, and the desired inequality holds trivially. Therefore,
we may assume that for big enough kj,

〈dkj ,∇ΨFB(xkj)〉 ≤ −α2‖dkj‖‖∇ΨFB(xkj)‖ ≤ −α1α2‖∇ΨFB(xkj)‖2.

Taking limits, it follows that 〈d∗,∇ΨFB(x∗)〉 < −α1α2‖∇ΨFB(x∗)‖2 < 0. Hence {dk}k∈K
is gradient related to {xk}k∈K. It follows from [4, Proposition 1.2.6], that every limit point
of {xk}x∈K is stationary.
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Finally, consider an arbitrary convergent subsequence xkj → x∗, where it is not always
true that kj ∈ K. If there is still an infinite subset of the indexes kj that belong to K,
we can easily reduce the subsequence to this indexes to see that x∗ is stationary. On the
other hand, if kj 6∈ K for all big enough kj, we use the definition of K to see that for these
indexes

0 ≤ ΨFB(xkj+1) ≤ ΨFB(xkj+1) = ΨFB(xkj + dkj) ≤ σ1ΨFB(xkj),

where the first inequality follows from the monotonicity of ΨFB(xk). Hence, it is trivial
to see that ΨFB(xkj) → 0, and then the monotonicity of ΨFB(xk) ensures that the whole
sequence goes to zero. In particular, x∗ minimizes ΨFB and ∇ΨFB(x∗) = 0.

We can also present a standard result for local convergence rate.

Theorem 5.5. Let {xk} be a sequence computed by the LMAD method. Assume that it
converges to a b-regular solution to (NCP). If µk → 0, then eventually the condition in
Step 2c will be satisfied and {xk} will converge Q-superlinearly to x∗. Moreover, if F is a
LC1-function and µk = O(‖H ′

kG(xk)‖), we have that the convergence is Q-quadratic.

Proof. Remember that G in LMAD is either Φmin or Wc for some c > 0. Using the BD-
regularity at x∗ of these functions, given by [5, Proposition 2.10] and Proposition 5.2 above,
it follows that x∗ is an isolated solution of the equation G(x) = 0. Moreover, as x∗ is b-
regular, it is an isolated solution to (NCP) [10, Corollary 3.3.9]. Hence it is also an isolated
solution to the equation ΨFB(x) = 0.

As G is continuous, it follows that there is a neighborhood of x∗ and constants c1 > 0
and c2 > 0 such that

c1‖G(x)‖2 ≤ ΨFB(x) ≤ c2‖G(x)‖2.

Note that this is a local version of Lemma 3.4 in [5].
The result now follows as in the proof of Theorem 3.2 and Theorem 4.4(b) in [5].

5.1 Computational Tests

We have implemented the LMAD method in MATLAB starting from the LMMCP code
from Kanzow and Petra. In the current version of the code, the authors have incorporated
a filter trust region method as a preprocessor before starting the main algorithm [19].
Since we do not want to use the preprocessor in our tests, we have turn it off. Moreover,
the code uses a combination of the Fischer-Burmeister function with an extra term to
force complementarity. As we wanted to use the pure Fischer-Burmeister function we have
adapted the code. This can be achieved, basically, setting a parameter to 1.

Let us describe the choice of the parameters for LMAD. Following the LMMCP we
used ε1 = 10−10, ε2 = 0, β = 0.55, and σ2 = 10−4. The Levenberg-Marquardt parameter is
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chosen to be 10−16 if the estimated condition number for H ′
kHk is less than 1025. Otherwise,

we use µk = 10−1/(k + 1).
As for the constants that control the choice of the alternative direction we have σ1 = 0.5,

α1 = α2 =
√

εmac, where εmac denotes that machine epsilon that stands approximately for
2.2204 · 10−16. The value of the constants that define the exact penalty Wc were c = 5, and
γ = 0.2.

The test set is composed by all the nonlinear complementarity problems in the MATLAB
version of the MCPLIB test suite. It has 83 problems when we consider different starting
points. The full list of problems is presented in the Appendix A.

Figure 1 presents the performance profile of this first test. The label “FB” stands for
the pure Fischer-Burmeister method, while “Exact” represents the LMAD with G = Wc

and “Min” is the same method with G = Φmin. As the iterations of all three methods are
dominated by the computation of the Newton step, we use the number of iterations as the
performance metric.

 0
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 0.6

 0.8

 1

 1  2  4  8  16  32

FB
Exact

Min

Figure 1: Performance profile of the LMAD variations and the pure Fischer-Burmeister
method.

We note that the LMAD variation based on the exact penalty seems to be the fastest
method by a small margin and a real improvement when compared to the LMAD based on
the Φmin function. However, it is less reliable than FB.

If we analyse the reason for the failures of the LMAD variants in more problems than
the FB method, we identify that in some cases the direction computed is not a good descent
direction for the merit function based on the Fischer-Burmeister reformulation. This force
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the LMAD to use the Cauchy step for the merit function as search direction, resulting in
a very small improvement.

Hence, it is natural to ask if it is possible to predict, before the solution of the linear
equation described in the Step 2b, that the resulting direction may not be a good descent
direction. In such case, we could try to use a Newton step based on the original merit
function instead. With this objective, we propose the following modification of Step 2b:

Modified Alternative Direction Let θ ∈ (0, π/2).
If the angle between H ′

kG(xk) and ∇ΨFB(xk) is smaller that θ, find dk such that

(H ′
kHk + µkI)dk = −H ′

kG(xk). (12)

Otherwise, compute H̃k ∈ ∂BΨFB(xk) and find dk solving

(H̃ ′
kH̃k + µkI)dk = −∇ΨFB(xk). (13)

The idea behind the angle criterion to choose between the alternative search direction
and the direction based on the original merit function is simple to explain. The solution
of (12) can bend its right hand side, −H ′

kG(xk) by a maximum angle of π/2. Hence, if
−H ′

kG(xk) makes a small angle with −∇ΨFB(xk) the direction computed by the first linear
system will be likely a good search direction. On the other hand, if this angle is large, the
direction computed by the first linear system can only be a good descent direction if it is
bent by the system towards −∇ΨFB(xk). But there is no guarantee that this will happen.
To avoid taking chances, we use the direction based on the merit function itself, given
by (13).

The convergence of the modified algorithm can be proved following the same lines of the
proofs of Theorems 5.4 and 5.5. In particular, the inequalities that ensure that the search
directions are gradient related remains untouched. As for the rate of convergence result, it
would require R-regularity of the solution, instead of b-regularity, like in [5, Theorem 4.3].
This is a consequence that the Newton steps can be taken with respect to ΨFB and not G.

Figure 2 presents the performance profiles of the variations of the LMAD when we
change Step 2b by the Modified Alternative Direction presented above. The parameter θ
was set to π/6. Both variations, based on the exact penalty Wc and in Φmin, clearly benefit
from the new directions, with a better improvement for the Φmin version. Note that both
methods became more robust and a little faster.

Finally, Figure 3 shows the profile of the three methods together. Here, we can see
that the method based on the exact penalty practically dominates the others in numbers
of iterations. It also displays the same robustness of the FB version.

Acknowledgement. We would like to thank Ellen Hidemi Fukuda for carefully reading
the manuscript.
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Figure 2: Performance profiles of the LMAD variations with and without the Modified
Alternative Direction.
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Figure 3: Performance profile of the LMAD variations using the Modified Alternative
Direction and the pure Fischer-Burmeister method.

A Tables with numerical results

We present here the full tables that were used to draw the performance profiles. The first
column shows the problem name, the next five columns presents the number of Newton
steps for the original LMMCP method, for the LMAD using the exact penalty Wc and
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Φmin, and, finally, for the LMAD with the Modified Alternative Direction based on Wc and
Φmin functions respectively.

Problem FB Exact Min. Mod. Exact Mod. Min

bertsekas1 28 30 Fail 25 39
bertsekas2 27 25 Fail 25 62
bertsekas3 16 24 Fail 17 68
bertsekas4 28 30 Fail 25 39
bertsekas5 12 9 46 9 15
bertsekas6 37 31 Fail 29 41
colvdual1 14 Fail Fail Fail Fail
colvdual2 Fail Fail Fail 223 Fail
colvdual3 1 1 1 1 1
colvdual4 14 Fail Fail Fail Fail
colvnlp1 14 14 Fail 16 22
colvnlp2 14 43 61 17 64
colvnlp3 1 1 1 1 1
colvnlp4 13 12 22 12 11
colvnlp5 13 12 21 12 11
colvnlp6 9 8 48 9 10
cycle1 3 3 3 3 3
explcp1 19 9 17 19 6
hanskoop10 1 1 1 1 1
hanskoop2 1 1 1 1 1
hanskoop4 1 1 1 1 1
hanskoop6 1 1 1 1 1
hanskoop8 1 1 1 1 1
josephy1 6 8 5 6 5
josephy2 6 4 5 5 5
josephy3 58 23 15 14 15
josephy4 5 5 3 4 3
josephy5 4 3 3 3 3
josephy6 6 6 7 5 7
josephy7 5 14 17 5 4
josephy8 3 2 2 2 2
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Problem FB Exact Min. Mod. Exact Mod. Min

kojshin1 8 15 98 8 7
kojshin2 7 4 6 4 6
kojshin3 6 266 35 9 45
kojshin4 4 3 3 3 3
kojshin5 5 3 3 3 3
kojshin6 5 5 6 5 5
kojshin7 6 Fail Fail 5 4
kojshin8 3 2 2 2 2
mathinum1 4 15 4 15 6
mathinum2 5 4 4 4 4
mathinum3 12 7 4 7 4
mathinum4 7 5 5 5 5
mathinum5 10 10 10 10 10
mathinum6 7 7 7 7 7
mathisum1 5 4 4 4 4
mathisum2 5 4 4 4 4
mathisum3 6 3 5 7 5
mathisum4 6 5 5 5 5
mathisum5 1 1 1 1 1
mathisum6 7 6 6 6 6
mathisum7 10 3 3 4 3
nash1 8 6 6 6 6
nash2 10 9 11 8 11
nash3 7 5 62 5 62
nash4 5 4 5 4 5
pgvon1054 41 Fail Fail Fail Fail
pgvon1055 Fail Fail 59 98 Fail
pgvon1056 Fail Fail 297 Fail Fail
pgvon1064 Fail Fail Fail Fail Fail
pgvon1065 Fail Fail Fail Fail Fail
pgvon1066 Fail Fail Fail Fail Fail
powell1 8 9 20 8 8
powell2 8 6 6 6 7
powell3 11 7 8 7 9
powell4 10 7 7 7 9
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Problem FB Exact Min. Mod. Exact Mod. Min

powell5 Fail 79 36 111 36
powell6 5 4 7 4 4
scarfanum1 11 17 9 13 10
scarfanum2 12 14 11 14 12
scarfanum3 10 10 10 12 11
scarfanum4 4 2 2 2 2
scarfbnum1 24 111 Fail 123 Fail
scarfbnum2 20 481 Fail 118 380
scarfbsum1 15 Fail Fail 119 Fail
scarfbsum2 28 13 Fail 13 Fail
sppe1 8 9 43 10 12
sppe2 6 7 21 6 11
sppe3 5 4 8 6 8
tobin1 11 131 31 9 10
tobin2 8 216 54 10 18
tobin3 10 Fail 153 10 15
tobin4 2 2 2 2 2
scarfanum1 11 17 9 13 10
scarfanum2 12 14 11 14 12
scarfanum3 10 10 10 12 11
scarfanum4 4 2 2 2 2
scarfbnum1 24 111 Fail 123 Fail
scarfbnum2 20 481 Fail 118 380
scarfbsum1 15 Fail Fail 119 Fail
scarfbsum2 28 13 Fail 13 Fail
sppe1 8 9 43 10 12
sppe2 6 7 21 6 11
sppe3 5 4 8 6 8
tobin1 11 131 31 9 10
tobin2 8 216 54 10 18
tobin3 10 Fail 153 10 15
tobin4 2 2 2 2 2
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