
Computational Geometry: Theory and Applications 3 (1993) 289-305

Elsevier
289

The complexity of finding minimal
Voronoi covers with applications
to machine learning*

David Heath and Simon Kasif
Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA

Communicated by Ronald Graham

Submitted 6 August 1992

Accepted 19 February 1993

Abstract

Our goal in this paper is to examine the application of Voronoi diagrams, a fundamental

concept of computational geometry, to the nearest neighbor algorithm used in machine

learning. We consider the question “Given a planar polygonal tessellation T and an integer k,
is there a set of k points whose Voronoi diagram contains every edge in T?” We show that this

question is NP-hard. We encountered this problem while studying a learning model in which

we seek the minimum sized set of training examples needed to teach a given geometric concept

to a nearest neighbor learning program. That is, given a concept which can be described by a

planar tessellation, we are seeking to construct the smallest set of points whose Voronoi

diagram is consistent with the given tessellation. In a sense, this question captures the difficulty

of teaching the nearest neighbor algorithm a simple structure, using a minimal number of

examples.

In addition, we consider the natural inverse to the problem of computing Voronoi diagrams.

Given a planar polygonal tessellation T, we describe an algorithm to find a set of points whose

Voronoi diagram is T, if such a set exists.

1. Introduction

Computing the Voronoi Diagram of a set of points is a well-known problem in

the field of computational geometry, with applications in many fields, including

that of machine learning. The nearest neighbor algorithm as typically used in

machine learning stores a collection of examples and their respective class-

ifications. Given a new example for which the classification is unknown, the

Correspondence to: David Heath, Department of Computer Science, The Johns Hopkins
University, Baltimore, MD 21218, USA.

*This research supported in part by Air Force Office of Scientific Research under Grant

AFOSR-89-1151, National Science Foundation under Grant IRI-88-09324 and NSF/DARPA under

Grant CCR-8908092.

0925-7721/93/$06.00 @ 1993 - Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357269162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

290 D. Heath, S. Kasif

nearest neighbor algorithm uses the classification of the nearest point to classify

the unknown example. This method therefore implicitly creates a Voronoi

paritioning of the space of examples which is used during classification.

In a previous paper, we introduced the helpful teacher model (see Salzberg et

al. [6]), in which we find the smallest set of training examples which teaches a

given concept to a learning program. Given a concept which can be described by

a planar tessellation, we would like to compute the smallest set of examples which

teaches the concept to the nearest neighbor learning algorithm. In that paper, we

describe several techniques for teaching machine learning algorithms geometric

concepts using a small set of examples. Specifically, we describe a technique for

teaching the standard nearest neighbor algorithm a concept in the form of a

polygonal tesselation, given a permissible error area. We left open the question of

the difficulty of teaching nearest neighbor such a concept when no error can be

tolerated.

This suggests the following question “Given a planar polygonal tessellation T
and an integer k, is there a set of k points whose Voronoi diagram contains every

edge in T?” In a sense, this question captures the difficulty of teaching the

nearest neighbor algorithm a simple structure, using a minimal number of

examples. We provide a non-trivial reduction that demonstrates that the

complexity of this question is NP-hard.

We also consider the related question of finding an inverse of the Voronoi

Diagram. We present an algorithm for determining if a planar tessellation is a

Voronoi Diagram. The problem of recognizing Voronoi Diagrams has some

history in Computational Geometry. A simplified version of this problem

appeared as an exercise by Preparata and Shamos [5]. Ash and Bolker [l] were

able to solve the problem of recognizing Voronoi Diagrams in the plane when all

vertices of the tessellation have odd valence. Suzuki and Iri [7] present an

algorithm for finding Voronoi Diagrams that approximate a given tessellation, but

these approximations may not be minimal in size.

2. Problem definition

Given a set of points P in the plane, a Voronoi diagram is a partition of the

plane into a set of IPI polygonal regions, such that any point in one of these

regions is closer to the unique member of P in the region than it is to any other

point in P. See Preparata and Shamos [5] f or an introduction to the Voronoi

diagram.

Given a polygonal tesselation T of the plane, we say that polygonal tessellation

V is a finer tessellation if every region in T is partitioned into one or more regions

of V. This implies that every (possibly unbounded) line segment which forms part

of the boundary of T is covered by a union of line segments in V. See Fig. 1 for

an example of two tessellations, one of which is finer than the other. Note that

Minimal Voronoi covers 291

Fig. 1. a) Tessellation, b) An example finer tessellation.

the interior region of the coarser tessellation is partitioned into three regions in
the finer, and the outer region is partitioned into seven regions. The bottom
horizontal segment of the coarser tessellation is covered by the two bottom
horizontal segments in the finer tessellation.

We are concerned with finding a set P of points in the plane whose Voronoi
diagram is a finer tessellation than a given tessellation T. We call such a set of
points a Voronoi cover of T. We refer to the cardinality of P as the size of the
Voronoi cover. If a Voronoi Cover contains II points, we say it is an n-Voronoi
Cover. Note that Fig. 1 is an example of a Voronoi cover of size ten.

We consider the question “Given a planar polygonal tessellation T and an
integer k, is there a Voronoi cover of T that contains no more than k points?”
We refer to this question as the Voronoi cover problem. We show that the
Voronoi cover problem is NP-hard. This problem is a natural inverse of the
Voronoi diagram, a well-known computational geometry construct.

3. Minimal Voronoi covers

To prove that the Voronoi cover problem is NP-hard, we will reduce a known
NP-hard problem, Planar 3-SAT (Lichtenstein [3]) to it.

An instance of Planar 3-SAT is described as follows: We are given a set of
boolean variables u = {ui, u2, . . , u,}. Each variable can take one of two possible
values: true or false. A clause is a disjunction of (possibly negated) variables that
has value true when any of its constituents are true and has value false otherwise.
We are also given a boolean expression over the variables that consists of a
conjunction of clauses. The conjunction is true if and only if every one of the
clauses that composes it is true. The question “Is there an assignment to the
variables U, such that the given conjunction of clauses is true?” is known as

292 D. Heath, S. Kasif

satisfiability, and the assignment is known as a satisfying assignment. In the

variation 3-SAT, each clause is restricted to contain no more than three variables.

Planar 3-SAT is a further restriction of the problem in which it is possible to

construct a planar bipartite graph which has a vertex for every variable and for

every clause. A vertex representing a variable is connected to a vertex

representing a clause if the variable appears (possibly negated) in the clause. See

Lichtenstein [3] for a proof that this problem is NP-complete.

In the next sections we will show how to take an instance of Planar 3-SAT and

convert it in polynomial time to an instance of the Voronoi cover problem such

that there is a solution to the Planar 3-SAT problem if and only if there is a

solution to the Voronoi cover problem. We will create a tessellation composed of

three major parts. Each variable {u,, u2, . . . , u,} will be represented by one

type of structure, each clause will be represented by another. Finally, the edges in

the implicit plane graph defined above will be represented by a third type of

structure. Note that in a strict definition of the Planar 3-SAT problem, we are not

given the planar embedding of the implicit graph, but we can find such an

embedding in polynomial time (see, e.g., Hopcroft and Tarjan [2]). We will

assume that each clause contains exactly three literals, whereas the definition

above allows for there to be fewer. We can get around this problem by

duplicating literals if necessary.

4. Construction

What follows is an intuitive overview of the construction. For every variable ui,

we will create a variable gadget. The variable gadget is a small set of adjacent

polygons. A minimal Voronoi cover for any one gadget takes one of two forms.

Which form it takes will be used to store the value (true or false) of the associated

variable. In a solution to the Voronoi cover problem, the form of the variable

gadgets directly gives us a satisfying assignment to the Planar 3-SAT problem.

For each clause, we create a clause gadget. The size of the minimal Voronoi

cover for a clause gadget depends on the truth value of the associated clause. If

any of the three literals in the clause gadget are true, then the minimal Voronoi

cover for the gadget requires one fewer point than if none of the three literals are

true. This is the crucial part of the reduction. We can choose a k such that there is

a Voronoi cover of size k for the entire construction if and only if we are able to

‘save’ one point in every clause gadget, i.e., that each clause is true.

Finally, we must have a way of communicating the truth value of each variable

to the clauses the variable appears in. This corresponds to the edges in the plane

graph we can construct from the planar 3-SAT problem we are given. Each such

edge will be transformed to a path of connector gadgets which connect the

variable gadgets to the clause gadgets. Note that the connector paths do not

cross.

Minimal Voronoi cowrs 293

Fig. 2. An example variable gadget.

4.1. Variable gadget

An example variable gadget is shown in Fig. 2. This particular gadget has three

complemented outputs and three non-complemented outputs, although it can be

made with more. It is composed of eighteen bounded regions, each of which has

either four or five sides. The dimensions of the regions are chosen so that a

minimal Voronoi cover of the gadget has the following properties:

(1) Each quadrilateral will be covered by exactly one Voronoi region. That is,

only one point will be placed in each quadrilateral by the Voronoi cover.

(2) Half of the pentagon regions will contain one point of the Voronoi cover;

the other half will each contain two points.

(3) A minimal Voronoi cover for a three-output variable gadget will contain

exactly forty points. Similar bounds can be obtained for gadgets with more

outputs.

By definition, a Voronoi diagram contains exactly one point in each region.

Each region in the variable gadget will contain at least one Voronoi region. This

immediately tells us that a minimal Voronoi cover for a variable gadget will have

at least eighteen points.

To define the boundary edges of the variable gadget, a Voronoi cover must also

contain some points that fall outside the gadget. Consider a particular boundary

edge. It defines two regions, one bounded and one unbounded (the exterior of

the gadget). Every boundary edge must be the perpendicular bisector of a line

segment between a point inside the bounded region and a point outside the

gadget. Some polygons require that each boundary edge be defined by a different

exterior point. In other tessellations, including the variable gadget, it is possible

for some pairs of edges to be defined by the same exterior point (but different

points in the interior of the gadget).

Consider two adjacent boundary edges. If the exterior angle at the intersection

of the two edges is at least MO”, then these two edges cannot share an exterior

point. This also applies to non-adjacent edges by extending the edge segments to

their intersection point. We can use this fact to show that any Voronoi cover for

the variable gadget must have at least eighteen exterior points. First note that

there are 24 exterior edges to the tessellation. The exterior of the tessellation has

294 D. Heath, S. Kasif

I I I I
I XI I I
I I I I

x2 +
I I

Fig. 3. Dimensions of variable gadget components.

six concave angles, or six pairs of adjacent edges which could possibly share an

edge in a Voronoi cover. The six concave angles occur at the adjacent edges of

the following pairs of regions in Fig. 2: (1,4), (3,6), (9,12), (15, 18), (13, 16),

(7,lO).
We next must consider whether any non-adjacent pair of edges could share an

exterior point in a Voronoi cover. For this, we will need to consider the

dimensions of the gadget. See Fig. 3. We only need consider the following pairs

of regions: (3,9), (3,12), (6,12), (7,13), (7,16), (13,16). Each of these pairs

involves a rectangular region of height Y,. In the cases involving two such

rectangles (e.g. (3, 12)), the distance between the rectangles is 2Y, > 2Y,. A

shared point would have to be within distance Y, of each rectangle. This is clearly

not possible.

Consider the cases involving a rectangle and a non-rectangular quadrilateral.

Due to the angle of the quadrilateral edge, the shared point must be further than

Y2 from the rectangle. Once again, this is not possible. By this argument, a

Voronoi cover of the variable gadget must contain at least eighteen external

points, for a total of thirty-six points.

As we indicated above, at least half of the pentagons in the gadget must

contain two points. We will consider a pair of pentagons that share a diagonal

edge. See Fig. 4. By way of contradiction, assume it is possible for a Voronoi

cover of this figure to have only one point in regions B and C. The line segment

between these two points must have the common edge shared by regions B and C

as its perpendicular bisector. (We say that one point is a reflection of the other

through the (B, C) common edge). Region A must also contain at least one

point, such that the line segment between it and the point in C is the

perpendicular bisector of the (A, C) common edge. A similar point must exist in

region D. Any point in B which is a reflection of both a point in C and a point in

D must lie in the shaded portion of B. The same holds for a region C. Note that

Fig. 4. Two adjacent pentagons in the variable gadget.

Minimal Voronoi covers 295

Fig. 5. Voronoi cover for variable gadget in true case.

when the (B, C) common edge has sufficiently small slope, that it is not possible
to place a point in each shaded region such that they are reflections of each other.
Thus, at least one of {B, C} must contain two points in any Voronoi cover.
Extrapolating to the complete variable gadget, it is clear that the best we can
hope for is for every other pentagon to contain one point, while the rest contain
two. Thus, we can raise the lower bound on the number of points in a minimal
Voronoi cover of the variable gadget to thirty-nine.

Finally, note that two of the pentagons are on the border of the gadget, and
that at least one of these must contain two points in a Voronoi cover that satisfies
the above criteria. Both points in this region must have a reflection outside the
gadget. This means that any Voronoi cover for the gadget must have at least forty
points.

Now we describe two minimal Voronoi covers for the variable gadget. See Figs.
5 and 6 for these two covers of the variable gadget. Figure 5 represents the case

Fig. 6. Voronoi cover for variable gadget in false case.

Fig. 7.

j

Positioning of points in voronoi cover of variable gadget.

296 D. Heath, S. Kasif

where the associated variable is true. Figure 6 represents the case where the

variable is false. Modulo certain slight movements of the points, these are the

only two minimal Voronoi covers for the variable gadget. A small piece of either

cover is shown in Fig. 7. Points A and B can be moved vertically and still

maintain a minimal Voronoi cover. As they are moved, points C, D, and E must

also move along the dashed lines. If we let m be the absolute value of the slope of

the segment separating the two pentagons, then points C, D, and E will be within

distance 2Y,/(l/ m - m) of the nearest vertical segment.

4.2, Clause gadget

In this subsection, we describe a small tessellation whose minimal Voronoi

cover depends on its interaction with the other gadgets to which it is connected.

The gadget is shown in Fig. 8. The dimensions X, and Y, are the same as those

which appeared in the variable gadget. Obviously, any Voronoi cover for this

gadget must have a point in each of the three connector rectangles, and one in the

large clause rectangle. Additionally, these interior points must be reflected

through the edges of the rectangles. A minimal Voronoi cover for this gadget will

share one external point of the clause rectangle with one external point of a

connector rectangle. When the clause gadget is part of the complete circuit, this

sharing can only happen when at least one of the associated variables is true.

Thus, it will correctly compute the disjunction of the variables.

The following relationships exist among the dimensions of the variable gadget:

l Y, > X, + 2Y,. This ensures that the connector rectangles are far enough

apart that they cannot share any of their external points. Thus, there will be

twelve external points (and three internal points) needed by any Voronoi cover of

the three connector rectangles.

l Y, = 3Y, + ZY,. The clause rectangle is equal in height to the three spaced

connector rectangles.

X\

Fig. 8. Clause gadget.

Minimal Voronoi COWLS 291

l X, =X,/8.

l X, > 5X,/8 + 2(2Y, + 4YJ2/X,.

l XC = X, -X,/8.

To justify the last three requirements, we must see how the clause gadget is

used. The three connector rectangles will be placed adjacent to other shapes that

form a path back to the variable gadgets. This will restrict the positioning of

points within the connector rectangles in a minimal Voronoi cover. We will

assume that the points within the connector rectangles have the following

properties:

l The vertical coordinate of the points is unknown (but of course, it must lie

within the connector rectangle).

l If the literal (possibly negated variable) associated with a connector gadget is

true, then the point will be centered horizontally within the rectangle (X,/2 from

both vertical edges).

l If the associated literal is false, then the point will be within distance X, of

the leftmost edge of the rectangle (but may be closer).

The clause gadget works on the following principle. The large clause rectangle

can be covered with five points (one inside, four outside) in a Voronoi cover.

However, when any of the three points inside the connector gadgets are centered,

rather than close to the left edge, the clause rectangle can share its rightmost

external point with the leftmost external point of a connector rectangle. The

connector rectangles are shifted horizontally from each other, so that if more than

one associated literal is true, only one of the left external points of the connector

rectangles need be reflected into the clause rectangle. We demonstrate this with

some examples. See Figs. 9, 10, and 11. These figures are not drawn to scale. The

clause rectangle was made narrower and closer to the connector rectangles for

illustrative purposes. In these figures, we assume that the points in the connector

rectangles are fixed, and we find the minimal Voronoi cover given these fixed

points.

.
.
.

.

Fig. 9. Clause gadget. A is true, B and C are false.

298 D. Heath. S. Kasif

. .

.

Fig. 10. Clause gadget. A and B are true, C is false.

In Fig. 9, one literal (A) is true. Note that the leftmost external point for the

connector rectangles associated with literal A is close enough to the clause

rectangle that the two rectangles can share it as an external point. In Fig. 10, two

literals (A and B) are true. Once again, the clause rectangle can share an external

point with one of the connector rectangles. In this case, that rectangle is B. Now
we see why the connector rectangles must be staggered horizontally. Every point

on the rightmost edge of the clause rectangle is closer to B’s external point than

to A’s external point. This means that A’s external point does not interfere with

the definition of the rightmost edge of the clause rectangle. If they were not

staggered, then the clause rectangle could not share an external point with a
connector rectangle when two or more literals were true. In Fig. 11, none of the
literals are true. The leftmost external points of all three connector rectangles are
very close to their respective rectangles and too far from the clause rectangle to
be shared. Thus, this case requires one more point in the minimal Voronoi cover.

So, if we can fix the points in the connector rectangles to be horizontally
centered in the case of true literals and very close to the left edge in the case of

.

.

Fig. 11. Clause gadget, A, B, and C are false.

Minimal Voronoi covers 299

Fig. 12. Simplest connector gadget.

false literals, then the minimal Voronoi cover for the clause gadget will contain
nineteen points if the clause is true and twenty points otherwise.

4.3. Connector gadget

The third type of tessellation we use is the connector gadget. This will be used
for conveying the truth value of a literal to each of the clauses it appears in. In its
simplest form, a connector gadget is just a rectangle. It is of size X1 by Y,, where
Xi and Y, are defined by the dimensions of the variable gadget. An example is
shown in Fig. 12.

Clearly, this is a very simple gadget. It becomes more useful when we combine
several of them together. Fig. 13 shows three coupled connector gadgets. The
Voronoi cover has been constrained to contain one point centered horizontally
within gadget A, as shown by the large circle. Note that in a minimal
(constrained) Voronoi cover, that the other two gadgets will also contain
horizontally centered points. Fig. 14 is the same set of gadgets, but the
constrained point has been fixed at a distance 6 from the leftmost edge of the
rectangle it lies in. Note that in this case, the positioning of points in the
rectangles alternates in the minimal constrained Voronoi cover. Every other
rectangle has a point that is distance 6 from the rightmost edge. This means that
the connector gadget can convert a left-constrained point in one gadget to a
right-constrained point in the next.

At this point, the purpose of the connector gadget should be clear. The
variable gadget will ‘choose’ a truth value. The output of the variable gadget is
obtained at its connector rectangles. Each of these rectangles will contain either a
center-constrained or edge-constrained point in a minimal Voronoi cover. The
connector gadgets couple the constraint to the clause gadget, where it remains of
the same type (center or edge). There are several problems that this simple
connector gadget cannot handle. Two of these are that the paths from the

I I I I

a l l

Fig. 13. Coupled connector gadgets, large point constrained to center.

300 D. Heath, S. Kasif

. . .

l Ie A . . .
. . .

Fig. 14. Coupled connector gadgets, large point constrained to left.

variable gadgets to the clause gadgets may not be a straight line and may not have

a length divisible by Xi.

We solve these problems by creating angle connector gadgets. These gadgets

perform the same function as simple connector gadgets, propagating truth values

via point constraints; however, they also change the angle of the path of

connectors. An example is shown in Fig. 15. The connector gadget is shown

twice, each time with a simple connector gadget on each end, to show how they

are used together. In Fig. lSa, one connector gadget contains a center-

constrained Voronoi cover point. In Fig. 15b, one connector contains an

edge-constrained point. In both cases, a minimal Voronoi cover for the construc-

tion propagates the constraint type to the other end of the gadget. The gadget

also changes the angle of propagation. An angle connector gadget requires twelve

points in a minimal Voronoi cover, four of which are shared with adjacent

connectors. Note that the quadrilaterals of the angle gadget which abut against

simple connectors are longer than the connectors themselves (X,). This is so that

they correctly handle the edge-constrained case. The exact length does not

matter, as long as it is sufficiently large. If we assume that the connection angle is

no less than 90 degrees, then a length of X, + Y, is sufficient. The fact that the

length is allowed to be longer can be used to handle path lengths not divisible

by Xi.
Finally, the paths from variables to clauses must not cross and must not come

sufficiently close to permit sharing of external points between connector gadgets.

Because the original problem (planar 3-SAT) is planar, paths will never cross. By

using the angle gadgets to move the paths apart we can prevent external points

from coinciding. This can be achieved by moving the paths so that they are no

closer than X, + 2Y,.

.

.
. 0

g-py #

. . . .

A) B)

Fig. 15. Angle connector gadgets. a) is fixed center, b) is fixed left.

Minimal Voronoi couers 301

This distance is automatically achieved at the clause gadget. One way to

accomplish this at the variable gadget is to increase the number of outputs of the

variable gadget beyond the number strictly needed to feed the clause gadgets.

When 2Y, > X, + Y,, using every other output is sufficient to achieve the correct

separation.

4.4. Putting it all together

Given an instance of Planar 3-SAT, we convert it in polynomial time to a plane

graph with a vertex for every variable and for every clause. Next, we construct

the variable and clause gadgets. We connect them up with connector gadgets. For

each variable ui we compute Imvc(u,)l, the number of points in a minimal Voronoi

cover for the gadget. For each clause Ci, we compute Imvc(C,)I, the size of a

minimal Voronoi cover for the clause gadget, assuming that at least one of its

inputs is true. Finally, we compute the number of points needed in a minimal

Voronoi cover of the connector gadgets. Let k be the sum of the sizes of the

minimal Voronoi covers for all the gadgets. Now, we ask if there is a minimal

Voronoi cover of size k for the entire tessellation.

4.1. The Voronoi cover problem is NP-hard.

Proof sketch. Assume that there is a satisfying assignment to the Planar 3-SAT

problem. Then, the following is a Voronoi cover of size k:
l For each variable ui, the Voronoi cover for the gadget associated with ui is

the true-variable gadget or the false-variable gadget according to the truth value

of ui in the satisfying assignment.

l For each connector gadget, we can generate a Voronoi cover of minimal size

by assuming that the outputs of the variable gadgets are fixed and using the

‘constrained’ covers described above.

l For each clause gadget C,, at least one incoming literal must be true. This

means that a minimal Voronoi cover for the clause can be constructed with

Imvc(C,)I points such that its interface to the connector gadgets is defined

properly.

Consider the case when there is no satisfying assignment to the Planar 3-SAT

problem. Assume by way of contradiction that there is a Voronoi cover of size k
for the entire tessellation. This implies that each gadget in the construction must

have a Voronoi cover defined by a subset of the points in the complete Voronoi

cover. By our construction, the Voronoi covers of the gadgets must be minimal.

Thus, the Voronoi covers of the variable gadgets define a satisfying

assignment. 0

5. Recognizing Voronoi diagrams

In this section, we describe an algorithm that can determine if a polygonal

planar tessellation of n regions is a Voronoi diagram, and if so can find a set of

302 D. Heath, S. Kasif

points whose Voronoi diagram is that tessellation. This problem can be

considered a restriction of the Voronoi Cover problem in which the size of the

cover is equal to the number of regions in the tessellation, i.e., no regions are

split. The set of points (if any) found by the algorithm is a Voronoi Cover. A

description of the algorithm follows.

We assume that the tessellation is given in the following form. We are given a

list of polygonal regions, each of which is a sorted list of edges. Given any edge,

we can find the two regions that border it in constant time. Each edge is

represented by a line ax + by + c = 0, where a, b, and c are integers.

Each of the regions of a Voronoi diagram is convex. The first step of the

algorithm is to ensure that this property holds for the tessellation in question by

testing the convexity of each region. This step is not strictly necessary, but makes

the following discussion easier. This step can be completed in linear time.

Our technique is to transform our problem into an instance of two-variable

linear programming. Megiddo [4] has shown that two-variable linear program-

ming can be solved in linear time.

We pick a region R, to be the root region. Let (X,, Y,) be the unique Voronoi

point in region R,. X, and Y, will be the two variables in our linear program. We

will solve the problem either by finding legal values for X, and Y, or by finding

that no such values exist. In the first case, we can find an n-Voronoi cover; in the

second, we know that there is no such cover.

We will use the dual graph D of the input tessellation in our algorithm. We

define D as follows. A vertex in D represents both a region of the tessellation and

the Voronoi point contained in the region. Two vertices in D are connected with

an edge if and only if the regions they represent are adjacent in the tessellation.

In linear time, we can find a breadth-first spanning tree for this graph. The root

region defines the root of this tree and the regions adjacent to the root region

become children of the root of the tree. Note that each edge of the tree

corresponds to an edge in the tessellation, but there may be many edges in the

tessellation with no corresponding edges in the spanning tree.

First, we make a simple observation. Let pi(Xi, Y) and pi = (Xi, q) be the

Voronoi points in two adjacent regions, Ri and R,, separated by an edge

ax + by + c = 0. Given pi, we can find pi by “flipping” pi over the common edge.

Precisely, there is a linear relationship between pi and pj, that

and

xi =
-(a’+ b*) -2ac

a2 - b*
Xj +

-2ab
py+------ a*-b* J a2 - b*

2ab a2 + b* 2bc
q=-

a2 - bzXj+ (Izq+m+

There is a unique path from the root of the spanning tree to each vertex in D.

This path represents a chain of linear transforms from ps to every Voronoi point

in the Voronoi cover. We will use these paths to define the Voronoi points in

Minimal Voronoi covers 303

each region in terms of the Voronoi point in the root region, ps. Define depth(i)
to be the depth of region i in the spanning tree. The Voronoi point for a region of
depth d > 0, can be calculated inductively using the above transform from its
parent in the tree, which has depth d - 1. Clearly, the vertex at root of the tree is
already defined in terms of ps. So, we can express each Voronoi point as a linear
function of X, and Y,.

Given the formulation of each of the Voronoi points, we can constrain them to
lie within the regions they define. For a region Ri with k edges, this will entail
adding k constraints of the form

aXi+bY+ccO or uX,+bY+ccO,

where

ax+by+c=0

is an edge of the region. We will always express Xi and Y in terms of X, and Y,,
as above.

The constraints we construct in the above step guarantee that each region
contains one Voronoi point, and that if two regions are adjacent in the spanning
tree, then their Voronoi points are reflections of each other through the edge
common to both regions. However, this does not ensure that points belonging to
regions adjacent in the tessellation, but not in the spanning tree are reflections of
each other. So, for each pair of adjacent regions in the tessellation, we must
ensure that the corresponding Voronoi points are reflections of each other.

Let Ri and Rj be two adjacent regions that are not adjacent in the spanning
tree. Let pi = (Xi, YJ and pj = (Xi, Y$) be the Voronoi points for these regions,
respectively. Then, pi must be the reflection of pj through the common edge
ax+by+c=O. Thatis,

x_ = - (a” + b2) x_ + -2ab Y + -2ac ~ ~ I u2-b2 1 u2-b2 J u2 - b2

and

Finally, we feed the linear program to an algorithm for finding a solution for X,
and Y,, or determining that no such solution exists.

This algorithm relies on properties of the Voronoi diagram-that each Voronoi
point is contained in the region that it defines and that the Voronoi points in
adjacent regions are reflections through the common edge between the regions. If
there is no solution to the linear program we construct, then there is no set of
points with these properties and input tessellation cannot be a Voronoi diagram.

Now consider the case when there is a solution to the linear program we create.
We claim that the tessellation is a Voronoi diagram, and that we can obtain an
n-Voronoi Cover for the tessellation by picking any feasible solution ps and

304 D. Heath, S. Kasif

mapping it into a Voronoi Cover point for each region via the linear transform

above. For each region R, call the point obtained in such a manner pR. Let P be

the set of II such points. To prove that the initial tessellation is a Voronoi

diagram, we must merely show that, for each region R, any point in R is at least

as close to pR as it is, to any other point in P. Note that if there is a point inside R
that is further from pR than it is from some other point pR, E P, then there must

be a point p on the boundary of R which is also closer to pR, than it is to pR.
So, by way of contradiction, assume that the tessellation is not a Voronoi

diagram, i.e., there is a point p on the boundary of a pair of adjacent regions R,
and R2 which is closer to point pR, E P than it is to pR, (and, by symmetry, to pRz).
We analyze this assumption with two cases, shown in Fig. 16.

In the first case, regions RI and Rj are adjacent in the tessellation and share a

common edge. This edge divides the plane into two half-planes. Points in the

half-plane that contains pR, are closer to pR, than they are to pR,. Points in the

other half-plane are closer to pR,. Thus, p must be in the half-plane that contains

pR,. R, is defined as the intersection of the closed half-planes defined by the edges

of RI. For any edge e of RI, no point in the half-plane defined by e which does

not contain pR, can lie in RI. Thus, p cannot lie in R,, which is a contradiction.

In the second case, regions R, and R, are not adjacent in the tessellation, so do

not share an edge. Let 1 be a line segment from pR, to p. 1 must cross at least one

edge of the tessellation because R, and Rj are not adjacent. Let k be the number

of edges crossed by 1. Starting at pR,, let Rj be the second region encountered

along 1 (R; is the first). Note that Rj #RI. The edge between Ri and Rj separates

the plane into those points that are closer to pR, on one side, and those that are

closer to pR, on the other. The point p is on the Rj side and is therefore closer to

pR, than it is to pR, or, by transitivity, to pR,.

If pR, is adjacent to pR,, then the argument in case one, above, may be applied

to result in a contradiction. Otherwise, we can repeat the argument in case two,

but the value of k defined as above will be one less. k can never be more than the

number of edges in the tessellation, and case two only applies when k is positive,

so the above argument eventually reaches a contradiction in case one.

---___ I

--___ #

‘----_.__.

P,Ri fP

a) Case 1 b) Case 2

Fig. 16. Showing tessellation to be a Voronoi diagram.

Minimal Voronoi covers 305

Each edge in the tessellation contributes two equations to the linear program.

It may appear that the linear program is linear in size and should therefore be

solvable in linear time. However, the coefficients in each equation can grow to

require linear size for their representation. Thus, in the worst case, the linear

program can be quadratic in size, and can be found in quadratic time.

Theorem 5.1. Given a polygonal tessellation in the plane, it is possible to find the
set of points whose Voronoi diagram is the tessellation, or determine that no such
set exists, in quadratic time.

6. Conclusion

We have presented an efficient algorithm for recognition of Voronoi Diagrams

and computing the set of points that generate a given Voronoi Diagram. On the

other hand, we have shown that this problem becomes NP-hard when we

generalize it to the Voronoi cover problem, where regions of the given

tessellation can be subdivided into multiple Voronoi regions. This suggests that it

is difficult to teach concepts to the nearest neighbor learning algorithm using a

minimum number of examples.

Possible research directions include finding provably good approximations to

tesellations by Voronoi Diagrams. This could be useful in communication of

concepts to nearest neighbor learning algorithms.

References

[I] P. Ash and E. Bolker, Recognizing Dirichlet tessellations, Geom. Dedicata 19 (1985) 175-206.

[2] J. Hopcroft and R. Tarjan, Efficient planarity testing, J. ACM 21 (1974) 549-568.

[3] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput. 11 (1982) 329-343.

[4] N. Megiddo, Linear-time algorithms for linear programming in R” and related problems, SIAM J.

Comput. 12 (1983) 759-776.

[5] F. Preparata and M. Shamos, Computational Geometry-An Introduction (Springer, New York,

1985).

[6] S. Salzberg, A. Delcher, D. Heath and S. Kasif, Learning with a helpful teacher, Technical

Report JHU-90/14, Department of Computer Science, The Johns Hopkins University, 1990.

(71 A. Suzuki and M. Iri, Approximation of a tessellation of the plane by a Voronoi diagram, J.

Oper. Res. Sot. Japan 29 (1986) 69-96.

