
Computational Geometry: Theory and Applications 3 (1993) 289-305 

Elsevier 
289 

The complexity of finding minimal 
Voronoi covers with applications 
to machine learning* 

David Heath and Simon Kasif 
Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA 

Communicated by Ronald Graham 

Submitted 6 August 1992 

Accepted 19 February 1993 

Abstract 

Our goal in this paper is to examine the application of Voronoi diagrams, a fundamental 

concept of computational geometry, to the nearest neighbor algorithm used in machine 

learning. We consider the question “Given a planar polygonal tessellation T and an integer k, 
is there a set of k points whose Voronoi diagram contains every edge in T?” We show that this 

question is NP-hard. We encountered this problem while studying a learning model in which 

we seek the minimum sized set of training examples needed to teach a given geometric concept 

to a nearest neighbor learning program. That is, given a concept which can be described by a 

planar tessellation, we are seeking to construct the smallest set of points whose Voronoi 

diagram is consistent with the given tessellation. In a sense, this question captures the difficulty 

of teaching the nearest neighbor algorithm a simple structure, using a minimal number of 

examples. 

In addition, we consider the natural inverse to the problem of computing Voronoi diagrams. 

Given a planar polygonal tessellation T, we describe an algorithm to find a set of points whose 

Voronoi diagram is T, if such a set exists. 

1. Introduction 

Computing the Voronoi Diagram of a set of points is a well-known problem in 

the field of computational geometry, with applications in many fields, including 

that of machine learning. The nearest neighbor algorithm as typically used in 

machine learning stores a collection of examples and their respective class- 

ifications. Given a new example for which the classification is unknown, the 
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nearest neighbor algorithm uses the classification of the nearest point to classify 

the unknown example. This method therefore implicitly creates a Voronoi 

paritioning of the space of examples which is used during classification. 

In a previous paper, we introduced the helpful teacher model (see Salzberg et 

al. [6]), in which we find the smallest set of training examples which teaches a 

given concept to a learning program. Given a concept which can be described by 

a planar tessellation, we would like to compute the smallest set of examples which 

teaches the concept to the nearest neighbor learning algorithm. In that paper, we 

describe several techniques for teaching machine learning algorithms geometric 

concepts using a small set of examples. Specifically, we describe a technique for 

teaching the standard nearest neighbor algorithm a concept in the form of a 

polygonal tesselation, given a permissible error area. We left open the question of 

the difficulty of teaching nearest neighbor such a concept when no error can be 

tolerated. 

This suggests the following question “Given a planar polygonal tessellation T 
and an integer k, is there a set of k points whose Voronoi diagram contains every 

edge in T?” In a sense, this question captures the difficulty of teaching the 

nearest neighbor algorithm a simple structure, using a minimal number of 

examples. We provide a non-trivial reduction that demonstrates that the 

complexity of this question is NP-hard. 

We also consider the related question of finding an inverse of the Voronoi 

Diagram. We present an algorithm for determining if a planar tessellation is a 

Voronoi Diagram. The problem of recognizing Voronoi Diagrams has some 

history in Computational Geometry. A simplified version of this problem 

appeared as an exercise by Preparata and Shamos [5]. Ash and Bolker [l] were 

able to solve the problem of recognizing Voronoi Diagrams in the plane when all 

vertices of the tessellation have odd valence. Suzuki and Iri [7] present an 

algorithm for finding Voronoi Diagrams that approximate a given tessellation, but 

these approximations may not be minimal in size. 

2. Problem definition 

Given a set of points P in the plane, a Voronoi diagram is a partition of the 

plane into a set of IPI polygonal regions, such that any point in one of these 

regions is closer to the unique member of P in the region than it is to any other 

point in P. See Preparata and Shamos [5] f or an introduction to the Voronoi 

diagram. 

Given a polygonal tesselation T of the plane, we say that polygonal tessellation 

V is a finer tessellation if every region in T is partitioned into one or more regions 

of V. This implies that every (possibly unbounded) line segment which forms part 

of the boundary of T is covered by a union of line segments in V. See Fig. 1 for 

an example of two tessellations, one of which is finer than the other. Note that 
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Fig. 1. a) Tessellation, b) An example finer tessellation. 

the interior region of the coarser tessellation is partitioned into three regions in 
the finer, and the outer region is partitioned into seven regions. The bottom 
horizontal segment of the coarser tessellation is covered by the two bottom 
horizontal segments in the finer tessellation. 

We are concerned with finding a set P of points in the plane whose Voronoi 
diagram is a finer tessellation than a given tessellation T. We call such a set of 
points a Voronoi cover of T. We refer to the cardinality of P as the size of the 
Voronoi cover. If a Voronoi Cover contains II points, we say it is an n-Voronoi 
Cover. Note that Fig. 1 is an example of a Voronoi cover of size ten. 

We consider the question “Given a planar polygonal tessellation T and an 
integer k, is there a Voronoi cover of T that contains no more than k points?” 
We refer to this question as the Voronoi cover problem. We show that the 
Voronoi cover problem is NP-hard. This problem is a natural inverse of the 
Voronoi diagram, a well-known computational geometry construct. 

3. Minimal Voronoi covers 

To prove that the Voronoi cover problem is NP-hard, we will reduce a known 
NP-hard problem, Planar 3-SAT (Lichtenstein [3]) to it. 

An instance of Planar 3-SAT is described as follows: We are given a set of 
boolean variables u = {ui, u2, . . , u,}. Each variable can take one of two possible 
values: true or false. A clause is a disjunction of (possibly negated) variables that 
has value true when any of its constituents are true and has value false otherwise. 
We are also given a boolean expression over the variables that consists of a 
conjunction of clauses. The conjunction is true if and only if every one of the 
clauses that composes it is true. The question “Is there an assignment to the 
variables U, such that the given conjunction of clauses is true?” is known as 
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satisfiability, and the assignment is known as a satisfying assignment. In the 

variation 3-SAT, each clause is restricted to contain no more than three variables. 

Planar 3-SAT is a further restriction of the problem in which it is possible to 

construct a planar bipartite graph which has a vertex for every variable and for 

every clause. A vertex representing a variable is connected to a vertex 

representing a clause if the variable appears (possibly negated) in the clause. See 

Lichtenstein [3] for a proof that this problem is NP-complete. 

In the next sections we will show how to take an instance of Planar 3-SAT and 

convert it in polynomial time to an instance of the Voronoi cover problem such 

that there is a solution to the Planar 3-SAT problem if and only if there is a 

solution to the Voronoi cover problem. We will create a tessellation composed of 

three major parts. Each variable {u,, u2, . . . , u,} will be represented by one 

type of structure, each clause will be represented by another. Finally, the edges in 

the implicit plane graph defined above will be represented by a third type of 

structure. Note that in a strict definition of the Planar 3-SAT problem, we are not 

given the planar embedding of the implicit graph, but we can find such an 

embedding in polynomial time (see, e.g., Hopcroft and Tarjan [2]). We will 

assume that each clause contains exactly three literals, whereas the definition 

above allows for there to be fewer. We can get around this problem by 

duplicating literals if necessary. 

4. Construction 

What follows is an intuitive overview of the construction. For every variable ui, 

we will create a variable gadget. The variable gadget is a small set of adjacent 

polygons. A minimal Voronoi cover for any one gadget takes one of two forms. 

Which form it takes will be used to store the value (true or false) of the associated 

variable. In a solution to the Voronoi cover problem, the form of the variable 

gadgets directly gives us a satisfying assignment to the Planar 3-SAT problem. 

For each clause, we create a clause gadget. The size of the minimal Voronoi 

cover for a clause gadget depends on the truth value of the associated clause. If 

any of the three literals in the clause gadget are true, then the minimal Voronoi 

cover for the gadget requires one fewer point than if none of the three literals are 

true. This is the crucial part of the reduction. We can choose a k such that there is 

a Voronoi cover of size k for the entire construction if and only if we are able to 

‘save’ one point in every clause gadget, i.e., that each clause is true. 

Finally, we must have a way of communicating the truth value of each variable 

to the clauses the variable appears in. This corresponds to the edges in the plane 

graph we can construct from the planar 3-SAT problem we are given. Each such 

edge will be transformed to a path of connector gadgets which connect the 

variable gadgets to the clause gadgets. Note that the connector paths do not 

cross. 
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Fig. 2. An example variable gadget. 

4.1. Variable gadget 

An example variable gadget is shown in Fig. 2. This particular gadget has three 

complemented outputs and three non-complemented outputs, although it can be 

made with more. It is composed of eighteen bounded regions, each of which has 

either four or five sides. The dimensions of the regions are chosen so that a 

minimal Voronoi cover of the gadget has the following properties: 

(1) Each quadrilateral will be covered by exactly one Voronoi region. That is, 

only one point will be placed in each quadrilateral by the Voronoi cover. 

(2) Half of the pentagon regions will contain one point of the Voronoi cover; 

the other half will each contain two points. 

(3) A minimal Voronoi cover for a three-output variable gadget will contain 

exactly forty points. Similar bounds can be obtained for gadgets with more 

outputs. 

By definition, a Voronoi diagram contains exactly one point in each region. 

Each region in the variable gadget will contain at least one Voronoi region. This 

immediately tells us that a minimal Voronoi cover for a variable gadget will have 

at least eighteen points. 

To define the boundary edges of the variable gadget, a Voronoi cover must also 

contain some points that fall outside the gadget. Consider a particular boundary 

edge. It defines two regions, one bounded and one unbounded (the exterior of 

the gadget). Every boundary edge must be the perpendicular bisector of a line 

segment between a point inside the bounded region and a point outside the 

gadget. Some polygons require that each boundary edge be defined by a different 

exterior point. In other tessellations, including the variable gadget, it is possible 

for some pairs of edges to be defined by the same exterior point (but different 

points in the interior of the gadget). 

Consider two adjacent boundary edges. If the exterior angle at the intersection 

of the two edges is at least MO”, then these two edges cannot share an exterior 

point. This also applies to non-adjacent edges by extending the edge segments to 

their intersection point. We can use this fact to show that any Voronoi cover for 

the variable gadget must have at least eighteen exterior points. First note that 

there are 24 exterior edges to the tessellation. The exterior of the tessellation has 
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Fig. 3. Dimensions of variable gadget components. 

six concave angles, or six pairs of adjacent edges which could possibly share an 

edge in a Voronoi cover. The six concave angles occur at the adjacent edges of 

the following pairs of regions in Fig. 2: (1,4), (3,6), (9,12), (15, 18), (13, 16), 

(7,lO). 
We next must consider whether any non-adjacent pair of edges could share an 

exterior point in a Voronoi cover. For this, we will need to consider the 

dimensions of the gadget. See Fig. 3. We only need consider the following pairs 

of regions: (3,9), (3,12), (6,12), (7,13), (7,16), (13,16). Each of these pairs 

involves a rectangular region of height Y,. In the cases involving two such 

rectangles (e.g. (3, 12)), the distance between the rectangles is 2Y, > 2Y,. A 

shared point would have to be within distance Y, of each rectangle. This is clearly 

not possible. 

Consider the cases involving a rectangle and a non-rectangular quadrilateral. 

Due to the angle of the quadrilateral edge, the shared point must be further than 

Y2 from the rectangle. Once again, this is not possible. By this argument, a 

Voronoi cover of the variable gadget must contain at least eighteen external 

points, for a total of thirty-six points. 

As we indicated above, at least half of the pentagons in the gadget must 

contain two points. We will consider a pair of pentagons that share a diagonal 

edge. See Fig. 4. By way of contradiction, assume it is possible for a Voronoi 

cover of this figure to have only one point in regions B and C. The line segment 

between these two points must have the common edge shared by regions B and C 

as its perpendicular bisector. (We say that one point is a reflection of the other 

through the (B, C) common edge). Region A must also contain at least one 

point, such that the line segment between it and the point in C is the 

perpendicular bisector of the (A, C) common edge. A similar point must exist in 

region D. Any point in B which is a reflection of both a point in C and a point in 

D must lie in the shaded portion of B. The same holds for a region C. Note that 

Fig. 4. Two adjacent pentagons in the variable gadget. 
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Fig. 5. Voronoi cover for variable gadget in true case. 

when the (B, C) common edge has sufficiently small slope, that it is not possible 
to place a point in each shaded region such that they are reflections of each other. 
Thus, at least one of {B, C} must contain two points in any Voronoi cover. 
Extrapolating to the complete variable gadget, it is clear that the best we can 
hope for is for every other pentagon to contain one point, while the rest contain 
two. Thus, we can raise the lower bound on the number of points in a minimal 
Voronoi cover of the variable gadget to thirty-nine. 

Finally, note that two of the pentagons are on the border of the gadget, and 
that at least one of these must contain two points in a Voronoi cover that satisfies 
the above criteria. Both points in this region must have a reflection outside the 
gadget. This means that any Voronoi cover for the gadget must have at least forty 
points. 

Now we describe two minimal Voronoi covers for the variable gadget. See Figs. 
5 and 6 for these two covers of the variable gadget. Figure 5 represents the case 

Fig. 6. Voronoi cover for variable gadget in false case. 

Fig. 7. 

j 

Positioning of points in voronoi cover of variable gadget. 
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where the associated variable is true. Figure 6 represents the case where the 

variable is false. Modulo certain slight movements of the points, these are the 

only two minimal Voronoi covers for the variable gadget. A small piece of either 

cover is shown in Fig. 7. Points A and B can be moved vertically and still 

maintain a minimal Voronoi cover. As they are moved, points C, D, and E must 

also move along the dashed lines. If we let m be the absolute value of the slope of 

the segment separating the two pentagons, then points C, D, and E will be within 

distance 2Y,/(l/ m - m) of the nearest vertical segment. 

4.2, Clause gadget 

In this subsection, we describe a small tessellation whose minimal Voronoi 

cover depends on its interaction with the other gadgets to which it is connected. 

The gadget is shown in Fig. 8. The dimensions X, and Y, are the same as those 

which appeared in the variable gadget. Obviously, any Voronoi cover for this 

gadget must have a point in each of the three connector rectangles, and one in the 

large clause rectangle. Additionally, these interior points must be reflected 

through the edges of the rectangles. A minimal Voronoi cover for this gadget will 

share one external point of the clause rectangle with one external point of a 

connector rectangle. When the clause gadget is part of the complete circuit, this 

sharing can only happen when at least one of the associated variables is true. 

Thus, it will correctly compute the disjunction of the variables. 

The following relationships exist among the dimensions of the variable gadget: 

l Y, > X, + 2Y,. This ensures that the connector rectangles are far enough 

apart that they cannot share any of their external points. Thus, there will be 

twelve external points (and three internal points) needed by any Voronoi cover of 

the three connector rectangles. 

l Y, = 3Y, + ZY,. The clause rectangle is equal in height to the three spaced 

connector rectangles. 

X\ 

Fig. 8. Clause gadget. 
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l X, =X,/8. 

l X, > 5X,/8 + 2(2Y, + 4YJ2/X,. 

l XC = X, -X,/8. 

To justify the last three requirements, we must see how the clause gadget is 

used. The three connector rectangles will be placed adjacent to other shapes that 

form a path back to the variable gadgets. This will restrict the positioning of 

points within the connector rectangles in a minimal Voronoi cover. We will 

assume that the points within the connector rectangles have the following 

properties: 

l The vertical coordinate of the points is unknown (but of course, it must lie 

within the connector rectangle). 

l If the literal (possibly negated variable) associated with a connector gadget is 

true, then the point will be centered horizontally within the rectangle (X,/2 from 

both vertical edges). 

l If the associated literal is false, then the point will be within distance X, of 

the leftmost edge of the rectangle (but may be closer). 

The clause gadget works on the following principle. The large clause rectangle 

can be covered with five points (one inside, four outside) in a Voronoi cover. 

However, when any of the three points inside the connector gadgets are centered, 

rather than close to the left edge, the clause rectangle can share its rightmost 

external point with the leftmost external point of a connector rectangle. The 

connector rectangles are shifted horizontally from each other, so that if more than 

one associated literal is true, only one of the left external points of the connector 

rectangles need be reflected into the clause rectangle. We demonstrate this with 

some examples. See Figs. 9, 10, and 11. These figures are not drawn to scale. The 

clause rectangle was made narrower and closer to the connector rectangles for 

illustrative purposes. In these figures, we assume that the points in the connector 

rectangles are fixed, and we find the minimal Voronoi cover given these fixed 

points. 

. 
. 
. 

. 

Fig. 9. Clause gadget. A is true, B and C are false. 
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. . 

. 

Fig. 10. Clause gadget. A and B are true, C is false. 

In Fig. 9, one literal (A) is true. Note that the leftmost external point for the 

connector rectangles associated with literal A is close enough to the clause 

rectangle that the two rectangles can share it as an external point. In Fig. 10, two 

literals (A and B) are true. Once again, the clause rectangle can share an external 

point with one of the connector rectangles. In this case, that rectangle is B. Now 
we see why the connector rectangles must be staggered horizontally. Every point 

on the rightmost edge of the clause rectangle is closer to B’s external point than 

to A’s external point. This means that A’s external point does not interfere with 

the definition of the rightmost edge of the clause rectangle. If they were not 

staggered, then the clause rectangle could not share an external point with a 
connector rectangle when two or more literals were true. In Fig. 11, none of the 
literals are true. The leftmost external points of all three connector rectangles are 
very close to their respective rectangles and too far from the clause rectangle to 
be shared. Thus, this case requires one more point in the minimal Voronoi cover. 

So, if we can fix the points in the connector rectangles to be horizontally 
centered in the case of true literals and very close to the left edge in the case of 

. 

. 

Fig. 11. Clause gadget, A, B, and C are false. 
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Fig. 12. Simplest connector gadget. 

false literals, then the minimal Voronoi cover for the clause gadget will contain 
nineteen points if the clause is true and twenty points otherwise. 

4.3. Connector gadget 

The third type of tessellation we use is the connector gadget. This will be used 
for conveying the truth value of a literal to each of the clauses it appears in. In its 
simplest form, a connector gadget is just a rectangle. It is of size X1 by Y,, where 
Xi and Y, are defined by the dimensions of the variable gadget. An example is 
shown in Fig. 12. 

Clearly, this is a very simple gadget. It becomes more useful when we combine 
several of them together. Fig. 13 shows three coupled connector gadgets. The 
Voronoi cover has been constrained to contain one point centered horizontally 
within gadget A, as shown by the large circle. Note that in a minimal 
(constrained) Voronoi cover, that the other two gadgets will also contain 
horizontally centered points. Fig. 14 is the same set of gadgets, but the 
constrained point has been fixed at a distance 6 from the leftmost edge of the 
rectangle it lies in. Note that in this case, the positioning of points in the 
rectangles alternates in the minimal constrained Voronoi cover. Every other 
rectangle has a point that is distance 6 from the rightmost edge. This means that 
the connector gadget can convert a left-constrained point in one gadget to a 
right-constrained point in the next. 

At this point, the purpose of the connector gadget should be clear. The 
variable gadget will ‘choose’ a truth value. The output of the variable gadget is 
obtained at its connector rectangles. Each of these rectangles will contain either a 
center-constrained or edge-constrained point in a minimal Voronoi cover. The 
connector gadgets couple the constraint to the clause gadget, where it remains of 
the same type (center or edge). There are several problems that this simple 
connector gadget cannot handle. Two of these are that the paths from the 

I I I I 

a l l 

Fig. 13. Coupled connector gadgets, large point constrained to center. 
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. . . 

l Ie A . . . 
. . . 

Fig. 14. Coupled connector gadgets, large point constrained to left. 

variable gadgets to the clause gadgets may not be a straight line and may not have 

a length divisible by Xi. 

We solve these problems by creating angle connector gadgets. These gadgets 

perform the same function as simple connector gadgets, propagating truth values 

via point constraints; however, they also change the angle of the path of 

connectors. An example is shown in Fig. 15. The connector gadget is shown 

twice, each time with a simple connector gadget on each end, to show how they 

are used together. In Fig. lSa, one connector gadget contains a center- 

constrained Voronoi cover point. In Fig. 15b, one connector contains an 

edge-constrained point. In both cases, a minimal Voronoi cover for the construc- 

tion propagates the constraint type to the other end of the gadget. The gadget 

also changes the angle of propagation. An angle connector gadget requires twelve 

points in a minimal Voronoi cover, four of which are shared with adjacent 

connectors. Note that the quadrilaterals of the angle gadget which abut against 

simple connectors are longer than the connectors themselves (X,). This is so that 

they correctly handle the edge-constrained case. The exact length does not 

matter, as long as it is sufficiently large. If we assume that the connection angle is 

no less than 90 degrees, then a length of X, + Y, is sufficient. The fact that the 

length is allowed to be longer can be used to handle path lengths not divisible 

by Xi. 
Finally, the paths from variables to clauses must not cross and must not come 

sufficiently close to permit sharing of external points between connector gadgets. 

Because the original problem (planar 3-SAT) is planar, paths will never cross. By 

using the angle gadgets to move the paths apart we can prevent external points 

from coinciding. This can be achieved by moving the paths so that they are no 

closer than X, + 2Y,. 

. 

. 
. 0 

g-py # 

. . . . 

A) B) 

Fig. 15. Angle connector gadgets. a) is fixed center, b) is fixed left. 
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This distance is automatically achieved at the clause gadget. One way to 

accomplish this at the variable gadget is to increase the number of outputs of the 

variable gadget beyond the number strictly needed to feed the clause gadgets. 

When 2Y, > X, + Y,, using every other output is sufficient to achieve the correct 

separation. 

4.4. Putting it all together 

Given an instance of Planar 3-SAT, we convert it in polynomial time to a plane 

graph with a vertex for every variable and for every clause. Next, we construct 

the variable and clause gadgets. We connect them up with connector gadgets. For 

each variable ui we compute Imvc(u,)l, the number of points in a minimal Voronoi 

cover for the gadget. For each clause Ci, we compute Imvc(C,)I, the size of a 

minimal Voronoi cover for the clause gadget, assuming that at least one of its 

inputs is true. Finally, we compute the number of points needed in a minimal 

Voronoi cover of the connector gadgets. Let k be the sum of the sizes of the 

minimal Voronoi covers for all the gadgets. Now, we ask if there is a minimal 

Voronoi cover of size k for the entire tessellation. 

4.1. The Voronoi cover problem is NP-hard. 

Proof sketch. Assume that there is a satisfying assignment to the Planar 3-SAT 

problem. Then, the following is a Voronoi cover of size k: 
l For each variable ui, the Voronoi cover for the gadget associated with ui is 

the true-variable gadget or the false-variable gadget according to the truth value 

of ui in the satisfying assignment. 

l For each connector gadget, we can generate a Voronoi cover of minimal size 

by assuming that the outputs of the variable gadgets are fixed and using the 

‘constrained’ covers described above. 

l For each clause gadget C,, at least one incoming literal must be true. This 

means that a minimal Voronoi cover for the clause can be constructed with 

Imvc(C,)I points such that its interface to the connector gadgets is defined 

properly. 

Consider the case when there is no satisfying assignment to the Planar 3-SAT 

problem. Assume by way of contradiction that there is a Voronoi cover of size k 
for the entire tessellation. This implies that each gadget in the construction must 

have a Voronoi cover defined by a subset of the points in the complete Voronoi 

cover. By our construction, the Voronoi covers of the gadgets must be minimal. 

Thus, the Voronoi covers of the variable gadgets define a satisfying 

assignment. 0 

5. Recognizing Voronoi diagrams 

In this section, we describe an algorithm that can determine if a polygonal 

planar tessellation of n regions is a Voronoi diagram, and if so can find a set of 
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points whose Voronoi diagram is that tessellation. This problem can be 

considered a restriction of the Voronoi Cover problem in which the size of the 

cover is equal to the number of regions in the tessellation, i.e., no regions are 

split. The set of points (if any) found by the algorithm is a Voronoi Cover. A 

description of the algorithm follows. 

We assume that the tessellation is given in the following form. We are given a 

list of polygonal regions, each of which is a sorted list of edges. Given any edge, 

we can find the two regions that border it in constant time. Each edge is 

represented by a line ax + by + c = 0, where a, b, and c are integers. 

Each of the regions of a Voronoi diagram is convex. The first step of the 

algorithm is to ensure that this property holds for the tessellation in question by 

testing the convexity of each region. This step is not strictly necessary, but makes 

the following discussion easier. This step can be completed in linear time. 

Our technique is to transform our problem into an instance of two-variable 

linear programming. Megiddo [4] has shown that two-variable linear program- 

ming can be solved in linear time. 

We pick a region R, to be the root region. Let (X,, Y,) be the unique Voronoi 

point in region R,. X, and Y, will be the two variables in our linear program. We 

will solve the problem either by finding legal values for X, and Y, or by finding 

that no such values exist. In the first case, we can find an n-Voronoi cover; in the 

second, we know that there is no such cover. 

We will use the dual graph D of the input tessellation in our algorithm. We 

define D as follows. A vertex in D represents both a region of the tessellation and 

the Voronoi point contained in the region. Two vertices in D are connected with 

an edge if and only if the regions they represent are adjacent in the tessellation. 

In linear time, we can find a breadth-first spanning tree for this graph. The root 

region defines the root of this tree and the regions adjacent to the root region 

become children of the root of the tree. Note that each edge of the tree 

corresponds to an edge in the tessellation, but there may be many edges in the 

tessellation with no corresponding edges in the spanning tree. 

First, we make a simple observation. Let pi(Xi, Y) and pi = (Xi, q) be the 

Voronoi points in two adjacent regions, Ri and R,, separated by an edge 

ax + by + c = 0. Given pi, we can find pi by “flipping” pi over the common edge. 

Precisely, there is a linear relationship between pi and pj, that 

and 

xi = 
-(a’+ b*) -2ac 

a2 - b* 
Xj + 

-2ab 
py+------ a*-b* J a2 - b* 

2ab a2 + b* 2bc 
q=- 

a2 - bzXj+ (Izq+m+ 

There is a unique path from the root of the spanning tree to each vertex in D. 

This path represents a chain of linear transforms from ps to every Voronoi point 

in the Voronoi cover. We will use these paths to define the Voronoi points in 
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each region in terms of the Voronoi point in the root region, ps. Define depth(i) 
to be the depth of region i in the spanning tree. The Voronoi point for a region of 
depth d > 0, can be calculated inductively using the above transform from its 
parent in the tree, which has depth d - 1. Clearly, the vertex at root of the tree is 
already defined in terms of ps. So, we can express each Voronoi point as a linear 
function of X, and Y,. 

Given the formulation of each of the Voronoi points, we can constrain them to 
lie within the regions they define. For a region Ri with k edges, this will entail 
adding k constraints of the form 

aXi+bY+ccO or uX,+bY+ccO, 

where 

ax+by+c=0 

is an edge of the region. We will always express Xi and Y in terms of X, and Y,, 
as above. 

The constraints we construct in the above step guarantee that each region 
contains one Voronoi point, and that if two regions are adjacent in the spanning 
tree, then their Voronoi points are reflections of each other through the edge 
common to both regions. However, this does not ensure that points belonging to 
regions adjacent in the tessellation, but not in the spanning tree are reflections of 
each other. So, for each pair of adjacent regions in the tessellation, we must 
ensure that the corresponding Voronoi points are reflections of each other. 

Let Ri and Rj be two adjacent regions that are not adjacent in the spanning 
tree. Let pi = (Xi, YJ and pj = (Xi, Y$) be the Voronoi points for these regions, 
respectively. Then, pi must be the reflection of pj through the common edge 
ax+by+c=O. Thatis, 

x_ = - (a” + b2) x_ + -2ab Y + -2ac ~ ~ I u2-b2 1 u2-b2 J u2 - b2 

and 

Finally, we feed the linear program to an algorithm for finding a solution for X, 
and Y,, or determining that no such solution exists. 

This algorithm relies on properties of the Voronoi diagram-that each Voronoi 
point is contained in the region that it defines and that the Voronoi points in 
adjacent regions are reflections through the common edge between the regions. If 
there is no solution to the linear program we construct, then there is no set of 
points with these properties and input tessellation cannot be a Voronoi diagram. 

Now consider the case when there is a solution to the linear program we create. 
We claim that the tessellation is a Voronoi diagram, and that we can obtain an 
n-Voronoi Cover for the tessellation by picking any feasible solution ps and 
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mapping it into a Voronoi Cover point for each region via the linear transform 

above. For each region R, call the point obtained in such a manner pR. Let P be 

the set of II such points. To prove that the initial tessellation is a Voronoi 

diagram, we must merely show that, for each region R, any point in R is at least 

as close to pR as it is, to any other point in P. Note that if there is a point inside R 
that is further from pR than it is from some other point pR, E P, then there must 

be a point p on the boundary of R which is also closer to pR, than it is to pR. 
So, by way of contradiction, assume that the tessellation is not a Voronoi 

diagram, i.e., there is a point p on the boundary of a pair of adjacent regions R, 
and R2 which is closer to point pR, E P than it is to pR, (and, by symmetry, to pRz). 
We analyze this assumption with two cases, shown in Fig. 16. 

In the first case, regions RI and Rj are adjacent in the tessellation and share a 

common edge. This edge divides the plane into two half-planes. Points in the 

half-plane that contains pR, are closer to pR, than they are to pR,. Points in the 

other half-plane are closer to pR,. Thus, p must be in the half-plane that contains 

pR,. R, is defined as the intersection of the closed half-planes defined by the edges 

of RI. For any edge e of RI, no point in the half-plane defined by e which does 

not contain pR, can lie in RI. Thus, p cannot lie in R,, which is a contradiction. 

In the second case, regions R, and R, are not adjacent in the tessellation, so do 

not share an edge. Let 1 be a line segment from pR, to p. 1 must cross at least one 

edge of the tessellation because R, and Rj are not adjacent. Let k be the number 

of edges crossed by 1. Starting at pR,, let Rj be the second region encountered 

along 1 (R; is the first). Note that Rj #RI. The edge between Ri and Rj separates 

the plane into those points that are closer to pR, on one side, and those that are 

closer to pR, on the other. The point p is on the Rj side and is therefore closer to 

pR, than it is to pR, or, by transitivity, to pR,. 

If pR, is adjacent to pR,, then the argument in case one, above, may be applied 

to result in a contradiction. Otherwise, we can repeat the argument in case two, 

but the value of k defined as above will be one less. k can never be more than the 

number of edges in the tessellation, and case two only applies when k is positive, 

so the above argument eventually reaches a contradiction in case one. 

---___ I 

--___ # 

‘----_.__. 

P,Ri fP 

a) Case 1 b) Case 2 

Fig. 16. Showing tessellation to be a Voronoi diagram. 
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Each edge in the tessellation contributes two equations to the linear program. 

It may appear that the linear program is linear in size and should therefore be 

solvable in linear time. However, the coefficients in each equation can grow to 

require linear size for their representation. Thus, in the worst case, the linear 

program can be quadratic in size, and can be found in quadratic time. 

Theorem 5.1. Given a polygonal tessellation in the plane, it is possible to find the 
set of points whose Voronoi diagram is the tessellation, or determine that no such 
set exists, in quadratic time. 

6. Conclusion 

We have presented an efficient algorithm for recognition of Voronoi Diagrams 

and computing the set of points that generate a given Voronoi Diagram. On the 

other hand, we have shown that this problem becomes NP-hard when we 

generalize it to the Voronoi cover problem, where regions of the given 

tessellation can be subdivided into multiple Voronoi regions. This suggests that it 

is difficult to teach concepts to the nearest neighbor learning algorithm using a 

minimum number of examples. 

Possible research directions include finding provably good approximations to 

tesellations by Voronoi Diagrams. This could be useful in communication of 

concepts to nearest neighbor learning algorithms. 
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